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OPTIMUM BLEND OF FRACTAL METHODS FOR AUTOMATIC 

MALIGNANCY DETERMINATION IN DERMOSCOPY IMAGES 

Abstract 

The most important step is early and effective diagnosis in the treatment of melanoma 

which constitutes the biggest part of skin cancers results in death. At the present time, 

dermatologists take dermoscopy images, visually examine these images and draw the 

lesion borders manually for a future reference. With the naked-eye, it is not easy to 

recognize compartments and tissue structures. Additionally, this procedure is also 

tedious, biased, and failure rate is high. Moreover, even with the help of dermoscopy, 

70% of melanoma claims are still a false-negative diagnosis. This is the motivation for 

computer assisted diagnosis (CAD) techniques to help dermatologists to reduce 

possible unlikelihood, to standardize the results and also to speed up the process. The 

techniques which are developed by Fractal Methods determine irregularities on the 

lesion borders. Our aim is to designate which Fractal Methods are more effective on 

determining malignant lesions to minimize false-negative, false-positive and total-

false diagnosis. For this purpose, we develop four different mixed integer 

programming (MIP) classification models, and then applied these models on the 

dataset of 100 patients. First, we determine the optimum usage rate of Fractal Methods 

for each classification model using randomly selected 50 patients (training sample). 

Later, true diagnosis performance of each classification model is evaluated using the 

remaining 50 patients (testing sample) and the optimum usage rate of Fractal Methods 

which is already found with the “training sample”. It is observed that the optimum 

usage rate of fractal methods gives 80% success rate in the best case scenario, and we 

obtained a success rate of 73.4%, on average, when we perform repeated tests using 

the optimum usage rate of fractal methods. 
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DERMOSKOPİDE KÖTÜ HUYLU TÜMÖRLERİN SAPTANMASINDA 

OPTİMAL ORANSAL KIRILMA METODLARI 

Özet 

Ölümle sonuçlanan deri kanseri vakaların en büyük kısmını oluşturan melanomun 

tedavisinde en önemli adım etkin ve erken teşhistir. Dermoskopi, deri kanserinin erken 

teşhisi amacıyla dermoskop adı verilen cihazlarla deride bulunan koyu renkli 

lezyonların incelenmesidir. Yöntem, şüpheli lezyonlarda hekimin cerrahi girişim 

kararına yardımcı olmayı ve lezyon sınırlarındaki düzensizlikleri gözlemleyerek iyi 

huylu lezyonları kötü huylu lezyonlardan ayırmayı hedefler. Günümüzde 

dermatologlar, dermoskop görüntülerini çıplak gözle inceler ve lezyon sınırlarını elle 

çizer. Ancak çıplak gözle doku yapılarındaki renk, yoğunluk, büyüklük farklılıklarını 

ve sınırlardaki düzensizlikleri ayırt etmek zordur. Ayrıca bu işlem kişiden kişiye 

değişkenlik gösteren, hata oranı yüksek, tekrarlanamayan sonuçlar doğurur. 

Dermoskopi ile yapılan melanom teşhislerinde %70’e kadar yanlış-negatif hatası 

gözlemlenmiştir. Melanom teşhislerinin göreceliliğini azaltmak, sonuçları standardize 

etmek ve yanlış teşhis oranlarını minimize etmek için dermatologlara yardımcı, 

bilgisayar destekli tanı teknikleri geliştirilmiştir. Oransal Kırılma (Fractal) Metodları 

kullanılarak geliştirilen bu teknikler, lezyonların sınırlarındaki simetri bozukluklarını 

ve düzensizlikleri tespit eder. Hedefimiz, lezyon sınırlarının bilgisayar destekli 

çizimlerine uygulanan 11 Oransal Kırılma Metodundan hangilerinin kötü huylu 

lezyonların saptanmasında daha etkili olduğunu belirlemek ve bu sayede hatalı teşhis 

oranlarını miminuma indirmektir. Bu amaçla karışık tam sayı doğrusal programlama 

kullanarak 4 faklı sınıflandırma modeli geliştirilmiş ve daha sonra bu modeller 100 

hastalı bir veri kümesinde uygulanmıştır. İlk önce, sınıflandırma modellerinden her 

biri için rastgele seçilen 50 hasta (öğretme grubu) kullanılarak Oransal Kırılma 

Metodlarının optimum kullanım oranları tespit edilmiştir.  Daha sonra kalan 50 hasta 

(test grubu) ve bulduğumuz Oransal Kırılma Metodlarının optimum oranları 

kullanılarak sınıflandırma metodlarının her birinin doğru teşhis performansları 

ölçülmüş, en iyi senaryoda doğru teşhis oranı % 80 olarak hesaplanmış ve ortalama 

doğru teşhis performansı %73.4 olarak elde edilmiştir. 
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CHAPTER 1  

INTRODUCTION 

1.1 Problem Statement and Research Objective 

Dermatology is the branch of medicine that focuses on the diagnosis and treatment of 

diseases of the skin, hair and nails. It also focuses on maintaining the health of the skin. 

Dermatologists are medical doctors who train in this area for many years, making them 

the experts in all things related to skin, hair and nails [1]. Skin diseases increase due 

to changing environment conditions and modern life styles day by day. With this 

increment, research on the diagnosis and treatments of skin diseases also increases 

because the most common form of cancer types is skin cancer [2]. The most important 

step in treatment of skin cancers is early diagnosis. Dermatologists use a handy tool 

which is named as dermatoscope for taking high resolution images, analyzing dark 

colored lesion on skin, or diagnosing melanoma and other pigmented lesions. This 

process is known as dermoscopy[3]. Images taken via dermatoscope are called 

dermoscopy images. Dermoscopy is now a well-established diagnostic tool to improve 

the clinical recognition of a broad spectrum of different skin disorders. Skin cancer 

detection is the most important indication of dermoscopy. There is evidence that the 

use of dermoscopy reduced false-negative diagnosis rate in recent years. Thus, recent 

skin cancer guidelines promote the use of dermoscopy in skin cancer screening and 

diagnosis [4].  
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The deadliest form of skin cancer is melanoma. Melanoma is a cancer that begins in 

melanocytes, melanin-producing cells located in the bottom layer of the skin's 

epidermis. Other name for this cancer is malignant melanoma. Melanoma is much less 

common than basal cell and squamous cell skin cancers. Like the other cancer types, 

melanoma is curable in its early stages, but it is much more likely than other cancer 

types to spread to other parts of the body if not caught early, so it is far more dangerous 

and deathly. According to statistics, 15% of melanoma cases are fatal [5,6]. In addition 

to this, women 25-29 years of age are the most commonly affected group from 

melanoma [7]. Although melanoma accounts for only 4% of all skin cancers [8], it is 

the cause of 75% of skin cancer related deaths [9]. Accurate diagnosis of melanocytic 

lesions is amongst the most difficult problems for dermatologists since definitive 

diagnosis requires biopsy, sampling of skin tissues for examination, which has high 

risk of metastasis, the spread of the cancer from skin to other organs. Moreover, 

misdiagnosis of these lesions results in one of the causes of medical malpractice for 

dermatologists. Even with the help of dermoscopy, 70% of melanoma claims are still 

a false-negative diagnosis [10] mainly because dermatologists’ risk aversive attitude 

prevent them from making impetuous positive-diagnosis, and possible surgical biopsy. 

The focus of this research is to aid dermatologists in the stage of melanoma diagnosis 

by presenting them some analytic methodologies that are capable to diagnose 

melanoma more accurately with less risk.  

 

Lesion border irregularity is one of the criteria that could serve to distinguish malignant 

lesions from benign lesions. However, in current practice, physicians draw lesion 

borders manually and assess irregularity through their observations. This is subjective, 

erroneous, and not reproducible due to inter- and intra-observer variability. 

 

One of the high priorities of health care professionals is the ability to diagnose 

pigmented skin lesions, especially melanocytic neoplasms with high accuracy. 

Pathologists, dermatologists, and dermatopathologists are in continuous study for 

objective, reproducible criteria that could serve to distinguish benign from malignant 

melanocytic proliferations in order to accurately predict biologic outcomes for patients 

undergoing skin biopsy. 
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In recent years, dermoscopy has revolutionized disease diagnosis, grading, and 

prognosis for skin cancer. Dermatoscopes take high resolution images for region of 

interest (ROI) by analyzing dark colored lesion on skin or diagnosing of melanoma 

and other pigmented lesions (See Figure 1.1) [3].  

These images provide wealth of useful information for computer-assisted diagnosis. 

Although using dermoscopy images opens the way for more objective analysis of 

cases, fast and accurate diagnosis in melanocytic lesions is still amongst the most 

challenging problems for pathologists. Misdiagnosis of these lesions is dangerous and 

results in over or under treatment of patients. The primary causes of errors include 

tenuous dermatologic changes that remain undetected to the naked-eye and lack of 

experience of the observers.  

 

 

Figure 1.1: Polarized light dermatoscope, Immersion oil dermatoscope, Image taken, 

respectively 

In current practice, dermatologists take dermoscopy images, visually examine them 

and draw the lesion border manually for a future reference. Even with dermoscopes, it 

might be difficult to recognize compartments and tissue structures such as glands based 

on color, intensity, size, and borders. In addition to this, this process is tedious and 

prone to intra- and inter-observer variability, which results in limited statistical 

confidence and low reproducibility [11]. It is also known that manual recognition of 

color and intensity by dermoscopes is biased depending on color distributions of a 

given image [12]. Moreover, delineated lesion border drawn by different 

dermatologists may not be the same. Sometimes this unlikelihood reaches up to 24% 

[13].  
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This situation rises the motivation for computer assisted diagnosis (CAD) techniques 

to help dermatologists to reduce possible unlikelihood, to standardize the results by 

alleviating inter- and intra-observer variations, and also to speed up the process [14]. 

