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OPTIMUM BLEND OF FRACTAL METHODS FOR AUTOMATIC
MALIGNANCY DETERMINATION IN DERMOSCOPY IMAGES

Abstract

The most important step is early and effective diagnosis in the treatment of melanoma
which constitutes the biggest part of skin cancers results in death. At the present time,
dermatologists take dermoscopy images, visually examine these images and draw the
lesion borders manually for a future reference. With the naked-eye, it is not easy to
recognize compartments and tissue structures. Additionally, this procedure is also
tedious, biased, and failure rate is high. Moreover, even with the help of dermoscopy,
70% of melanoma claims are still a false-negative diagnosis. This is the motivation for
computer assisted diagnosis (CAD) techniques to help dermatologists to reduce
possible unlikelihood, to standardize the results and also to speed up the process. The
techniques which are developed by Fractal Methods determine irregularities on the
lesion borders. Our aim is to designate which Fractal Methods are more effective on
determining malignant lesions to minimize false-negative, false-positive and total-
false diagnosis. For this purpose, we develop four different mixed integer
programming (MIP) classification models, and then applied these models on the
dataset of 100 patients. First, we determine the optimum usage rate of Fractal Methods
for each classification model using randomly selected 50 patients (training sample).
Later, true diagnosis performance of each classification model is evaluated using the
remaining 50 patients (testing sample) and the optimum usage rate of Fractal Methods
which is already found with the “training sample”. It is observed that the optimum
usage rate of fractal methods gives 80% success rate in the best case scenario, and we
obtained a success rate of 73.4%, on average, when we perform repeated tests using

the optimum usage rate of fractal methods.



DERMOSKOPIDE KOTU HUYLU TUMORLERIN SAPTANMASINDA
OPTIMAL ORANSAL KIRILMA METODLARI

Ozet

Oliimle sonuglanan deri kanseri vakalarin en biiyiik kismimi olusturan melanomun
tedavisinde en 6nemli adim etkin ve erken teshistir. Dermoskopi, deri kanserinin erken
teshisi amaciyla dermoskop adi verilen cihazlarla deride bulunan koyu renkli
lezyonlarin incelenmesidir. Yontem, siipheli lezyonlarda hekimin cerrahi girisim
kararina yardimci olmay1 ve lezyon sinirlarindaki diizensizlikleri gozlemleyerek iyi
huylu lezyonlart kot huylu lezyonlardan ayirmayr hedefler. Giinlimiizde
dermatologlar, dermoskop goriintiilerini ¢iplak gozle inceler ve lezyon sinirlarini elle
cizer. Ancak ¢iplak gozle doku yapilarindaki renk, yogunluk, biiyiliklik farkliliklarini
ve sinirlardaki diizensizlikleri ayirt etmek zordur. Ayrica bu islem kisiden kisiye
degiskenlik gOsteren, hata orami yiiksek, tekrarlanamayan sonuglar dogurur.
Dermoskopi ile yapilan melanom teshislerinde %70’e kadar yanlig-negatif hatasi
gozlemlenmistir. Melanom teshislerinin goreceliligini azaltmak, sonuglar: standardize
etmek ve yanlis teshis oranlarini minimize etmek i¢in dermatologlara yardimci,
bilgisayar destekli tan1 teknikleri gelistirilmistir. Oransal Kirilma (Fractal) Metodlar1
kullanilarak gelistirilen bu teknikler, lezyonlarin siirlarindaki simetri bozukluklarini
ve diizensizlikleri tespit eder. Hedefimiz, lezyon smirlarinin bilgisayar destekli
cizimlerine uygulanan 11 Oransal Kirllma Metodundan hangilerinin kotii huylu
lezyonlarin saptanmasinda daha etkili oldugunu belirlemek ve bu sayede hatali teshis
oranlarint miminuma indirmektir. Bu amagla karigik tam say1 dogrusal programlama
kullanarak 4 fakli siniflandirma modeli gelistirilmis ve daha sonra bu modeller 100
hastali bir veri kiimesinde uygulanmustir. ilk dnce, siniflandirma modellerinden her
biri igin rastgele segilen 50 hasta (6gretme grubu) kullanilarak Oransal Kirilma
Metodlarinin optimum kullanim oranlart tespit edilmistir. Daha sonra kalan 50 hasta
(test grubu) ve buldugumuz Oransal Kirilma Metodlarinin optimum oranlari
kullanilarak smiflandirma metodlarimin her birinin dogru teshis performanslari
Olciilmiis, en 1yi senaryoda dogru teshis oran1 % 80 olarak hesaplanmis ve ortalama

dogru teshis performansi %73.4 olarak elde edilmistir.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Research Objective

Dermatology is the branch of medicine that focuses on the diagnosis and treatment of
diseases of the skin, hair and nails. It also focuses on maintaining the health of the skin.
Dermatologists are medical doctors who train in this area for many years, making them
the experts in all things related to skin, hair and nails [1]. Skin diseases increase due
to changing environment conditions and modern life styles day by day. With this
increment, research on the diagnosis and treatments of skin diseases also increases
because the most common form of cancer types is skin cancer [2]. The most important
step in treatment of skin cancers is early diagnosis. Dermatologists use a handy tool
which is named as dermatoscope for taking high resolution images, analyzing dark
colored lesion on skin, or diagnosing melanoma and other pigmented lesions. This
process is known as dermoscopy[3]. Images taken via dermatoscope are called
dermoscopy images. Dermoscopy is now a well-established diagnostic tool to improve
the clinical recognition of a broad spectrum of different skin disorders. Skin cancer
detection is the most important indication of dermoscopy. There is evidence that the
use of dermoscopy reduced false-negative diagnosis rate in recent years. Thus, recent
skin cancer guidelines promote the use of dermoscopy in skin cancer screening and

diagnosis [4].



The deadliest form of skin cancer is melanoma. Melanoma is a cancer that begins in
melanocytes, melanin-producing cells located in the bottom layer of the skin's
epidermis. Other name for this cancer is malignant melanoma. Melanoma is much less
common than basal cell and squamous cell skin cancers. Like the other cancer types,
melanoma is curable in its early stages, but it is much more likely than other cancer
types to spread to other parts of the body if not caught early, so it is far more dangerous
and deathly. According to statistics, 15% of melanoma cases are fatal [5,6]. In addition
to this, women 25-29 years of age are the most commonly affected group from
melanoma [7]. Although melanoma accounts for only 4% of all skin cancers [8], it is
the cause of 75% of skin cancer related deaths [9]. Accurate diagnosis of melanocytic
lesions is amongst the most difficult problems for dermatologists since definitive
diagnosis requires biopsy, sampling of skin tissues for examination, which has high
risk of metastasis, the spread of the cancer from skin to other organs. Moreover,
misdiagnosis of these lesions results in one of the causes of medical malpractice for
dermatologists. Even with the help of dermoscopy, 70% of melanoma claims are still
a false-negative diagnosis [10] mainly because dermatologists’ risk aversive attitude
prevent them from making impetuous positive-diagnosis, and possible surgical biopsy.
The focus of this research is to aid dermatologists in the stage of melanoma diagnosis
by presenting them some analytic methodologies that are capable to diagnose

melanoma more accurately with less risk.

Lesion border irregularity is one of the criteria that could serve to distinguish malignant
lesions from benign lesions. However, in current practice, physicians draw lesion
borders manually and assess irregularity through their observations. This is subjective,

erroneous, and not reproducible due to inter- and intra-observer variability.

One of the high priorities of health care professionals is the ability to diagnose
pigmented skin lesions, especially melanocytic neoplasms with high accuracy.
Pathologists, dermatologists, and dermatopathologists are in continuous study for
objective, reproducible criteria that could serve to distinguish benign from malignant
melanocytic proliferations in order to accurately predict biologic outcomes for patients

undergoing skin biopsy.



In recent years, dermoscopy has revolutionized disease diagnosis, grading, and
prognosis for skin cancer. Dermatoscopes take high resolution images for region of
interest (ROI) by analyzing dark colored lesion on skin or diagnosing of melanoma
and other pigmented lesions (See Figure 1.1) [3].

These images provide wealth of useful information for computer-assisted diagnosis.
Although using dermoscopy images opens the way for more objective analysis of
cases, fast and accurate diagnosis in melanocytic lesions is still amongst the most
challenging problems for pathologists. Misdiagnosis of these lesions is dangerous and
results in over or under treatment of patients. The primary causes of errors include

tenuous dermatologic changes that remain undetected to the naked-eye and lack of

experience of the observers.

Figure 1.1: Polarized light dermatoscope, Immersion oil dermatoscope, Image taken,
respectively

In current practice, dermatologists take dermoscopy images, visually examine them
and draw the lesion border manually for a future reference. Even with dermoscopes, it
might be difficult to recognize compartments and tissue structures such as glands based
on color, intensity, size, and borders. In addition to this, this process is tedious and
prone to intra- and inter-observer variability, which results in limited statistical
confidence and low reproducibility [11]. It is also known that manual recognition of
color and intensity by dermoscopes is biased depending on color distributions of a
given image [12]. Moreover, delineated lesion border drawn by different
dermatologists may not be the same. Sometimes this unlikelihood reaches up to 24%
[13].



This situation rises the motivation for computer assisted diagnosis (CAD) techniques
to help dermatologists to reduce possible unlikelihood, to standardize the results by
alleviating inter- and intra-observer variations, and also to speed up the process [14].
Figure 1.2 illustrates an exemplary dermoscopy image of a region of interest (ROI),
manually dermatologist drawn border image, and CAD based algorithmic border
detected image, respectively. The third image (CAD image) can capture the lesion
border in more detail compared to the second image (dermatologist drawn border
image) and it depicts the first image (dermoscopy image) more accurately. With
second image, it is much harder to follow the deviation from a smooth shape.

Figure 1.2 Dermoscopy image of ROI, Dermatologist drawn border, Computerized
border detection, respectively

In dermatology, as American Cancer Society stated [6], cancer cells grow irregularly
so that borders of melanocytic lesions have some shape irregularities. Even if CAD
images are used for the identification of border irregularities, some analytical methods
are still needed to measure the shape irregularities on CAD drawn lesion border areas

and determine possible malignancy of ROLI.



1.2 Research Objective

A biopsy is a medical procedure that involves taking a small sample of tissue so that it
can be examined under a microscope easily [6]. Biopsies can be used to identify
abnormal cells and to help identify a specific type of condition. Where a condition has
already been diagnosed, a biopsy can be used to measure how severe it is or which
stage it is at. Biopsy is seen as the most accurate way in detection of melanoma, but it
is dangerous since it fastens the spread of the malignant lesions through the body which
is known as metastasis. Doctors and researchers have noted that biopsy of a tumor can
cause seeding, or spread of cancer cells along the path of the needle track at the biopsy
site. Additionally, biopsy is not only dangerous, but also an expensive procedure.

Therefore, biopsy is usually used as the last resort to diagnose the suspected melanoma

cases.

Our ultimate target is to minimize false-negative, false-positive and total-false
diagnosis of melanoma as much as possible by using means other than medical
procedures (biopsy), such as computer assisted diagnosis (CAD) techniques and
mathematical programming methodologies. Despite there are so many studies related
to the diagnosis of melanoma, to the extent of our knowledge, none of them has utilized
quantitative methods such as mathematical modeling and computer assisted decision

systems to diagnose melanoma cases.

The framework of our study is founded upon Kockara et al. [15]. In this article, authors
first employed CAD based method for automated lesion border delineation. Then, they
implemented different quantitative methods, which are referred as fractal calculation
methods, on computerized border detections to quantitatively measure ROI’s
irregularity. Our main objective is to decide which blend of fractal calculation methods
described in Kockara et al. [15] is more accurate for detection of malignancy in

dermoscopy images.



1.3 Limitations of the Research

Our study is based upon the computerized border detection and fractal calculation
methods discussed in Ercan’s study [16]. Although there exists several other fractal
calculation methods in the literature, we restrict our attention only on the ones covered
in this study. The parametric values of the fractal methods measure the deviation from
a smooth shape, i.e. the amount of roughness on the shapes. When these values
increase for a lesion border, it means that roughness and correspondingly the
possibility to be malignant melanoma also increases. The models and methods we
have developed in the thesis assume that parametric values of fractal calculation
methods accurately reflect the magnitude of irregularity in lesion borders and are

known a priori with certainty.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows. A review of the existing literature
relevant to our work is presented in Chapter 2. Chapter 3 discusses what the Fractal
Methods are and examines the methods separately. In Chapter 4, we present our
mathematical models that are able to distinguish patients who have malignant lesions
from the patients who have benign lesions. Chapter 5 presents the data which we used
on our models and results of these models. The best performing model and the best
blend of fractal methods are discussed in this chapter. Chapter 6 closes the thesis with

conclusions, contributions and future research directions.