Figure 1.2 illustrates an exemplary dermoscopy image of a region of interest (ROI), 

manually dermatologist drawn border image, and CAD based algorithmic border 

detected image, respectively. The third image (CAD image) can capture the lesion 

border in more detail compared to the second image (dermatologist drawn border 

image) and it depicts the first image (dermoscopy image) more accurately. With 

second image, it is much harder to follow the deviation from a smooth shape.  

 

 

Figure 1.2 Dermoscopy image of ROI, Dermatologist drawn border, Computerized 

border detection, respectively 

In dermatology, as American Cancer Society stated [6], cancer cells grow irregularly 

so that borders of melanocytic lesions have some shape irregularities. Even if CAD 

images are used for the identification of border irregularities, some analytical methods 

are still needed to measure the shape irregularities on CAD drawn lesion border areas 

and determine possible malignancy of ROI.  
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1.2 Research Objective 

A biopsy is a medical procedure that involves taking a small sample of tissue so that it 

can be examined under a microscope easily [6]. Biopsies can be used to identify 

abnormal cells and to help identify a specific type of condition. Where a condition has 

already been diagnosed, a biopsy can be used to measure how severe it is or which 

stage it is at. Biopsy is seen as the most accurate way in detection of melanoma, but it 

is dangerous since it fastens the spread of the malignant lesions through the body which 

is known as metastasis. Doctors and researchers have noted that biopsy of a tumor can 

cause seeding, or spread of cancer cells along the path of the needle track at the biopsy 

site. Additionally, biopsy is not only dangerous, but also an expensive procedure.  

Therefore, biopsy is usually used as the last resort to diagnose the suspected melanoma 

cases.  

 

Our ultimate target is to minimize false-negative, false-positive and total-false 

diagnosis of melanoma as much as possible by using means other than medical 

procedures (biopsy), such as computer assisted diagnosis (CAD) techniques and 

mathematical programming methodologies. Despite there are so many studies related 

to the diagnosis of melanoma, to the extent of our knowledge, none of them has utilized 

quantitative methods such as mathematical modeling and computer assisted decision 

systems to diagnose melanoma cases.  

 

The framework of our study is founded upon Kockara et al. [15]. In this article, authors 

first employed CAD based method for automated lesion border delineation. Then, they 

implemented different quantitative methods, which are referred as fractal calculation 

methods, on computerized border detections to quantitatively measure ROI’s 

irregularity. Our main objective is to decide which blend of fractal calculation methods 

described in Kockara et al. [15] is more accurate for detection of malignancy in 

dermoscopy images.  
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1.3 Limitations of the Research 

Our study is based upon the computerized border detection and fractal calculation 

methods discussed in Ercan’s study [16]. Although there exists several other fractal 

calculation methods in the literature, we restrict our attention only on the ones covered 

in this study. The parametric values of the fractal   methods measure the deviation from 

a smooth shape, i.e. the amount of roughness on the shapes. When these values 

increase for a lesion border, it means that roughness and correspondingly the 

possibility to be malignant melanoma also increases.   The models and methods we 

have developed in the thesis assume that parametric values of fractal calculation 

methods accurately reflect the magnitude of irregularity in lesion borders and are 

known a priori with certainty. 

1.4 Outline of the Thesis 

The remainder of this thesis is organized as follows. A review of the existing literature 

relevant to our work is presented in Chapter 2. Chapter 3 discusses what the Fractal   

Methods are and examines the methods separately. In Chapter 4, we present our 

mathematical models that are able to distinguish patients who have malignant lesions 

from the patients who have benign lesions. Chapter 5 presents the data which we used 

on our models and results of these models. The best performing model and the best 

blend of fractal   methods are discussed in this chapter. Chapter 6 closes the thesis with 

conclusions, contributions and future research directions.  
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CHAPTER 2  

BACKGROUND 

Since 18th century, there has been abundant work on the dermatology. Willett [17] 

emphasizes that first dermatology schools were built in 18th-century France for the 

treatments especially for ancient diseases about skin such as syphilis. Rigel et al. [18] 

state that dermatologic diseases and especially melanoma has increased in recent years 

substantially. This trend constitutes the reason why effective educational programs to 

improve public awareness for early detection become more important than ever [19]. 

As mentioned earlier, melanoma which begins in melanocytes constitutes the largest 

part of skin cancers that results in death [1]. Jayaraman et al. [2] state that early 

detection is important on melanoma to reduce the diseases’ fatality rate. In this study, 

Jayamaran et al. [2]’s target is to distinguish malignant melanoma from benign 

pigmentations. First, they apply image pre-processing to remove insignificant details 

such as hairs or effects of air. Then, textural and statistical features obtained are used 

as neural network classifier input [2]. According to Troxel [10], from 1995 through 

2011, only 46 of 362 claims were reported as positive diagnosis of melanoma. 

However, the article states that 70% of the negatively-diagnosed claims were actually 

false-negative diagnoses. Mulrane et al. [11] and Conway et al. [12] also states that the 

diagnosis process is tedious, has low reproducibility and biased on color distributions 

of a given image. Due to these difficulties in early diagnosis of melanoma, growing 

motivation for computer assisted diagnosis (CAD) techniques has emerged to help 

dermatologists to reduce possible unlikelihood, to standardize the results by alleviating 

inter- and intra-observer variations, and also to speed up the diagnosis process [14].  



8 
 

Among all the studies about dermatology in the literature for a better diagnosis, none 

of them have utilized mathematical modeling or computerized decision support 

systems. For instance, Jayaraman et al. [2] study melanoma detection by using 

dermoscopy images. They have extracted various textural and statistical features using 

Gray Level Co-occurrence Matrix (GLCM). After that, these attributes are used as 

stimulants to an Artificial Neural Network (ANN) classifier to separate cancerous and 

non-cancerous samples. We try to solve the diagnosis problem of skin cancer with 

computerized systems like Jayaraman et al. [2]’s study. However, different from their 

work, we prefer to use fractal methods for the classification of melanoma and benign 

lesions. Lesne [20] states fractals are geometric shapes that have a structure. Berube et 

al. [21] point out that particles are characterized by their boundary fractal, and then 

define three fractal methods: box counting, dilation and euclidean distance mapping. 

Similar to Berube et al. [21], Allen et al. [22] also study fractal methods. In their work, 

they first divide fractal methods into two groups; vector and matrix based methods. 

Vector-based methods are then divided into four subgroups which are exact, fast, 

hybrid and faena. Similarly, matrix-based methods are divided into five subgroups; 

mosaic amalgamation, lattice interception, dilation method, blanket algorithm, 

displacement method and distance transform method. In our study, we also use fast 

and hybrid methods of vector-based methods, and dilation method of matrix-based 

methods. Allen et al. [22] also claims that the dilation method is the most commonly 

used matrix-based method. Other than these fractal methods, Cornforth et al. [23] 

conduct studies on mass radius technique, which is now a well-known fractal method. 

 

We use the same data set, which is also used in the analysis conducted in three articles: 

Kockara et al. [25], Kockara et al. [27], and Kockara et al. [28].  Kockara et al. [25] 

compare two approaches for automatic border detection in dermoscopy images: 

density based clustering (DBSCAN) and Fuzzy C-Means (FCM) clustering 

algorithms. Each approach is examined on a set of 100 dermoscopy images whose 

manually drawn borders by a dermatologis. As conclusion of this study, visual 

outcome showed that the DBSCAN delineated targeted lesion more effectively than 

FCM algorithm. In our study, we have also preferred to use the data generated by 

DBSCAN algoritm of Kockara et al. [25]. The DBSCAN clustering algorithm, 

introduced in 1996 [26], is generally used for discovering clusters in large spatial 
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databases with noise. In Kockara et al. [27], the authors add a new parametric measure 

to the existing algorithm to enrich the CAD images with color information and to 

generate more accurate results than existing methods. In Kockara et al.’s another study 

[28], a novel approach -graph spanner- is examined on the same set of 100 

dermoscopic images for automatic border detection. Error rates, false positives and 

false negatives are quantified by digitally comparing results with manually determined 

borders from a dermatologist.  

 

In Kockara et al. [15], a recent approach for lesion border detection in dermoscopy 

images, fast density based lesion detection, has obtained one of the most accurate 

results. In this study, for the first time, they use a modified version of prominent density 

based clustering algorithm, DBSCAN with the pre-processing step.  

 

As mentioned earlier, in our study, we use fractal methods for classification. There are 

various research areas where classification is applied. Classification, differently from 

clustering, determines which class a new object belongs among a set of predefined 

classes. As we will explain later in Chapter 6, our algorithms try to find the category 

(melanoma or benign lesion) that a dermoscopy image belongs to. 

 

Clustering and classification techniques in the literature can be used in various 

different research areas ranging from classification of living organisms [29] to 

classification of raw materials [30]. As Hunter [31] expresses, classification can and 

should be used in sorting anything from documents to students, from books in the 

library to food in the fridge. It is important to everyday life as we use it in everything 

we do. McLachlan et al. [32] told that there are many types of clustering methods; 

hierarchical agglomerative clustering, k-means clustering, the self-organizing map and 

model-based methods. Differently from McLachlan [32], Rokach and Maimon [33] 

present clustering techniques as hierarchical, partitioning, density-based, model-base, 

grid-based and soft-computing methods. So, it is easy to say that clustering techniques 

have an important place particularly in computer literature. For example, one of the 

most important machine learning algorithms set for classification of data mining is 

Support Vector Machines (SVM) [34]. A support vector machine is a computer 
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algorithm which learns by example to assign labels to objects. For example, an SVM 

can recognize handwritten digits by examining a large collection of scanned images of 

handwritten numbers. Additionally, like our study, SVM can be applied for biological 

applications. Theoretically, an SVM can examine the gene expression profile for a 

diagnosis that comes from a tumor sample. SVM can also classify objects as diverse 

as protein and DNA sequences [34]. As Shigeo [35] explains, in training a classifier, 

we aim to maximize classification performance for the training sample. For a two-class 

problem, a support vector machine is trained so that the direct decision function 

maximizes the generalization ability.  