CHAPTER 2

BACKGROUND

Since 18th century, there has been abundant work on the dermatology. Willett [17]
emphasizes that first dermatology schools were built in 18th-century France for the
treatments especially for ancient diseases about skin such as syphilis. Rigel et al. [18]
state that dermatologic diseases and especially melanoma has increased in recent years
substantially. This trend constitutes the reason why effective educational programs to
improve public awareness for early detection become more important than ever [19].
As mentioned earlier, melanoma which begins in melanocytes constitutes the largest
part of skin cancers that results in death [1]. Jayaraman et al. [2] state that early
detection is important on melanoma to reduce the diseases’ fatality rate. In this study,
Jayamaran et al. [2]’s target is to distinguish malignant melanoma from benign
pigmentations. First, they apply image pre-processing to remove insignificant details
such as hairs or effects of air. Then, textural and statistical features obtained are used
as neural network classifier input [2]. According to Troxel [10], from 1995 through
2011, only 46 of 362 claims were reported as positive diagnosis of melanoma.
However, the article states that 70% of the negatively-diagnosed claims were actually
false-negative diagnoses. Mulrane et al. [11] and Conway et al. [12] also states that the
diagnosis process is tedious, has low reproducibility and biased on color distributions
of a given image. Due to these difficulties in early diagnosis of melanoma, growing
motivation for computer assisted diagnosis (CAD) techniques has emerged to help
dermatologists to reduce possible unlikelihood, to standardize the results by alleviating
inter- and intra-observer variations, and also to speed up the diagnosis process [14].

7



Among all the studies about dermatology in the literature for a better diagnosis, none
of them have utilized mathematical modeling or computerized decision support
systems. For instance, Jayaraman et al. [2] study melanoma detection by using
dermoscopy images. They have extracted various textural and statistical features using
Gray Level Co-occurrence Matrix (GLCM). After that, these attributes are used as
stimulants to an Artificial Neural Network (ANN) classifier to separate cancerous and
non-cancerous samples. We try to solve the diagnosis problem of skin cancer with
computerized systems like Jayaraman et al. [2]’s study. However, different from their
work, we prefer to use fractal methods for the classification of melanoma and benign
lesions. Lesne [20] states fractals are geometric shapes that have a structure. Berube et
al. [21] point out that particles are characterized by their boundary fractal, and then
define three fractal methods: box counting, dilation and euclidean distance mapping.
Similar to Berube et al. [21], Allen et al. [22] also study fractal methods. In their work,
they first divide fractal methods into two groups; vector and matrix based methods.
Vector-based methods are then divided into four subgroups which are exact, fast,
hybrid and faena. Similarly, matrix-based methods are divided into five subgroups;
mosaic amalgamation, lattice interception, dilation method, blanket algorithm,
displacement method and distance transform method. In our study, we also use fast
and hybrid methods of vector-based methods, and dilation method of matrix-based
methods. Allen et al. [22] also claims that the dilation method is the most commonly
used matrix-based method. Other than these fractal methods, Cornforth et al. [23]

conduct studies on mass radius technique, which is now a well-known fractal method.

We use the same data set, which is also used in the analysis conducted in three articles:
Kockara et al. [25], Kockara et al. [27], and Kockara et al. [28]. Kockara et al. [25]
compare two approaches for automatic border detection in dermoscopy images:
density based clustering (DBSCAN) and Fuzzy C-Means (FCM) clustering
algorithms. Each approach is examined on a set of 100 dermoscopy images whose
manually drawn borders by a dermatologis. As conclusion of this study, visual
outcome showed that the DBSCAN delineated targeted lesion more effectively than
FCM algorithm. In our study, we have also preferred to use the data generated by
DBSCAN algoritm of Kockara et al. [25]. The DBSCAN clustering algorithm,

introduced in 1996 [26], is generally used for discovering clusters in large spatial



databases with noise. In Kockara et al. [27], the authors add a new parametric measure
to the existing algorithm to enrich the CAD images with color information and to
generate more accurate results than existing methods. In Kockara et al.’s another study
[28], a novel approach -graph spanner- is examined on the same set of 100
dermoscopic images for automatic border detection. Error rates, false positives and
false negatives are quantified by digitally comparing results with manually determined

borders from a dermatologist.

In Kockara et al. [15], a recent approach for lesion border detection in dermoscopy
images, fast density based lesion detection, has obtained one of the most accurate
results. In this study, for the first time, they use a modified version of prominent density
based clustering algorithm, DBSCAN with the pre-processing step.

As mentioned earlier, in our study, we use fractal methods for classification. There are
various research areas where classification is applied. Classification, differently from
clustering, determines which class a new object belongs among a set of predefined
classes. As we will explain later in Chapter 6, our algorithms try to find the category

(melanoma or benign lesion) that a dermoscopy image belongs to.

Clustering and classification techniques in the literature can be used in various
different research areas ranging from classification of living organisms [29] to
classification of raw materials [30]. As Hunter [31] expresses, classification can and
should be used in sorting anything from documents to students, from books in the
library to food in the fridge. It is important to everyday life as we use it in everything
we do. McLachlan et al. [32] told that there are many types of clustering methods;
hierarchical agglomerative clustering, k-means clustering, the self-organizing map and
model-based methods. Differently from McLachlan [32], Rokach and Maimon [33]
present clustering techniques as hierarchical, partitioning, density-based, model-base,
grid-based and soft-computing methods. So, it is easy to say that clustering techniques
have an important place particularly in computer literature. For example, one of the
most important machine learning algorithms set for classification of data mining is

Support Vector Machines (SVM) [34]. A support vector machine is a computer



algorithm which learns by example to assign labels to objects. For example, an SVM
can recognize handwritten digits by examining a large collection of scanned images of
handwritten numbers. Additionally, like our study, SVM can be applied for biological
applications. Theoretically, an SVM can examine the gene expression profile for a
diagnosis that comes from a tumor sample. SVM can also classify objects as diverse
as protein and DNA sequences [34]. As Shigeo [35] explains, in training a classifier,
we aim to maximize classification performance for the training sample. For a two-class
problem, a support vector machine is trained so that the direct decision function

maximizes the generalization ability.

In Operations Research, cluster and classification analysis is an interesting topic, and
there are various means of conducting cluster analysis. One of them is mathematical
programming technique that we utilize in our study. Subjects can be grouped into
different clusters by mathematical programming as performed by Rao [36]. In his
analysis is confined to distance based cluster analysis in which a distance measure
between the various entities is available. Since these distances are known, he tries
grouping subjects by minimizing either the within groups sums of squares, sum of
average within group squared distances, the total within group distances or the

maximum within group distance.

Hansen and Jaumard [37] indicate steps of a clustering study, types of clustering
methods and criteria. In their work, algorithms for hierarchical, partitioning, sequential
and additive clustering are also studied. Differently from other clustering studies, they
focus on solution methods of operations research such as dynamic programming, graph
theoretical algorithms, branch-and-bound, cutting planes, column generation and
heuristics. Kusiak [38], on the other hand, approaches to clustering problems from a
different perspective. In his study, five different integer programming formulations of
the clustering problems are studied. The relevance of integer programming and
combinatorial theory to cluster analysis is discussed. The contribution of this article is
that despite there are so many articles on clustering analysis and their applications, the
integer programming aspect had not been emphasized before. Since Kusiak [38],
practical implications of integer programming and combinatorial theory in cluster

analysis has been increasing rapidly from day to day.
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CHAPTER 3

FRACTAL METHODS

3.1 Fractal

Fractal comes from the Latin adjective fractus, which has the same root as fraction and
fragment and means “irregular or fragmented”. Fractals are geometric shapes that have
a structure which is self-similar on every scale in a sense that the characteristics on the
scale x1 can be deducted from those on the scale x2 by a dilation [20]. Fractals provide
visual examples of collective critical behavior. It has a self-similar hierarchical
organization relying on very different scales. Thus, we can say that the length and the
area of a fractal shape depend on the observed resolution. You can see some self-
similar objects in Figure 3.1. Let’s first focus on the shapes of the right-most column.
Since they are complicated shapes, it is not straight forward to visualize and delineate
these imagine. If we did not know these shapes came from a simple pattern, it would
be hard to replicate them. As an example, let’s now try to reconstruct the bottom image
on the second column. We can start by drawing a triangle with equal sides on a paper.
Then, we make a dot in the center of each line of the triangle. When we connect these
dots with straight line segments, we obtain a new triangle with equal sides. So, we
have four triangles in total now. When we continue to repeat this procedure a certain

number of times, we can reach the bottommost image of the last column.
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Figure 3.1: Basic fractal shapes

Fractal dimension is a parameter that measures self-similarity in the number of disjoint
regions which the dataset can be divided into. Therefore, it can be deducted that that
fractal dimension is a quantity which measures irregularity. It produces statistically
sound merged information about the spatial distribution of skin lesion, volumetric
content, and bulk density. In our thesis, eleven different “fractal dimension”

calculation methods have been considered.

3.2 Fractal Methods

As already stated in Section 3.1, fractal dimension (abbreviated as FD or D) is used
to describe the ruggedness, complexity, roughness or irregularity of a particle based
on the set to which the particle belongs. Different approximation methods are used for
the calculation of fractal dimensions. These methods show small methodological
differences among each other in terms of the way how fractal dimension values are
computed. The methods that are used in this study for FD calculation are Dilation,
Euclidean Distance Map, Box Counting, Fast, Fast (Hybrid), Parallel Lines, Mass
Radius (Long), Mass Radius (Short), Corner (Count), Corner (Perimeter) and
Cumulative Intersection. For FD implementations, a toolbox called BIP which is
created by Florida International University Biofilm Image Processing research group
[39] was used as a reference point.
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3.2.1 Dilation

Dilation is an image processing method. It involves convolution of null spaces which
have different sizes (diameters) and then convolves them with the image border [21].
After that, each occupied pixel is confined with a square or a circle of size n, the
surface of which is accepted as completely occupied. The size n is then dilated and
total covered surface area A(n) is calculated for each value of n. Then, the total area
of the images is increased by n x n. Final step is to estimate the image’s border length.
It is done by dividing the total area of the image by the effective diameter of the dilation

element for each increment [22]. (See Figure 3.2)

A

Figure 3.2: Dilation method application. A: Original image, B: Dilation method
applied

3.2.2 Euclidean Distance Map

Euclidean distance map method works with monochrome images as black and white.
Then gray-scale images occur as a result. The brightness value is found for each pixel
of the result according to its distance to the nearest pixel of the outline of the image.
The image is divided into several ribbons with a width variable w. Then FD is
estimated with the proportion of the logarithm of the area for the each ribbon by the

number of selected gray levels. Some FD values can be seen in Figure 3.3 [21].
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Figure 3.3: Euclidian Distance Map fractal values of different shapes

3.2.3 Box Counting

Box counting fractal method is also known as Minkowski—Bouligand [16]. In this
method, we calculate FD by simply counting the number of boxes of a grid lying on
the image. The number of the boxes N (&) to cover the border of the image changes
when the size of the unit box of the grid & decreases, because they are proportional to
each other. (See Figure 3.4).

The logarithmic proportion at the limit is given by the following equation.

FD = lim — 20
£-0 In(g)

Figure 3.4: Koch Snowflake Box Counting

3.2.4 Fast

The principal target in this method is to approximate the image to a polygon. It is
started by choosing a starting point on the image. Then n different points are selected
and each side of the polygon is determined with two points respectively. After these,
we obtain n sides. All these n points and n sides are kept. The sum of the sides of the

polygon approximately gives the perimeter of the original image [16].
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3.2.5 Fast (Hybrid)

This method is also knowns as Richardson’s method. In this method, the main goal is
to approximate the segmented skin lesion in to a polygon by using the same length
lines. This approximation entails selecting a starting point on the shape and n different
points proceeding with the determination of each side of the polygon with two points
respectively. The perimeter of the original image can be approximated as the sum of
the edges of the polygon. Shorter the edges, it is closer to the sum of the edges to the
actual perimeter of the shape. If the sum of the edges of the polygon is p (an
approximation for the perimeter) and scaling factor to the length of edges is s then FD
is calculated as log(p)/log(1/s). An exemplary illustration is given in Figure 3.5.
The figure shows the difference between shorter edges and longer edges. As seen, the
perimeter of the first image is far away from the actual perimeter compared to the

second image.

Figure 3.5: Fast FD method

3.2.6 Parallel Lines

Parallel lines algorithm separates the segmented skin lesion with equally-distanced
vertical and horizontal parallel lines. After that, these lines are numbered accordingly.
The number of points that intersect the lesion are counted along the line. For instance,
vertical line 1 in Figure 3.6 intersects the lesion 8 times along horizontal lines. The
total numbers of intersecting points P are calculated for different interval distances d

between the lines. Then FD value is calculated as log(P)/log(d).
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Figure 3.6. Parallel Lines FD method

3.2.7 Corner (Count)

In corner count method, corners of object are counted for different scales of
connectivity values. For instance, if connectivity value is set to 4, border pixels of the
object assumed to be connected as 4 pixels together. The object’s border is covered
with, for instance, 4 connected pixels. Then, each of these connections’ corners are
counted. This counting is repeated recursively with different scales of connectivity
such as 2, 4, 8 etc. Then the slope is obtained from the logarithmic plot of the number

of corners used to cover border against the scales of the connectivity.