 

In Operations Research, cluster and classification analysis is an interesting topic, and 

there are various means of conducting cluster analysis. One of them is mathematical 

programming technique that we utilize in our study. Subjects can be grouped into 

different clusters by mathematical programming as performed by Rao [36]. In his 

analysis is confined to distance based cluster analysis in which a distance measure 

between the various entities is available. Since these distances are known, he tries 

grouping subjects by minimizing either the within groups sums of squares, sum of 

average within group squared distances, the total within group distances or the 

maximum within group distance.  

 

Hansen and Jaumard [37] indicate steps of a clustering study, types of clustering 

methods and criteria. In their work, algorithms for hierarchical, partitioning, sequential 

and additive clustering are also studied. Differently from other clustering studies, they 

focus on solution methods of operations research such as dynamic programming, graph 

theoretical algorithms, branch-and-bound, cutting planes, column generation and 

heuristics. Kusiak [38], on the other hand, approaches to clustering problems from a 

different perspective. In his study, five different integer programming formulations of 

the clustering problems are studied. The relevance of integer programming and 

combinatorial theory to cluster analysis is discussed. The contribution of this article is 

that despite there are so many articles on clustering analysis and their applications, the 

integer programming aspect had not been emphasized before. Since Kusiak [38], 

practical implications of integer programming and combinatorial theory in cluster 

analysis has been increasing rapidly from day to day.  
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CHAPTER 3 

 FRACTAL METHODS 

3.1 Fractal   

Fractal comes from the Latin adjective fractus, which has the same root as fraction and 

fragment and means “irregular or fragmented”. Fractals are geometric shapes that have 

a structure which is self-similar on every scale in a sense that the characteristics on the 

scale x1 can be deducted from those on the scale x2 by a dilation [20]. Fractals provide 

visual examples of collective critical behavior. It has a self-similar hierarchical 

organization relying on very different scales. Thus, we can say that the length and the 

area of a fractal shape depend on the observed resolution. You can see some self-

similar objects in Figure 3.1. Let’s first focus on the shapes of the right-most column. 

Since they are complicated shapes, it is not straight forward to visualize and delineate 

these imagine. If we did not know these shapes came from a simple pattern, it would 

be hard to replicate them. As an example, let’s now try to reconstruct the bottom image 

on the second column. We can start by drawing a triangle with equal sides on a paper. 

Then, we make a dot in the center of each line of the triangle. When we connect these 

dots with straight line segments, we obtain a new triangle with equal sides. So, we 

have four triangles in total now. When we continue to repeat this procedure a certain 

number of times, we can reach the bottommost image of the last column.  
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Figure 3.1: Basic fractal shapes 

Fractal dimension is a parameter that measures self-similarity in the number of disjoint 

regions which the dataset can be divided into. Therefore, it can be deducted that that 

fractal dimension is a quantity which measures irregularity. It produces statistically 

sound merged information about the spatial distribution of skin lesion, volumetric 

content, and bulk density. In our thesis, eleven different “fractal dimension” 

calculation methods have been considered.  

3.2 Fractal Methods 

As already stated in Section 3.1, fractal dimension (abbreviated as 𝐹𝐷 or 𝐷)  is used 

to describe the ruggedness, complexity, roughness or irregularity of a particle based 

on the set to which the particle belongs. Different approximation methods are used for 

the calculation of fractal dimensions. These methods show small methodological 

differences among each other in terms of the way how fractal dimension values are 

computed. The methods that are used in this study for FD calculation are Dilation, 

Euclidean Distance Map, Box Counting, Fast, Fast (Hybrid), Parallel Lines, Mass 

Radius (Long), Mass Radius (Short), Corner (Count), Corner (Perimeter) and 

Cumulative Intersection. For FD implementations, a toolbox called BIP which is 

created by Florida International University Biofilm Image Processing research group 

[39] was used as a reference point.  
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3.2.1 Dilation 

Dilation is an image processing method. It involves convolution of null spaces which 

have different sizes (diameters) and then convolves them with the image border [21]. 

After that, each occupied pixel is confined with a square or a circle of size 𝑛, the 

surface of which is accepted as completely occupied. The size 𝑛 is then dilated and 

total covered surface area 𝐴(𝑛) is calculated for each value of 𝑛. Then, the total area 

of the images is increased by 𝑛 × 𝑛. Final step is to estimate the image’s border length. 

It is done by dividing the total area of the image by the effective diameter of the dilation 

element for each increment [22]. (See Figure 3.2) 

 

 

Figure 3.2: Dilation method application. A: Original image, B: Dilation method 

applied 

3.2.2 Euclidean Distance Map 

Euclidean distance map method works with monochrome images as black and white. 

Then gray-scale images occur as a result. The brightness value is found for each pixel 

of the result according to its distance to the nearest pixel of the outline of the image. 

The image is divided into several ribbons with a width variable 𝑤. Then FD is 

estimated with the proportion of the logarithm of the area for the each ribbon by the 

number of selected gray levels. Some FD values can be seen in Figure 3.3 [21]. 
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Figure 3.3: Euclidian Distance Map fractal values of different shapes 

3.2.3 Box Counting 

Box counting fractal method is also known as Minkowski–Bouligand [16]. In this 

method, we calculate FD by simply counting the number of boxes of a grid lying on 

the image. The number of the boxes 𝑁(𝜀)  to cover the border of the image changes 

when the size of the unit box of the grid 𝜀 decreases, because they are proportional to 

each other. (See Figure 3.4).  

The logarithmic proportion at the limit is given by the following equation. 

FD = lim
ε→0

−
ln⁡(𝑁(ε))

ln⁡(ε)
 

 

Figure 3.4: Koch Snowflake Box Counting 

3.2.4 Fast 

The principal target in this method is to approximate the image to a polygon. It is 

started by choosing a starting point on the image. Then 𝑛 different points are selected 

and each side of the polygon is determined with two points respectively. After these, 

we obtain 𝑛 sides. All these 𝑛 points and 𝑛 sides are kept. The sum of the sides of the 

polygon approximately gives the perimeter of the original image [16]. 
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3.2.5 Fast (Hybrid) 

This method is also knowns as Richardson’s method. In this method, the main goal is 

to approximate the segmented skin lesion in to a polygon by using the same length 

lines. This approximation entails selecting a starting point on the shape and 𝑛 different 

points proceeding with the determination of each side of the polygon with two points 

respectively. The perimeter of the original image can be approximated as the sum of 

the edges of the polygon. Shorter the edges, it is closer to the sum of the edges to the 

actual perimeter of the shape. If the sum of the edges of the polygon is 𝑝 (an 

approximation for the perimeter) and scaling factor to the length of edges is 𝑠 then FD 

is calculated as  𝑙𝑜𝑔(𝑝)/𝑙𝑜𝑔(1/𝑠). An exemplary illustration is given in Figure 3.5. 

The figure shows the difference between shorter edges and longer edges. As seen, the 

perimeter of the first image is far away from the actual perimeter compared to the 

second image. 

 

Figure 3.5: Fast FD method 

3.2.6 Parallel Lines 

Parallel lines algorithm separates the segmented skin lesion with equally-distanced 

vertical and horizontal parallel lines. After that, these lines are numbered accordingly. 

The number of points that intersect the lesion are counted along the line. For instance, 

vertical line 1 in Figure 3.6 intersects the lesion 8 times along horizontal lines. The 

total numbers of intersecting points 𝑃 are calculated for different interval distances 𝑑 

between the lines.  Then FD value is calculated as 𝑙𝑜𝑔(𝑃)/𝑙𝑜𝑔(𝑑). 
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Figure 3.6. Parallel Lines FD method 

3.2.7 Corner (Count) 

In corner count method, corners of object are counted for different scales of 

connectivity values. For instance, if connectivity value is set to 4, border pixels of the 

object assumed to be connected as 4 pixels together. The object’s border is covered 

with, for instance, 4 connected pixels. Then, each of these connections’ corners are 

counted. This counting is repeated recursively with different scales of connectivity 

such as 2, 4, 8 etc. Then the slope is obtained from the logarithmic plot of the number 

of corners used to cover border against the scales of the connectivity. 

3.2.8 Corner (Perimeter) 

It is similar to corner count method. Instead of counting number of corners against 

the scales of connectivity, corner peripheral (perimeter) method sums the length of 

each connectivity of different scales. Then the slope is obtained from the logarithmic 

plot of the total length of perimeter (i.e. periphery of an object with different scale 

connectivity is different) against the scales of the connectivity such as 2, 4, 8 etc. 

3.2.9 Cumulative Intersection 

In this method the Hausdorff circles are placed at random places on the image. An 

iterative process is executed for each circle center. In each iteration, the radius of the 

circle is increased by constant 𝑘, where 𝑘 is the smallest length unit.  
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Random but uniquely centered circles are created until whole region is encapsulated 

by the highest level circles. The number of separate branches (see Figure 3.7 for 

branches) is counted for each radius and FD is defined as 𝑙𝑜𝑔(𝑁𝑟)/𝑙𝑜𝑔(𝑟), where 𝑟 is 

the circle index number from the center and  𝑁𝑟 is the number of cumulative 

intersections at each exact center circle with changing sizes. 

  

Figure 3.7 Cumulative Intersection FD method 
 

3.2.10 Mass Radius (Long) 

This method is very similar to cumulative intersection method. For this method, first 

circles are drawn which cover the image in changing sizes. FD is determined with the 

relationship between the areas of the original image found within these circles. (See 

Figure 3.8) [24].  

 

 

Figure 3.8. Changing centers of Mass Radius (Long) method 

3.2.11 Mass Radius (Short) 

The mass radius method-short method is also similar to the cumulative intersection 

method. It is also called as sandbox method. Such as in mass radius (long) method, 

circles are drawn which cover the image in changing sizes, and FD is determined with 
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the ratio between the areas of the original image and these circles. The difference from 

the mass radius (long) is different parameters [16]. Additionally, as differently from 

cumulative intersection, center of circles are not chosen randomly. First, center of mass 

of the segmented region is found. (The largest circle in Figure 3.9). Then it is used to 

find centers of the other circles. For each radius 𝑟, average cluster masses 𝑀(𝑟) is 

evaluated. FD value is calculated as the ratio of average mass changes with respect to 

radius r using the following equation. 

FD =
log(𝑀(𝑟))

log(1 𝑟⁄ )
  

  

Figure 3.9. Mass Radius (Short) FD method 

3.3 Relevance and Impact to Diagnosis & Treatment 

As mentioned in 1.1, when the results for the diagnosis of melanocytic lesions are 

inaccurate, it might give over-treatment and under-treatment of patients. Misdiagnosis 

of melanoma is one of the most important issues for malpractice suits. There are 

different reasons for these misdiagnosis, but the most important reason is the subtleties 

of the dermatologic changes that distinguish benign from malignant proliferations of 

melanocytes. These distinctions are slightly different from each other, so it is quite 

difficult to detect by the naked eye. Because of this reason, a computer-assisted 

dermoscopy image guided intervention has great potential for objectivity by applying 

clearly defined subtle dermatologic observations [14].  

 

With this intervention; lesion shaping, compactness, uniformity, dispersion and 

innumerable other dermatologic criteria can be determined in a more objective manner 

than the naked eye can do. Such a system has the potential to change the way 

dermatology and dermatopathology is practiced in the future. 
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CHAPTER 4  

LESION BORDER IRREGULARITY CLASSIFICATION 

PROBLEM (LBICP) 

As we have discussed in Section 1.2, our problem is to classify the patients as (i) 

patients who have malignant lesions and (ii) patients who have benign lesions. We 

used irregularities on the lesion borders to distinguish patients into these two groups. 

Each lesion border image was generated by a CAD based method, and the irregularities 

of these images were calculated with eleven different fractal methods (See Chapter 3).  

The parametric values obtained by these FD methods measure the deviations from a 

smooth shape. We can alternatively define them as the amount of roughness on the 

shapes. With this definition, it is seen that high-level irregularities in lesion borders 

are recognized as a strong evidence for higher risk of melanoma [11]. Hence, it can be 

claimed that when these parametric values increase, roughness in lesion border and 

consequently any possibility of melanoma also increase. 

 

We have named our problem as “Lesion Border Irregularity Classification Problem” 

(LBICP). In a nutshell, our primary target in LBICP was to be able to differentiate 

patients having melanoma as accurately as possible by using the parametric values of 

FD methods that can quantitatively measure the irregularities on the lesion borders.  

 

 

 



20 
 

4.1 Methodology 

All mathematical models in our study that we created for LBICP are mixed integer 

programming (MIP) models and try to differentiate patients as ones who have cancer 

and ones who do not have cancer. We developed four different MIP models for this 

purpose. Each model has one of the following four objectives:  (i) maximizing the 

minimum between-group distance, (ii) minimizing the total within-group distances, 

(iii) maximizing the total between-group distances, and (iv) minimizing the maximum 

within-group distance.  

Even though each MIP model’s objective is different, we followed the same 

methodology as depicted in Figure 4.1 while implementing either of these models. We 

can explain this methodology in 5 steps. In Step-1, we choose half of patients randomly 

as training sample, and the rest inherently constitutes the testing sample. Training 

sample is a set of data records that is used to learn and discover data patterns. On the 

other side, testing sample is a set of data records that tests how well the learned data 

patterns generalize to a data population with a wide range of data records. Next, in 

Step-2, the MIP model we would like to implement is run for the training sample to 

determine the usage rate of fractal methods. The usage rates (i.e. weights) that are 

found as a result of Step-2 show the importance of fractal methods. To find these 

weights, we use the information of “training sample” patients of whether being 

melanoma or not as parameter since this information is already known priori for the 

training sample. Later, in Step-3, we run the MIP model for the testing sample with 

weighted FD methods (found in step-2) to determine whether the patient has melanoma 

or not. Hence, the output of Step-2 becomes our input for Step-3. We can summarize 

the procedure so far as follows: In Step-2, the information of whether a patient has 

melanoma or not is a parameter, and the weights of fractal methods are decided. 

However, in Step-3, these weights decided in Step-2 becomes parameter, and we try 

to decide if the patient has melanoma or not. Next, in Step-4, we compare our results 

found in Step-3 with the real (true) diagnosis of “testing sample” patients. Finally, in 

Step-5 we evaluate ratios of false diagnosis (false-negative, false-positive and total-

false). The methodology is always the same for each one of the four MIP classification 

models. These classification models are run for several times with randomly selected 

training and test samples to monitor the reliability and accuracy of the models.   
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Figure 4.1. The methodology which is used in models 
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4.2 MIP Classification Models 

As discussed in previous section, each of four MIP classification models uses one of 

the following objectives:  (i) maximizing the minimum between-group distance, (ii) 

minimizing the total within-group distances, (iii) maximizing the total between-group 

distances, and (iv) minimizing the maximum within-group distance. All models use 

the same solution procedure described in Figure 4.1.   

 

In Step 2 of the solution procedure, for each fractal method k Є K, we find a decision 

variable wk which represents the weights of the FD method to be used whose value is 

between 0 and 1. Additionally, for each patient i Є I, Bi is defined as decision variable 

representing the weighted average of the parameters of the fractal methods. We also 

define for each patient, j Є J, three decision variables di,j, 𝑑𝑖,𝑗
𝑚𝑖𝑛𝑢𝑠, 𝑑𝑖,𝑗

𝑝𝑙𝑢𝑠
. di,j represents 

distance between weighted averages (Bi and Bj), but we use 𝑑𝑖,𝑗
𝑚𝑖𝑛𝑢𝑠, 𝑑𝑖,𝑗

𝑝𝑙𝑢𝑠
 to convert 

non-linear classification models to linear MIP models.  

 

All four models use Xi,g for each patient i Є I and each group g Є G to indicate whether 

patient i is in group 1 or in group 2. This means, for example if group 1 represents the 

patients who have melanoma and patient i is diagnosed as having melanoma, Xi,1 and 

Xi,2 variables for patient i will have the values of 1 and 0, respectively. In step 2, it is 

determined already by dermatologists and known. 

 

Finally, to show the values of metric, the models use Ai,k for each fractal method k Є 

K and for each patient i Є I. As we mentioned before, these values measure the 

deviation from a smooth shape. When these values increase, roughness and the 

possibility to be melanoma increase also. 

 

Despite we use similar sets, decision variables and parameters for both training sample 

and test sample, there are some important changes also. For example in step 3, wk is 

parameter now. Additionally, for each patient i Є I, Bi that is defined as the weighted 

average of the parameters of the fractal methods is parameter also. Because of these 

values are known now, di,j which is the distances between weighted averages for each 
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patient i Є I and patient j Є J can be calculated easily and is given to the model. To 

show the values of metric, the model uses again Ai,k as parameter for each fractal  

method k Є K and for each patient i Є I. Now, Xi,g for each patient i Є I and each group 

g Є G to indicate whether patient i is in group 1 or in group 2 is binary decision 

variable. One of these groups represents the patients who have melanoma, and other 

one represents the patients who do not have melanoma.  

4.2.1 Maximizing the Minimum Between-group Distance 

The purpose of this model is to maximize the minimum distance between any two 

patients that are in different groups. This model searches maximizing the minimum 

distance among all patient pairs. We can explain this also as maximizing the distance 

between weighted average of group-1 (patients who does not have cancer) and 

maximum weighted average of group-2 (patients who have cancer).  

4.2.1.1 Determining Usage Rate of Fractal Methods Using Training Sample 

All notations are the same as explained in Section 4.2. We also add a new binary 

decision variable yi,j that equals 1 if patient i and patient j are in different groups and 

yi,j = 0; otherwise. Note that, however, 𝑤𝑘 values are now decision variables, 𝑋𝑖,𝑔 

values are parameters in this step.  

The mixed integer programming (MIP) formulation for the training sample can be 

written as follows: 

Max   z                                          (1.a.1)                                                                                           

s.t. 