3.2.8 Corner (Perimeter)

It is similar to corner count method. Instead of counting number of corners against
the scales of connectivity, corner peripheral (perimeter) method sums the length of
each connectivity of different scales. Then the slope is obtained from the logarithmic
plot of the total length of perimeter (i.e. periphery of an object with different scale

connectivity is different) against the scales of the connectivity such as 2, 4, 8 etc.

3.2.9 Cumulative Intersection

In this method the Hausdorff circles are placed at random places on the image. An
iterative process is executed for each circle center. In each iteration, the radius of the

circle is increased by constant k, where k is the smallest length unit.
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Random but uniquely centered circles are created until whole region is encapsulated
by the highest level circles. The number of separate branches (see Figure 3.7 for
branches) is counted for each radius and FD is defined as log(N,.)/log(r), where r is
the circle index number from the center and N, is the number of cumulative

intersections at each exact center circle with changing sizes.

Figure 3.7 Cumulative Intersection FD method

3.2.10 Mass Radius (L.ong)

This method is very similar to cumulative intersection method. For this method, first
circles are drawn which cover the image in changing sizes. FD is determined with the
relationship between the areas of the original image found within these circles. (See
Figure 3.8) [24].

Figure 3.8. Changing centers of Mass Radius (Long) method

3.2.11 Mass Radius (Short)

The mass radius method-short method is also similar to the cumulative intersection
method. It is also called as sandbox method. Such as in mass radius (long) method,

circles are drawn which cover the image in changing sizes, and FD is determined with
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the ratio between the areas of the original image and these circles. The difference from
the mass radius (long) is different parameters [16]. Additionally, as differently from
cumulative intersection, center of circles are not chosen randomly. First, center of mass
of the segmented region is found. (The largest circle in Figure 3.9). Then it is used to
find centers of the other circles. For each radius r, average cluster masses M (r) is
evaluated. FD value is calculated as the ratio of average mass changes with respect to

radius r using the following equation.

_ log(M()

FD = log(1/71)

Figure 3.9. Mass Radius (Short) FD method

3.3 Relevance and Impact to Diagnosis & Treatment

As mentioned in 1.1, when the results for the diagnosis of melanocytic lesions are
inaccurate, it might give over-treatment and under-treatment of patients. Misdiagnosis
of melanoma is one of the most important issues for malpractice suits. There are
different reasons for these misdiagnosis, but the most important reason is the subtleties
of the dermatologic changes that distinguish benign from malignant proliferations of
melanocytes. These distinctions are slightly different from each other, so it is quite
difficult to detect by the naked eye. Because of this reason, a computer-assisted
dermoscopy image guided intervention has great potential for objectivity by applying

clearly defined subtle dermatologic observations [14].

With this intervention; lesion shaping, compactness, uniformity, dispersion and
innumerable other dermatologic criteria can be determined in a more objective manner
than the naked eye can do. Such a system has the potential to change the way

dermatology and dermatopathology is practiced in the future.
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CHAPTER 4

LESION BORDER IRREGULARITY CLASSIFICATION
PROBLEM (LBICP)

As we have discussed in Section 1.2, our problem is to classify the patients as (i)
patients who have malignant lesions and (ii) patients who have benign lesions. We
used irregularities on the lesion borders to distinguish patients into these two groups.
Each lesion border image was generated by a CAD based method, and the irregularities
of these images were calculated with eleven different fractal methods (See Chapter 3).
The parametric values obtained by these FD methods measure the deviations from a
smooth shape. We can alternatively define them as the amount of roughness on the
shapes. With this definition, it is seen that high-level irregularities in lesion borders
are recognized as a strong evidence for higher risk of melanoma [11]. Hence, it can be
claimed that when these parametric values increase, roughness in lesion border and

consequently any possibility of melanoma also increase.

We have named our problem as “Lesion Border Irregularity Classification Problem”
(LBICP). In a nutshell, our primary target in LBICP was to be able to differentiate
patients having melanoma as accurately as possible by using the parametric values of

FD methods that can quantitatively measure the irregularities on the lesion borders.
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4.1 Methodology

All mathematical models in our study that we created for LBICP are mixed integer
programming (MIP) models and try to differentiate patients as ones who have cancer
and ones who do not have cancer. We developed four different MIP models for this
purpose. Each model has one of the following four objectives: (i) maximizing the
minimum between-group distance, (ii) minimizing the total within-group distances,
(iif) maximizing the total between-group distances, and (iv) minimizing the maximum

within-group distance.

Even though each MIP model’s objective is different, we followed the same
methodology as depicted in Figure 4.1 while implementing either of these models. We
can explain this methodology in 5 steps. In Step-1, we choose half of patients randomly
as training sample, and the rest inherently constitutes the testing sample. Training
sample is a set of data records that is used to learn and discover data patterns. On the
other side, testing sample is a set of data records that tests how well the learned data
patterns generalize to a data population with a wide range of data records. Next, in
Step-2, the MIP model we would like to implement is run for the training sample to
determine the usage rate of fractal methods. The usage rates (i.e. weights) that are
found as a result of Step-2 show the importance of fractal methods. To find these
weights, we use the information of “training sample” patients of whether being
melanoma or not as parameter since this information is already known priori for the
training sample. Later, in Step-3, we run the MIP model for the testing sample with
weighted FD methods (found in step-2) to determine whether the patient has melanoma
or not. Hence, the output of Step-2 becomes our input for Step-3. We can summarize
the procedure so far as follows: In Step-2, the information of whether a patient has
melanoma or not is a parameter, and the weights of fractal methods are decided.
However, in Step-3, these weights decided in Step-2 becomes parameter, and we try
to decide if the patient has melanoma or not. Next, in Step-4, we compare our results
found in Step-3 with the real (true) diagnosis of “testing sample” patients. Finally, in
Step-5 we evaluate ratios of false diagnosis (false-negative, false-positive and total-
false). The methodology is always the same for each one of the four MIP classification
models. These classification models are run for several times with randomly selected
training and test samples to monitor the reliability and accuracy of the models.
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Figure 4.1. The methodology which is used in models
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4.2 MIP Classification Models

As discussed in previous section, each of four MIP classification models uses one of
the following objectives: (i) maximizing the minimum between-group distance, (ii)
minimizing the total within-group distances, (iii) maximizing the total between-group
distances, and (iv) minimizing the maximum within-group distance. All models use

the same solution procedure described in Figure 4.1.