∑ 𝑤𝑘𝐴𝑖,𝑘 ⁡⁡⁡⁡⁡= ⁡⁡⁡𝐵𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖⁡
11
𝑘=1 ∈ 𝐼⁡⁡⁡                                     (1.a.2) 

∑ 𝑤𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡1⁡11
𝑘=1 ⁡                                                                                           (1.a.3)  

𝐵𝑖 −⁡𝐵𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡ 𝑑𝑝𝑙𝑢𝑠𝑖,𝑗 − 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡⁡⁡⁡𝑖 < 𝑗               (1.a.4)   

𝑑𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡ ⁡⁡𝑑𝑝𝑙𝑢𝑠𝑖,𝑗 + 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡⁡⁡𝑖 < 𝑗⁡⁡⁡⁡⁡⁡          (1.a.5) 

𝑑𝑝𝑙𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡⁡⁡𝑀𝑦𝑖,𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡⁡⁡𝑖 < 𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.a.6) 

𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡⁡⁡𝑀(1 − 𝑦𝑖,𝑗⁡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡⁡𝑖 < 𝑗                (1.a.7) 

𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ≤ ⁡ 𝑑𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Э⁡⁡∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽: ⁡𝑋𝑖,𝑔 + 𝑋𝑗,𝑔 ⁡= 1⁡; ⁡⁡𝑖 < 𝑗          (1.a.8) 

𝑤𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑘 ∈ 𝐾⁡               (1.a.9) 
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𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡        (1.a.10) 

𝑑𝑝𝑙𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡                   (1.a.11) 

𝑑𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡        (1.a.12) 

𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ≥ ⁡0              (1.a.13) 

𝑦𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏𝑖𝑛𝑎𝑟𝑦⁡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽                           (1.a.14) 

 

As we described before, objective function (1.a.1) maximizes the distance between 

minimum weighted average of group-1 and maximum weighted average of group-2 

with constraint (1.a.8). Constraint (1.a.8) evaluates the minimum distance between B-

values if patient i and j are in different groups, so it is the minimum distance between 

groups. It also means that this formulation maximizes the minimum distance between 

groups. Constraint (1.a.2) calculates B-values which are the weighted average of the 

parameters of the fractal method for each patient. Constraint (1.a.3) ensures that the 

sum of the weights of each method must be equal to 1. This constraint and constraint 

(1.a.9) determine the interval of the weights of each method as from 0 to 1. Constraint 

(1.a.4) and constraint (1.a.5) calculate the distance between B-values for each patients 

and ensure that this difference must be non-negative with constraint (1.a.10), constraint 

(1.a.11), constraint (1.a.12) and constraint (1.a.13). We define 𝑦𝑖,𝑗 as binary decision 

variables in constraint (1.a.14) that equals 1 if patient i and j are in different groups 

and equals 0 if they are in same group. This definition comes from the constraint 

(1.a.8). Constraint (1.a.6) and constraint (1.a.7) calculate distances between patient i 

and patient j according to their groups. If they are in the different groups, constraint 

(1.a.6) frees 𝑑𝑝𝑙𝑢𝑠𝑖,𝑗⁡and constraint (1.a.7) forces 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡to be 0 with constraint 

(1.a.10). So, constraint (1.a.4) evaluates the distance between B-values for the patients 

which are in the different groups. When they are in the same group, the opposite is 

true, but because of the constraint (1.a.12), 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡ cannot be negative, so it is 

forced to be 0 again, so the distance between B-values for the patients which are in the 

same group is forced to be equal to 0. Thus, this constraint set only evaluates the 

distance between B-values for the patients which are in different groups. 
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4.2.1.2 Determining Melanoma Using Testing Sample 

In addition to the notations described in Section 4.2, we add two new binary variables 

𝑦1𝑖,𝑗,𝑔⁡ and 𝑦2𝑖,𝑗,𝑔⁡. Note that, however, 𝑋𝑖,𝑔 values are now decision variables, 𝑤𝑘 

values are parameters in this step. In the first step, we decided the weights⁡𝑤𝑘, so we 

evaluate 𝐵𝑖 (the weighted average of the parameters of the fractional   (FD) methods 

for patient i) values with these 𝑤𝑘 values on equation (1.b.1). With the 𝐵𝑖 values also, 

we calculate 𝑑𝑖𝑗 (distances between weighted averages) values for each patient i and 

patient j on equation (1.b.2.), and we used 𝑑𝑖𝑗 values as parameter on the following 

mathematical model.  

𝐵𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡∑ 𝑤𝑘𝑘∈𝐾 𝐴𝑖,𝑘⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼                     (1.b.1) 

𝑑𝑖𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡ |𝐵𝑖 ⁡− 𝐵𝑗|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽                   (1.b.2) 

 

We can show the mathematical model for testing sample as follows:  

Max   z                             (1.b.3) 

s.t. 

𝑧⁡⁡⁡ ≤ ⁡⁡ 𝑑𝑖,𝑗 +𝑀(1 − 𝑦𝑖,𝑗,𝑔) + 𝑀(1 − 𝑦2,𝑖,𝑗,𝑔)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽, 𝑔 ∈ 𝐺        (1.b.4) 

∑ 𝑋𝑖,𝑔𝑔∈𝐺 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼                                (1.b.5) 

∑ 𝑋𝑖,𝑔𝑖∈𝐼 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡⁡⁡49⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑔 ∈ 𝐺                             (1.b.6) 

∑ 𝑋𝑖,𝑔𝑖∈𝐼 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑔 ∈ 𝐺                             (1.b.7) 

2 − 𝑋𝑖,𝑔 + 𝑋𝑗,𝑔 ⁡⁡⁡⁡⁡⁡≤ ⁡⁡𝑀𝑦1𝑖,𝑗,𝑔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽, 𝑔 ∈ 𝐺⁡⁡⁡⁡⁡⁡  (1.b.8) 

𝑋𝑖,𝑔 + 𝑋𝑗,𝑔 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡⁡𝑀𝑦2𝑖,𝑗,𝑔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽, 𝑔 ∈ 𝐺⁡⁡     (1.b.9) 

𝑋𝑖,𝑔⁡, 𝑦1𝑖,𝑗,𝑔⁡⁡, 𝑦2𝑖,𝑗,𝑔⁡⁡⁡𝑏𝑖𝑛𝑎𝑟𝑦⁡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽, 𝑔 ∈ 𝐺⁡⁡⁡⁡⁡(1.b.10)       

 

Objective function (1.b.3) still tries to maximize the distance between minimum 

weighted average of group-1 and maximum weighted average of group-2 with 

constraint (1.b.4), (1.b.8) and (1.b.9). Constraint (1.b.5) ensures that each patient can 

only appear in one group. Constraint (1.b.6) and constraint (1.b.7) ensure that there 

will be at least one patient which is melanoma. We define 𝑦1𝑖,𝑗,𝑔⁡ and 𝑦2𝑖,𝑗,𝑔⁡as binary 

decision variables in constraint (1.b.10) that equals 1 if patient i and j are in different 

groups and equals 0 if they are in same group. This definition comes from the 

constraint (1.b.4), (1.b.8) and (1.b.9). If patients are in different groups, constraint 
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(1.b.8) and constraint (1.b.9) push 𝑦1𝑖,𝑗,𝑔⁡ and 𝑦2𝑖,𝑗,𝑔⁡ to be 1. So, when they are equal 

to 1, constraint (1.b.4) calculates z as minimum distance between weighted averages 

of patient i and patient j. Because the problem is a maximization problem, it maximizes 

the minimum distance between weighted averages. When the patients are in the same 

group,⁡𝑦1𝑖,𝑗,𝑔⁡ and 𝑦2𝑖,𝑗,𝑔⁡can become 0 or 1, so they free z-value.  

4.2.2 Minimizing the Total Within-group Distances 

Now, we try to minimize the total within-group distances. On this model, we evaluate 

all distances among patients who are in same group, and we try to minimize this total 

distance for both of groups.  

4.2.2.1 Determining Usage Rate of Fractal Methods Using Training Sample 

We do not add any decision variable or parameter in this model and all the notations 

are the same as explained in Section 4.2. Note that, however, 𝑤𝑘 values are now 

decision variables, 𝑋𝑖,𝑔 values are parameters in this step.  

 

The mathematical model is given by:  

Min   ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧⁡⁡⁡⁡⁡ = ⁡⁡⁡⁡∑ ∑ 𝑧𝑖𝑗𝑗∈𝐽𝑖∈𝐼               (2.a.1)                                                                                           

s.t. 

∑ 𝑤𝑘𝐴𝑖,𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡𝐵𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖⁡
11
𝑘=1 ∈ 𝐼           (2.a.2)                                                                                           

∑ 𝑤𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡1⁡11
𝑘=1                (2.a.3)                                                                                           

 𝐵𝑖 −⁡𝐵𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡ 𝑑𝑝𝑙𝑢𝑠𝑖,𝑗 − 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡⁡⁡⁡⁡𝑖 < 𝑗⁡⁡⁡       (2.a.4)                                                   

𝑑𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡ ⁡⁡𝑑𝑝𝑙𝑢𝑠𝑖,𝑗 + 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡⁡⁡⁡⁡𝑖 < 𝑗         (2.a.5)                                                                                           

𝑑𝑖,𝑗𝑋𝑖,𝑔 + 𝑑𝑖,𝑗𝑋𝑗,𝑔 − 𝑧𝑖,𝑗 ⁡≤ ⁡ ⁡⁡𝑑𝑖,𝑗 ⁡⁡⁡∀⁡𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽,⁡⁡⁡⁡⁡⁡⁡𝑔 ∈ 𝐺⁡; ⁡⁡⁡𝑖 < 𝑗         (2.a.6)                                                                                

𝑤𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑘 ∈ 𝐾⁡           (2.a.7)                                                                                           

𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡𝑗 ∈ 𝐽⁡          (2.a.8)                                                                                           

𝑑𝑝𝑙𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡𝑗 ∈ 𝐽⁡          (2.a.9)                                                                                           

𝑑𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡𝑗 ∈ 𝐽⁡                   (2.a.10)                                                                                           

𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ≥ ⁡⁡0                                   (2.a.11)                                                                                           

                                                                                



27 
 

Objective function (2.a.1) minimizes the total distance within group distances. 

Constraint (2.a.2) calculates B-values which are the weighted average of the 

parameters of the fractal   (FD) method for each patient. Constraint (2.a.3) ensures that 

the sum of the weights of each method must be equal to 1. This constraint and 

constraint (2.a.7) determine the interval of the weights of each method as from 0 to 1. 

Constraint (2.a.4) and constraint (2.a.5) calculate the distance between B-values for 

each patient and ensure that this difference must be non-negative with constraint 

(2.a.8), constraint (2.a.9) and constraint (2.a.10). Constraint (2.a.6) calculates distances 

between patient i and patient j according to their groups. If they are in different groups, 

constraint (2.a.6) frees 𝑧𝑖,𝑗⁡, but because of the reason that the problem is a 

minimization problem, the model pushes 𝑧𝑖,𝑗⁡ to be 0 with constraint (2.a.11). But on 

the other side, when patient i and patient j are in the same group, 𝑧𝑖,𝑗⁡is equal to 𝑑𝑖,𝑗.  

4.2.2.2 Determining Melanoma Using Testing Sample  

Our purpose here is again to minimize the total within-group distances. All the 

notations are the same as explained in Section 4.2. Note that, however, 𝑋𝑖,𝑔 values are 

now decision variables, 𝑤𝑘 values are parameters in this step. In the first step, we 

decided the weights⁡𝑤𝑘, so we evaluate 𝐵𝑖 (the weighted average of the parameters of 

the fractional   (FD) methods for patient i) values with these 𝑤𝑘 values on equation 

(2.b.1). With the 𝐵𝑖 values also, we calculate 𝑑𝑖𝑗 (distances between weighted 

averages) values for each patient i and patient j on equation (2.b.2.), and we used 𝑑𝑖𝑗 

values as parameter on the following mathematical model.  

𝐵𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡∑ 𝑤𝑘𝑘∈𝐾 𝐴𝑖,𝑘⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼                                 (2.b.1) 

𝑑𝑖𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡ |𝐵𝑖 ⁡− 𝐵𝑗|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽                          (2.b.2) 

 

The new mathematical formulation is as follows: 

Min   ⁡⁡⁡⁡⁡⁡𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ = ⁡⁡⁡⁡∑ ∑ 𝑧𝑖𝑗𝑗∈𝐽𝑖∈𝐼                         (2.b.3)                                                                                           

s.t. 

⁡𝑑𝑖,𝑗𝑋𝑖,𝑔 + 𝑑𝑖,𝑗𝑋𝑗,𝑔 − 𝑧𝑖,𝑗 ⁡⁡≤ ⁡⁡⁡⁡𝑑𝑖,𝑗 ⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡⁡𝑔 ∈ 𝐺⁡⁡; 𝑖 < 𝑗⁡                 (2.b.4) 

∑ 𝑋𝑖,𝑔𝑔∈𝐺 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼                                   (2.b.5) 

𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ≥ ⁡⁡⁡0                         (2.b.6) 

𝑋𝑖,𝑔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏𝑖𝑛𝑎𝑟𝑦⁡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡⁡𝑔 ∈ 𝐺⁡                            (2.b.7) 
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Objective function (2.b.3) still tries to minimize the total distance within group 

distances with constraint (2.b.4). Constraint (2.b.5) ensures that each patient can only 

appear in one group. Constraint (2.b.4) frees 𝑧𝑖,𝑗⁡if the patients are in different groups, 

but because of the reason that the problem is a minimization problem, the model pushes 

𝑧𝑖,𝑗⁡ to be 0 with constraint (2.b.6). But on the other side, when patient i and patient j 

are in the same group 𝑧𝑖,𝑗⁡is equal to 𝑑𝑖,𝑗. Constraint (2.b.7) defines xi,g  as 1 if patient 

i in group g has melanoma.  

4.2.3 Maximizing the Total Between-group Distances 

Now, we try to maximize the total distance between group distances. Like in Section 

4.2.1., we evaluate the distances among all patient pairs, and we search for distances 

between groups. Unlike searching for minimum distance, this time we try to find the 

total distance between two groups. As maximizing this total distance, we separate the 

patients into two groups as much as possible. Higher value means higher separation 

for patients.  

4.2.3.1 Determining Usage Rate of Fractal Methods Using Training Sample  

We only add a constant binary decision variable yi,j that equals 1 if patient i and patient 

j are in different groups and yi,j = 0; otherwise. All other notations are the same as 

explained in Section 4.2. Note that, however, 𝑤𝑘 values are now decision variables, 

𝑋𝑖,𝑔 values are parameters in this step.  

 

The mathematical model is as follows: 

Max   ⁡⁡⁡⁡⁡𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡ = ⁡⁡⁡⁡∑ ∑ 𝑧𝑖𝑗⁡⁡⁡⁡⁡⁡𝑗∈𝐽𝑖∈𝐼 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 < 𝑗                     (3.a.1) 

s.t. 

∑ 𝑤𝑘𝐴𝑖,𝑘 ⁡⁡⁡⁡⁡= ⁡⁡⁡𝐵𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖⁡
11
𝑘=1 ∈ 𝐼                       (3.a.2) 

∑ 𝑤𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡1⁡11
𝑘=1                            (3.a.3) 

𝐵𝑖 −⁡𝐵𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡ 𝑑𝑝𝑙𝑢𝑠𝑖,𝑗 − 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗 ⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡𝑖 < 𝑗          (3.a.4) 

𝑑𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡ ⁡⁡𝑑𝑝𝑙𝑢𝑠𝑖,𝑗 ⁡+ 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡𝑖 < 𝑗         (3.a.5) 

𝑧𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡ ⁡⁡𝑑𝑖,𝑗(𝑋𝑖,𝑔 + 𝑋𝑗,𝑔)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡⁡𝑔 ∈ 𝐺⁡⁡; 𝑖 < 𝑗         (3.a.6) 

𝑧𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡⁡⁡ 𝑑𝑖,𝑗(2 − 𝑋𝑖,𝑔 − 𝑋𝑗,𝑔)⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽, 𝑔 ∈ 𝐺⁡⁡; 𝑖 < 𝑗⁡         (3.a.7) 
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𝑑𝑝𝑙𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡⁡⁡𝑀𝑦𝑖,𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽; ⁡𝑖 < 𝑗⁡⁡⁡⁡⁡⁡         (3.a.8) 

𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡⁡⁡𝑀(1 − 𝑦𝑖,𝑗⁡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; 𝑖 < 𝑗          (3.a.9) 

𝑤𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑘 ∈ 𝐾⁡                               (3.a.10) 

𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡                   (3.a.11) 

𝑑𝑝𝑙𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡                             (3.a.12) 

𝑑𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡𝑗 ∈ 𝐽⁡                   (3.a.13) 

𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ≥ ⁡⁡⁡0                         (3.a.14) 

𝑦𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏𝑖𝑛𝑎𝑟𝑦⁡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽                        (3.a.15)  

 

Objective function (3.a.1) maximizes the total distance between group distances with 

constraint (3.a.6) and constraint (3.a.7). Constraint (3.a.2) calculates B-values which 

are the weighted average of the parameters of the fractal   (FD) method for each patient. 

Constraint (3.a.3) ensures that the sum of the weights of each method must be equal to 

1. This constraint and constraint (3.a.10) determine the interval of the weights of each 

method as from 0 to 1. Constraint (3.a.4) and constraint (3.a.5) calculate the distance 

between B-values for each patient and ensure that this difference must be non-negative 

with constraint (3.a.11), constraint (3.a.12) and constraint (3.a.13). We define 𝑦𝑖,𝑗 as 

binary decision variables in constraint (3.a.15) that equals 1 if patient i and j are in 

different groups and equals 0 if they are in same group. This definition comes from the 

constraint (3.a.8) and (3.a.9). Constraint (3.a.6) and constraint (3.a.7) calculate 𝑧𝑖,𝑗 for 

the patients who are in different groups. When they are in same groups, these 

constraints force 𝑧𝑖,𝑗 to be 0 together.  

4.2.3.2 Determining Melanoma Using Testing Sample 

Here, we do not need to add any new decision variables or parameters. All notations 

are the same as explained in Section 4.2. Note that, however, 𝑋𝑖,𝑔 values are now 

decision variables, 𝑤𝑘 values are parameters in this step. In the first step, we decided 

the weights⁡𝑤𝑘, so we evaluate 𝐵𝑖 (the weighted average of the parameters of the 

fractional   (FD) methods for patient i) values with these 𝑤𝑘 values on equation (3.b.1). 

With the 𝐵𝑖 values also, we calculate 𝑑𝑖𝑗 (distances between weighted averages) values 

for each patient i and patient j on equation (3.b.2.), and we used 𝑑𝑖𝑗 values as parameter 

on the following mathematical model.  
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𝐵𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡∑ 𝑤𝑘𝑘∈𝐾 𝐴𝑖,𝑘⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼                                            (3.b.1) 

𝑑𝑖𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡ |𝐵𝑖 ⁡− 𝐵𝑗|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽                                (3.b.2) 

 

The mathematical formulation is as follows: 

Max  ⁡⁡⁡⁡⁡⁡𝑧⁡⁡⁡⁡⁡⁡⁡ = ⁡⁡⁡⁡∑ ∑ 𝑧𝑖𝑗𝑗∈𝐽𝑖∈𝐼                          (3.b.3) 

s.t. 