In Step 2 of the solution procedure, for each fractal method & € K, we find a decision
variable wi which represents the weights of the FD method to be used whose value is
between 0 and 1. Additionally, for each patient i € /, B; is defined as decision variable

representing the weighted average of the parameters of the fractal methods. We also

define for each patient, j € J, three decision variables dij, dj"/™, df]l.”s. dij represents

distance between weighted averages (Bi and Bj), but we use dj"/™, df]l.”s to convert

non-linear classification models to linear MIP models.

All four models use Xi g for each patient ; € 7 and each group g € G to indicate whether
patient i is in group 1 or in group 2. This means, for example if group 1 represents the
patients who have melanoma and patient i is diagnosed as having melanoma, Xi1 and
Xi,2 variables for patient i will have the values of 1 and 0O, respectively. In step 2, it is

determined already by dermatologists and known.

Finally, to show the values of metric, the models use Aix for each fractal method & €
K and for each patient i € /. As we mentioned before, these values measure the
deviation from a smooth shape. When these values increase, roughness and the

possibility to be melanoma increase also.

Despite we use similar sets, decision variables and parameters for both training sample
and test sample, there are some important changes also. For example in step 3, wk is
parameter now. Additionally, for each patient i € I, Bj that is defined as the weighted
average of the parameters of the fractal methods is parameter also. Because of these

values are known now, d;; which is the distances between weighted averages for each
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patient ; € [ and patient j € J can be calculated easily and is given to the model. To
show the values of metric, the model uses again Aix as parameter for each fractal
method k& € K and for each patient i € 1. Now, X4 for each patient i € / and each group
g € G to indicate whether patient i is in group 1 or in group 2 is binary decision
variable. One of these groups represents the patients who have melanoma, and other

one represents the patients who do not have melanoma.

4.2.1 Maximizing the Minimum Between-group Distance

The purpose of this model is to maximize the minimum distance between any two
patients that are in different groups. This model searches maximizing the minimum
distance among all patient pairs. We can explain this also as maximizing the distance
between weighted average of group-1 (patients who does not have cancer) and

maximum weighted average of group-2 (patients who have cancer).

4.2.1.1 Determining Usage Rate of Fractal Methods Using Training Sample

All notations are the same as explained in Section 4.2. We also add a new binary
decision variable y;;j that equals 1 if patient i and patient j are in different groups and
yij = 0; otherwise. Note that, however, w; values are now decision variables, X; ,
values are parameters in this step.

The mixed integer programming (MIP) formulation for the training sample can be

written as follows:

Max z (1.a.1)
s.t.

YiLiwrdixy = B Vi €1 (1.a.2)
Yiem1 Wi =1 (1.a.3)
B; — B; = dplus;; —dminus;; Vi€l, je€]; (<] (1.a.4)
d;j = dplus;; + dminus; ; Viel, jeJ; i<j (1.a.5)
dplus; < My;; Viel, jeJ; i<j (1.a.6)
dminus; ; < M(A-y;) Viel, jeJj; i<j (1.a.7)
z < d;; IVIiELjE: Xig+ Xy =1; i< (1.2.8)
Wy > 0 vk € K (1.a.9)
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dminus; ; >0 Vviel, je€] (1.a.10)
dplus; >0 viel, jej (1.a.11)
d;j >0 Vviel, je€] (1.a.12)
z >0 (1.a.13)
Vij binary variable Viel, je] (1.a.14)

As we described before, objective function (1.a.1) maximizes the distance between
minimum weighted average of group-1 and maximum weighted average of group-2
with constraint (1.a.8). Constraint (1.a.8) evaluates the minimum distance between B-
values if patient i and j are in different groups, so it is the minimum distance between
groups. It also means that this formulation maximizes the minimum distance between
groups. Constraint (1.a.2) calculates B-values which are the weighted average of the
parameters of the fractal method for each patient. Constraint (1.a.3) ensures that the
sum of the weights of each method must be equal to 1. This constraint and constraint
(1.a.9) determine the interval of the weights of each method as from 0 to 1. Constraint
(1.a.4) and constraint (1.a.5) calculate the distance between B-values for each patients
and ensure that this difference must be non-negative with constraint (1.a.10), constraint
(1.a.11), constraint (1.a.12) and constraint (1.a.13). We define y; ; as binary decision
variables in constraint (1.a.14) that equals 1 if patient i and j are in different groups
and equals O if they are in same group. This definition comes from the constraint
(1.a.8). Constraint (1.a.6) and constraint (1.a.7) calculate distances between patient i
and patient j according to their groups. If they are in the different groups, constraint
(1.a.6) frees dplus; jand constraint (1.a.7) forces dminus; ;to be 0 with constraint
(1.a.10). So, constraint (1.a.4) evaluates the distance between B-values for the patients
which are in the different groups. When they are in the same group, the opposite is

true, but because of the constraint (1.a.12), dminus;; cannot be negative, so it is

forced to be 0 again, so the distance between B-values for the patients which are in the
same group is forced to be equal to 0. Thus, this constraint set only evaluates the
distance between B-values for the patients which are in different groups.
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4.2.1.2 Determining Melanoma Using Testing Sample

In addition to the notations described in Section 4.2, we add two new binary variables
yl;;4 and y2;;,. Note that, however, X; ;, values are now decision variables, wy
values are parameters in this step. In the first step, we decided the weights w;,, so we
evaluate B; (the weighted average of the parameters of the fractional (FD) methods
for patient i) values with these w; values on equation (1.b.1). With the B; values also,
we calculate d;; (distances between weighted averages) values for each patient i and
patient j on equation (1.b.2.), and we used d;; values as parameter on the following
mathematical model.

B; = YkexWrAik Viel (1.b.2)
d;; = |B; — B VieEl je]J (1.b.2)

ij

We can show the mathematical model for testing sample as follows:

Max z (1.b.3)
S.t.

z < dij+MA—yijg) +MA—y2:,4) Viel, jeEJ, g€G (1b4)
YgecXig = 1 Viel (1.b.5)
Yier Xig < 49 VgEG (1.b.6)
Yier Xig > 1 VgEG (1.b.7)
2—-Xig+X;g < Myl, viel, je], geG (1b.8)
Xig +Xjg < My2;;, Viel, je], geG (1.b.9)
XigrY1lijg Y214 binaryvariable Viel jeJ, geG (1.b.10)

Objective function (1.b.3) still tries to maximize the distance between minimum
weighted average of group-1 and maximum weighted average of group-2 with
constraint (1.b.4), (1.b.8) and (1.b.9). Constraint (1.b.5) ensures that each patient can
only appear in one group. Constraint (1.b.6) and constraint (1.b.7) ensure that there
will be at least one patient which is melanoma. We define y1; ; , and y2; ; ; as binary
decision variables in constraint (1.b.10) that equals 1 if patient i and j are in different
groups and equals O if they are in same group. This definition comes from the

constraint (1.b.4), (1.b.8) and (1.b.9). If patients are in different groups, constraint
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(1.b.8) and constraint (1.b.9) push ¥1; ; ;, and y2; ; , to be 1. So, when they are equal
to 1, constraint (1.b.4) calculates z as minimum distance between weighted averages
of patient i and patient j. Because the problem is a maximization problem, it maximizes
the minimum distance between weighted averages. When the patients are in the same

group, y1; j 4 and y2; ; , can become 0 or 1, so they free z-value.

4.2.2 Minimizing the Total Within-group Distances

Now, we try to minimize the total within-group distances. On this model, we evaluate
all distances among patients who are in same group, and we try to minimize this total
distance for both of groups.

4.2.2.1 Determining Usage Rate of Fractal Methods Using Training Sample

We do not add any decision variable or parameter in this model and all the notations
are the same as explained in Section 4.2. Note that, however, w; values are now

decision variables, X; ; values are parameters in this step.

The mathematical model is given by:

Min zZ = Yier XjejZij (2.a.1)
s.t.

YrLiwiA g = B, Vi €1 (2.a.2)
Tk, wy = 1 (2.23)
B; — B; = dplus;; — dminus, ; Viel, jeJ; i<j (2.a.4)
dij = dplus;; + dminus; ; Viel, jeJ; i<j (2.a.5)
dijXig+dijXjg—2,; < dij Vi€EIL, jE], gEG; i<j (2.2.6)
Wy >0 vk € K (2.a.7)
dminus; ; =0 Viel, je] (2.a.8)
dplus; =0 Viel, jeE]J (2.a.9)
d;j = 0 Viel, je] (2.a.10)
z >0 (2.a.11)
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Objective function (2.a.1) minimizes the total distance within group distances.
Constraint (2.a.2) calculates B-values which are the weighted average of the
parameters of the fractal (FD) method for each patient. Constraint (2.a.3) ensures that
the sum of the weights of each method must be equal to 1. This constraint and
constraint (2.a.7) determine the interval of the weights of each method as from 0 to 1.
Constraint (2.a.4) and constraint (2.a.5) calculate the distance between B-values for
each patient and ensure that this difference must be non-negative with constraint
(2.a.8), constraint (2.a.9) and constraint (2.a.10). Constraint (2.a.6) calculates distances
between patient i and patient j according to their groups. If they are in different groups,
constraint (2.a.6) frees z;;, but because of the reason that the problem is a

minimization problem, the model pushes z; ; to be 0 with constraint (2.a.11). But on

the other side, when patient i and patient j are in the same group, z; ; is equal to d; ;.

4.2.2.2 Determining Melanoma Using Testing Sample

Our purpose here is again to minimize the total within-group distances. All the
notations are the same as explained in Section 4.2. Note that, however, X; , values are
now decision variables, w; values are parameters in this step. In the first step, we
decided the weights wy,, so we evaluate B; (the weighted average of the parameters of
the fractional (FD) methods for patient i) values with these w;, values on equation
(2.b.1). With the B; values also, we calculate d;; (distances between weighted
averages) values for each patient i and patient j on equation (2.b.2.), and we used d;;
values as parameter on the following mathematical model.

B; = YrexWrAik Viel (2.b.2)
d;; = |B; — Bj| ViEl je]J (2.b.2)

t

The new mathematical formulation is as follows:

Min z = Yiel Ljej Zij (2.b.3)
S.t.

dijXig+dijXjg—2zi; < dyj Vi€l, jEJ], g€EG ;i< (2.b.4)
Ygec Xig =1 Viel (2.b.5)
z > 0 (2.b.6)
Xig binary variable Vi€l, j€], g€G (2.b.7)
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Objective function (2.b.3) still tries to minimize the total distance within group
distances with constraint (2.b.4). Constraint (2.b.5) ensures that each patient can only
appear in one group. Constraint (2.b.4) frees z; ; if the patients are in different groups,
but because of the reason that the problem is a minimization problem, the model pushes
z; ; to be 0 with constraint (2.b.6). But on the other side, when patient i and patient
are in the same group z; ; is equal to d; ;. Constraint (2.b.7) defines Xig as 1 if patient

I in group g has melanoma.

4.2.3 Maximizing the Total Between-group Distances

Now, we try to maximize the total distance between group distances. Like in Section
4.2.1., we evaluate the distances among all patient pairs, and we search for distances
between groups. Unlike searching for minimum distance, this time we try to find the
total distance between two groups. As maximizing this total distance, we separate the

patients into two groups as much as possible. Higher value means higher separation
for patients.

4.2.3.1 Determining Usage Rate of Fractal Methods Using Training Sample

We only add a constant binary decision variable yi; that equals 1 if patient i and patient
j are in different groups and yij = 0; otherwise. All other notations are the same as
explained in Section 4.2. Note that, however, w; values are now decision variables,

X; 4 values are parameters in this step.

The mathematical model is as follows:

Max  z = Xiel Xjej Zij i<j (3.a.1)
s.t.