∑ 𝑋𝑖,𝑔𝑔∈𝐺 ⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼                                             (3.b.4) 

𝑧𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡ ⁡⁡𝑑𝑖,𝑗(𝑋𝑖,𝑔 + 𝑋𝑗,𝑔)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡⁡𝑔 ∈ 𝐺⁡⁡; 𝑖 < 𝑗     (3.b.5) 

𝑧𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ ⁡⁡⁡ 𝑑𝑖,𝑗(2 − 𝑋𝑖,𝑔 − 𝑋𝑗,𝑔)⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡⁡𝑔 ∈ 𝐺⁡⁡; 𝑖 < 𝑗     (3.b.6) 

𝑋𝑖,𝑔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏𝑖𝑛𝑎𝑟𝑦⁡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡𝑔 ∈ 𝐺⁡                (3.b.7) 

 

Objective function (3.b.3) still tries to maximize the total distance between group 

distances with constraint (3.b.5) and (3.b.6). Constraint (3.b.4) ensures that each 

patient can only appear in one group. Constraint (3.b.5) and constraint (3.b.6) calculate 

𝑧𝑖,𝑗 for the patients who are in different groups. When they are in same groups, these 

constraints force 𝑧𝑖,𝑗 to be 0 together. Constraint (3.b.7) defines xi,g  as 1 if patient i in 

group g has melanoma.  

4.2.4 Minimizing the Maximum Within-group Distance 

Now, we try to minimize the maximum distance within group distances. Here again, 

we target grouping by getting patients who have minimum distance between each other 

closer.  

4.2.4.1 Determining Usage Rate of Fractal Methods Using Training Sample  

Note that, however, 𝑤𝑘 values are now decision variables, 𝑋𝑖,𝑔 values are parameters 

in this step.  
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The mathematical model can be written as follows: 

Min   ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                     (4.a.1) 

⁡s.t. 

∑ 𝑤𝑘𝐴𝑖,𝑘 ⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡𝐵𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖⁡
11
𝑘=1 ∈ 𝐼                      (4.a.2) 

∑ 𝑤𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡1⁡11
𝑘=1                         (4.a.3)  

𝐵𝑖 −⁡𝐵𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡ 𝑑𝑝𝑙𝑢𝑠𝑖,𝑗 − 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗 ⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡⁡⁡⁡𝑖 < 𝑗              (4.a.4) 

𝑑𝑖,𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡ ⁡⁡𝑑𝑝𝑙𝑢𝑠𝑖,𝑗 + 𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽⁡; ⁡⁡⁡⁡⁡𝑖 < 𝑗         (4.a.5) 

𝑑𝑖,𝑗𝑋𝑖,𝑔 + 𝑑𝑖,𝑗𝑋𝑗,𝑔 − 𝑧⁡⁡⁡⁡⁡⁡ ≤ ⁡ ⁡⁡𝑑𝑖,𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡𝑔 ∈ 𝐺; ⁡⁡𝑖 < 𝑗⁡     (4.a.6) 

𝑤𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑘 ∈ 𝐾⁡           (4.a.7) 

𝑑𝑚𝑖𝑛𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡𝑗 ∈ 𝐽⁡          (4.a.8) 

𝑑𝑝𝑙𝑢𝑠𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡𝑗 ∈ 𝐽⁡          (4.a.9) 

𝑑𝑖,𝑗⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ ⁡⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼,⁡⁡⁡⁡𝑗 ∈ 𝐽⁡        (4.a.10) 

𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ≥ ⁡⁡0                       (4.a.11) 

Objective function (4.a.1) minimizes the maximum within group distances with 

constraint (4.a.6). Constraint (4.a.2) calculates B-values which are the weighted 

average of the parameters of the fractal (FD) method for each patient. Constraint 

(4.a.3) ensures that the sum of the weights of each method must be equal to 1. This 

constraint and constraint (4.a.7) determine the interval of the weights of each method 

as from 0 to 1. Constraint (4.a.4) and constraint (4.a.5) calculate the distance between 

B-values for each patient and ensure that this difference must be non-negative with 

constraint (4.a.8), constraint (4.a.9) and constraint (4.a.10). Constraint (4.a.6) 

calculates distances between patient i and patient j according to their groups. If they 

are in the different groups, constraint (4.a.6) pushes z to be 0 with constraint (4.a.11). 

However, when they are in same groups, z is forced to be 𝑑𝑖,𝑗⁡with objective function.  

4.2.4.2 Determining Melanoma Using Testing Sample 

Note that, however, 𝑋𝑖,𝑔 values are now decision variables, 𝑤𝑘 values are parameters 

in this step. In the first step, we decided the weights⁡𝑤𝑘, so we evaluate 𝐵𝑖 (the 

weighted average of the parameters of the fractional   (FD) methods for patient i) 

values with these 𝑤𝑘 values on equation (4.b.1). With the 𝐵𝑖 values also, we calculate 

𝑑𝑖𝑗 (distances between weighted averages) values for each patient i and patient j on 

equation (4.b.2.), and we used 𝑑𝑖𝑗 values as parameter on the following model.  
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𝐵𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡∑ 𝑤𝑘𝑘∈𝐾 𝐴𝑖,𝑘⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼                                            (4.b.1) 

𝑑𝑖𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡ |𝐵𝑖 ⁡− 𝐵𝑗|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡𝑗 ∈ 𝐽                                       (4.b.2) 

 

The mathematical formulation can be written as follows: 

Min   ⁡⁡⁡⁡⁡⁡𝑧⁡⁡⁡⁡⁡⁡ = ⁡⁡⁡⁡∑ ∑ 𝑧𝑖𝑗𝑗∈𝐽𝑖∈𝐼                              (4.b.3) 

s.t. 

⁡𝑑𝑖,𝑗𝑋𝑖,𝑔 + 𝑑𝑖,𝑗𝑋𝑗,𝑔 − 𝑧⁡⁡⁡ ≤ ⁡⁡⁡⁡𝑑𝑖,𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡⁡𝑔 ∈ 𝐺⁡⁡; 𝑖 < 𝑗            (4.b.4) 

∑ 𝑋𝑖,𝑔𝑔∈𝐺 ⁡⁡⁡⁡⁡⁡⁡⁡= ⁡⁡⁡1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖 ∈ 𝐼                       (4.b.5) 

𝑋𝑖,𝑔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏𝑖𝑛𝑎𝑟𝑦⁡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑖 ∈ 𝐼,⁡⁡⁡⁡⁡𝑗 ∈ 𝐽,⁡⁡⁡⁡𝑔 ∈ 𝐺⁡                     (4.b.6) 

𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ≥ ⁡⁡⁡0                           (4.b.7) 

Objective function (4.b.3) still tries to minimize the maximum within group distances 

with constraint (4.b.4). Constraint (4.b.4) calculates distances between patient i and 

patient j according to their groups. If they are in the different groups, constraint (4.b.6) 

pushes z to be 0 with constraint (4.b.7). However, when they are in same groups, z is 

forced to be 𝑑𝑖,𝑗⁡with objective function. Constraint (4.b.5) ensures that each patient 

can only appear in one group. Constraint (4.b.6) defines xi,g  as 1 if patient i in group g 

has melanoma.  
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CHAPTER 5  

DATA ANALYSIS AND RESULTS 

5.1 Dataset 

As mentioned in Chapter 2, density based clustering is an effective clustering method 

used in data mining for discovering spatial databases. BD-DBSCAN is improved 

version of prominent density based clustering algorithm (DBSCAN) [15]. In our study, 

we consider a dermoscopy image as a dataset in which each pixel belongs to one group 

(cluster) according to its spatial location and color.  

 

In our study first, CAD based delineation of lesion borders was taken with two ways. 

First the dermatologist took this border manually. Additionally, a CAD based method 

was used by taking delineation of lesion borders such as in Figure 5.1. As it is seen 

easily, the border with the CAD based method is much more accurate than manually 

drawn border and reflects the shape irregularity better. 

 

 

Figure 5.1: Sample skin cancer images showing borders delineated by the 

dermatologist (red) and a CAD based method, BD-DBSCAN (blue). 
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Then for measuring irregularities of every lesion border image generated by a CAD 

based method, eleven different fractal methods were used as we mentioned in Chapter 

3. It was already known that which images belong to malignant lesions and which 

images belong to benign lesions because they were determined before by 

dermatologists, so the dataset we obtained for this project contains 100 dermoscopy 

images which are diagnosed by dermatologist. We used the images showing borders 

delineated by a CAD based method which was boundary driven density based 

clustering algorithm (BD-DBSCAN). 30 of them were diagnosed as malignant 

melanoma and 70 of them were diagnosed as benign.  

5.2 Computational Experiments 

The objective of this section is to evaluate the performances of the models which were 

defined in Chapter 4 in terms of false ratios. At the first stage, we created 4 different 

training samples randomly. Each training sample was constituted of 50 patients. The 

rest 50 patients formed testing sample automatically. We ran each model in Step-2 

with training sample and in Step-3 with testing sample respectively four times, and 

observed the results.  

 

We used false negative, false positive and total false values for comparison. For our 

study, true negative and true positive are the proper evaluations. Dermatologists 

diagnose your situation correct. On the other hand, false negative and false values are 

false diagnosis. False negative means that you have malignant lesion, but 

dermatologists say that you do not have. On the contrary, false positive means that 

dermatologists say that you have malignant lesion despite you do not have in real 

(Figure 5.2). Total false values are the summations of mistaken diagnosis, so we 

mostly based on total false values during our comparison.  
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Figure 5.2 False-negative, false-positive, true-negative, true positive 

 

All the experiments were performed on an Intel CoreTM  i5 (5200U) 2.20GHz machine 

with 6 GB RAM. They were implemented using GAMS 23.9.5 that runs with CPLEX 

12.4 solver. 

 

As it is seen from Table 5.1, the best results were observed in Model-2 on each false-

negative, false-positive and total false results. Despite the best total false result is 34% 

in Model-1, 40% in Model-3 and 30% in Model 4, we observed 20% in Model-2. In 

addition to this, the worst total-false result is still better than the best results of other 

models. Not only total false values are important in our evaluations, but also false 

negative and false positive values are important. Model-1 and Model-4 are really bad 

in false-negative results. For example let us examine the results for Model-4, Random-

1. As it is seen on the figure, false-negative value is 90%. There is written that 18/20. 

It means that the model found 18 patients as healthy despite they have cancer in the 

real life. For Random-1, there are 20 patients who have cancer in real life. But, the 

model could find only 2 of them as cancer patients. As we seen, false-positive value is 

0%. It means that the model could find all 30 patients who do not have any cancer 

cells. Additionally, our model did not claim patients as sick patients despite they are 

healthy. So, we know that the model diagnosed 18 patients from 50 patients wrongly 

in total. Because of this, total false value is 18/50 which means 36%.  
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Graph 5.1. Total false values for first 4 random samples 

The graph also shows the best results were taken from Model-2 and the worst results 

were taken from Model-3. After observing this, we decided to continue our analysis 

with Model-2 and created 6 more random training samples. You can see the ratios for 

these 10 samples with the first 4 samples in Table 5.2 and Graph 5.2.  

 

As seen from Table 5.2, our best result did not change despite we added 6 more 

samples. The total false result interval is from 20% to 34%. 
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Graph 5.2 Total false values for 10 random samples for model-2 

After we examined the results, we wanted to check which fractal methods are used in 

which ratio. Let us remember fractal methods that were used in our study. These 

methods are; Dilation, Euclidean Distance Map, Box Counting, Fast, Fast (Hybrid), 

Parallel Lines, Mass Radius (Long), Mass Radius (Short), Corner (Count), Corner 

(Perimeter) and Cumulative Intersection. We examined usage of these methods on our 

10 random samples. As it is seen in Table 5.3, some methods are always used in all 

random samples and some of them are not. For example, Fractal Methods-3,4,6,7,8,10 

are never used in these random samples. On the other hand, Method-2 is always used 

in highest fraction. So, we concluded that Euclidean Distance Map method is a good 

method on determining the patient who has melanoma or not. You can see and observe 

other methods from Table 5.3. 
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After observing these results, we decided to try a new approach and created our random 

scenarios according to patients who have melanoma. As we mentioned before in 

Section 4.1, we were choosing our training and testing sample randomly. Now, we 

changed this selection method. We chose again 50 random patients, but this time we 

paid attention by choosing these 50 patients as 15 random patients from 30 patients 

who have melanoma and 35 random patients from 70 patients who do not have 

melanoma. Again this selection was randomly but this time we changed the selection 

clusters. With this scenario, we created 20 more random training samples as 15-35 and 

ran Model-2. (You can see the results in Table 5.4) In addition to these 20 random 

samples, we created 20 different more random training samples with the first usual 

way by choosing 50 patients from 100 patients randomly. (See Table 5.6)  

 

We ran Model-2 for these 40 samples and examined the results. One of our targets was 

to find a better solution than 20%, other one was not to find really bad results. Interval 

was important for our study. During our study, we have never encountered with a result 

higher than 40% total false.  

 

After that, again we observed the usage rates of fractal methods for these 40 random 

samples (See Table 5.5 & Table 5.7). As before, fractal methods 3,4,6,8 were never 

used again.   
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Graph 5.3 Total false values for 20 more random samples 

 

As it is seen from Graph 5.3, the best result is 22%, but still worse than Random-4 

which we found in first test. Additionally, our worst result is 40% in these 20 random 

samples which is worse than our first 10 results.  
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Graph 5.4 Total false values for last 20 random samples 

The worst total-false result is 38% in these 20 random sample set. When we analyzed 

Table 5.7, method 2 was not used for random sample-42 and random sample-44 for 

the first time. Fractal method-11 was the only method that was used in these samples. 
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After examining these 50 results, we decided to choose the best fractal methods. The 

best fractal method means here, fractal methods which were used in random sample 

that gave the best total-false results. As we have mentioned above, the best total-false 

results were observed in Random-4. You can see the fractal methods which are used 

in this sample with their weights in Table 5.8 and Graph 5.5. These were method-1, 

method-2, method-5, method-9 and method-11.  

Table 5.8 Fractal methods with their fractions for best random sample 

0.152337612 0.73900079 0.101009 0.000207 0.007445602 

1 2 5 9 11 

Dilation 
Euclidean  
Distance 

Map 

Fast 
 (Hybrid) 

Corner 
(Count) 

Cumulative  
Intersection 

 

 

Graph 5.5 Used fractal methods with their weights for the best random sample result 

After observing this, we created 20 more random samples by usual way. This time, we 

did not run the model for Step-2 because we already chosed our fractal methods and 

their weights. We only ran the model for Step-3 with the weights given above.   
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Graph 5.6 Total false values for last 20 Random Samples 

After 70 runs, we saw that our best result for total-false value is still 20%. It means 

80% success in diagnosis of melanoma skin cancer on dermoscopy images. As it is 

observed in Table 5.10, the average value for total false values of these last 20 random 

samples is 26.6%, the minimum total false value is 22%, and the maximum total false 

values is 36%.  

 

Table 5.10 Average, min., max. values for last 20 Random Samples 

Average 26,6% 

Minimum 22% 

Maximum 36% 
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CHAPTER 6  

CONCLUSION 

6.1 Summary of the Research 

Dermatology is a medical specialty which deals with the diagnosis and treatment of 

diseases of the skin [25]. As American Cancer Society declared, the most significant 

step in treatment of a disease is early and effective diagnosis. Early diagnosis saves 

lives. From cancer types, the most prevalent one is skin cancer [3]. For determination 

of skin cancer, dermatologists use a tool, dermatoscope. It takes high resolution images 

and analyzes dark colored lesion or diagnoses melanoma. This process is known as 

dermoscopy.  Melanoma which begins in melanocytes constitutes the largest part of 

skin cancers that results in death [1][4]. To distinguish malignant from benign lesions 

is not an easy process. As normal procedure, dermatologists take dermoscopy images, 

examine these images visually and then draw the lesion borders manually to follow the 

process since cancer cells grow irregularly so that cancer regions’ borders have shape 

irregularities. Lesion border irregularity is one of the criteria which serves to 

distinguish malignant from benign lesions. Physicians currently draw lesion borders 

manually with the naked eye, and this process is subjective and hard to recognize 

compartments and tissue structures. Unfortunately, rate of false diagnosis is high when 

lesion borders are manually drawn by physicians. Despite physicians use dermoscopy, 

70% of melanoma claims are still false-negative diagnosis due to the lack of 

knowledge about the diagnosis of melanocytic lesions [7]. Misdiagnosis of these 

lesions results in one of the causes of medical malpractice for this group of physicians 
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because it results in overtreatment or under treatment of patients. Even though using 

dermoscopy images decreases misdiagnosis of lesions, still one of the most important 

objectives of dermatologists is to gain ability to diagnose pigmented skin lesions with 

high accuracy as much as possible. This is the main motivation to utilize computer 

assisted diagnosis (CAD) techniques for the diagnosis of the melanoma. The 

techniques that are developed by fractal   methods can specify irregularities on the 

lesion borders since fractal properties of skin lesions reflect irregularity of shapes. 

Fractal dimension (FD) values can be calculated by several different approximation 

methods that differ from each other according how they measure the irregularity on a 

shape. The fractal   methods used in our research are Dilation, Euclidean Distance 

Map, Box Counting, Fast, Fast (Hybrid), Parallel Lines, Mass Radius (Long), Mass 

Radius (Short), Corner (Count), Corner (Perimeter) and Cumulative Intersection. Our 

study aims to determine which fractal methods are more effective on distinguishing 

malignant lesions from benign lesions to decrease ratios of false-positive, false-

negative and total false diagnosis. To reach our objective, we use the same data that 

are also used in three articles of Kockara et al. [25, 27, 28].  On the first part of our 

study, CAD based method for automated lesion border delineation is employed, then 

11 fractal   methods are implemented to measure lesion’s irregularity. After measuring 

irregularities, we use the FD values found by these 11 fractal methods as input in our 

study. All mathematical models that we create for Lesion Border Irregularity 

Classification Problem (LBICP) in our study are mixed integer programming (MIP) 

models. We developed four different MIP models which have four distinct objectives:  

(i) maximizing the minimum between-group distance, (ii) minimizing the total within-

group distances, (iii) maximizing the total between-group distances, and (iv) 

minimizing the maximum within-group distance. Despite all models have different 

objective functions, all of them tries to classify patients as ones who have cancer and 

ones who do not have cancer. First, we find optimum usage rate of fractal   methods 

for each models on training sample. Next, true diagnosis performances of each models 

on testing sample are evaluated by using usage rates which were found on the training 

sample. After several experiments have been conducted, we find that the rate of false 

diagnosis is 20% at the best case, which means 80% of the time diagnosis of melanoma 

skin cancer on dermoscopy images is successful. The average rate of false diagnosis, 

on the other hand, is found to be 26.6%. 
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6.2 Opportunities for Future Work 

As we mentioned in Chapter 4, the parametric values obtained by these FD methods 

measure the deviations from a smooth shape, so they are the amount of roughness on 

the shapes. High level irregularities in lesion borders mean high risk of melanoma. The 

values that measure the deviation from a smooth shape (i.e. irregularity) are the most 

important parameters of our study. Therefore, in the future, the number of these 

parametric values can be increased by using a sample larger than 100 patients. Thus, 

all the experiments can be repeated for more randomly generated sets to achieve more 

successful true diagnosis rates.  
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