YitiwiAix = B Vi €1 (3.a.2)
Yit1 Wk =1 (3.a.3)
B; — B; = dplus;; —dminus;; Vi€l, j€]; i<j (3.a.4)
dij = dplus;; +dminus;; Vi€l, jE€]; i<j (3.a.5)
Z; < dii(Xig+Xig) Viel, jEJ, geEG;i<j (3.a6)

N
Z
IA

dij(2-Xig—X;y) Vi€l jEJ gEG;i<j (3.a.7)
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dplus; < My Viel, jeJ;i<j (3.a.8)
dminus; ; < M(1-y;) Viel, jeJ;i<j (3.a.9)
Wy > 0 vk € K (3.2.10)
dminus; ; > 0 Vviel, je] (3.a.11)
dplus; ; > 0 Vviel, je] (3.a.12)
dy > 0 Viel, j€J (3.a.13)
z = 0 (3.a.14)
Vij binary variable Viel, je] (3.a.15)

Obijective function (3.a.1) maximizes the total distance between group distances with
constraint (3.a.6) and constraint (3.a.7). Constraint (3.a.2) calculates B-values which
are the weighted average of the parameters of the fractal (FD) method for each patient.
Constraint (3.a.3) ensures that the sum of the weights of each method must be equal to
1. This constraint and constraint (3.a.10) determine the interval of the weights of each
method as from 0 to 1. Constraint (3.a.4) and constraint (3.a.5) calculate the distance
between B-values for each patient and ensure that this difference must be non-negative
with constraint (3.a.11), constraint (3.a.12) and constraint (3.a.13). We define y; ; as
binary decision variables in constraint (3.a.15) that equals 1 if patient i and j are in
different groups and equals O if they are in same group. This definition comes from the
constraint (3.a.8) and (3.a.9). Constraint (3.a.6) and constraint (3.a.7) calculate z; ; for
the patients who are in different groups. When they are in same groups, these

constraints force z; ; to be 0 together.

4.2.3.2 Determining Melanoma Using Testing Sample

Here, we do not need to add any new decision variables or parameters. All notations
are the same as explained in Section 4.2. Note that, however, X; , values are now
decision variables, w; values are parameters in this step. In the first step, we decided
the weights wy, so we evaluate B; (the weighted average of the parameters of the
fractional (FD) methods for patient i) values with these w;, values on equation (3.b.1).
With the B; values also, we calculate d;; (distances between weighted averages) values
for each patient i and patient j on equation (3.b.2.), and we used d;; values as parameter

on the following mathematical model.
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Bi = ZkEK Wi Ai,k Vi€el (3b1)

The mathematical formulation is as follows:

Max  z = XierXjesZj (3.0.3)
S.t.

YoecXig = 1 Viel (3.b.4)
Zij < dij(Xpg +Xig) Viel, je€J, geG;i<j (3.h.5)
Zij < d;;2-Xiy—X;y) Vi€l j€], geG;i<j (3.b.6)
Xig binary variable Viel, jeEJ, gea (3.b.7)

Objective function (3.b.3) still tries to maximize the total distance between group
distances with constraint (3.b.5) and (3.b.6). Constraint (3.b.4) ensures that each
patient can only appear in one group. Constraint (3.b.5) and constraint (3.b.6) calculate

z; j for the patients who are in different groups. When they are in same groups, these
constraints force z; ; to be 0 together. Constraint (3.b.7) defines Xig as 1 if patient i in

group g has melanoma.

4.2.4 Minimizing the Maximum Within-group Distance
Now, we try to minimize the maximum distance within group distances. Here again,

we target grouping by getting patients who have minimum distance between each other

closer.

4.2.4.1 Determining Usage Rate of Fractal Methods Using Training Sample

Note that, however, wy values are now decision variables, X; ; values are parameters

in this step.
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The mathematical model can be written as follows:

Min z (4.a.1)
S.t.

Shti Wik = B; Vi €1l (4.a.2)
Yhi, wy =1 (4.2.3)
B; — B; = dplus;j —dminus;; Vi€l, j€J; i<j (4.a.4)
d; = dplus;; +dminus;; Vi€l, j€]; i<j (4.a.5)
djXigt+tdijXjg—z < dij Viel, jeEJ], geaG; i<j (4.a6)
Wy > 0 vk € K (4.a.7)
dminus; ; > 0 Viel, je] (4.a.8)
dplus; ; > 0 Viel, je]J (4.2.9)
d;j >0 Viel, je] (4.a.10)
z >0 (4.a.11)

Objective function (4.a.1) minimizes the maximum within group distances with
constraint (4.a.6). Constraint (4.a.2) calculates B-values which are the weighted
average of the parameters of the fractal (FD) method for each patient. Constraint
(4.a.3) ensures that the sum of the weights of each method must be equal to 1. This
constraint and constraint (4.a.7) determine the interval of the weights of each method
as from 0 to 1. Constraint (4.a.4) and constraint (4.a.5) calculate the distance between
B-values for each patient and ensure that this difference must be non-negative with
constraint (4.a.8), constraint (4.a.9) and constraint (4.a.10). Constraint (4.a.6)
calculates distances between patient i and patient j according to their groups. If they
are in the different groups, constraint (4.a.6) pushes z to be 0 with constraint (4.a.11).

However, when they are in same groups, z is forced to be d; ; with objective function.

4.2.4.2 Determining Melanoma Using Testing Sample

Note that, however, X; , values are now decision variables, wy, values are parameters
in this step. In the first step, we decided the weights wy, so we evaluate B; (the
weighted average of the parameters of the fractional (FD) methods for patient i)
values with these w,, values on equation (4.b.1). With the B; values also, we calculate
d;; (distances between weighted averages) values for each patient i and patient j on

equation (4.b.2.), and we used d;; values as parameter on the following model.
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B; = Dkex Wi Aik Viel
dij = |B,_—Bj| ViEI,jE]

The mathematical formulation can be written as follows:

Min  z = XieXjeszij

S.t.

dijXig+dijXjg—2z < d;j Viel, jJEJ], geEG;i<j
YoecXig =1 Viel

Xig binary variable Viel, jeJ, gea

VA > 0

(4.0.1)
(4.0.2)

(4.0.3)

(4.0.4)
(4.0.5)
(4.0.6)
(4.0.7)

Objective function (4.b.3) still tries to minimize the maximum within group distances

with constraint (4.b.4). Constraint (4.b.4) calculates distances between patient i and

patient j according to their groups. If they are in the different groups, constraint (4.b.6)

pushes z to be 0 with constraint (4.b.7). However, when they are in same groups, z is

forced to be d; ; with objective function. Constraint (4.b.5) ensures that each patient

can only appear in one group. Constraint (4.b.6) defines Xig as 1 if patient i in group g

has melanoma.
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CHAPTER 5

DATA ANALYSIS AND RESULTS

5.1 Dataset

As mentioned in Chapter 2, density based clustering is an effective clustering method
used in data mining for discovering spatial databases. BD-DBSCAN is improved
version of prominent density based clustering algorithm (DBSCAN) [15]. In our study,
we consider a dermoscopy image as a dataset in which each pixel belongs to one group

(cluster) according to its spatial location and color.

In our study first, CAD based delineation of lesion borders was taken with two ways.
First the dermatologist took this border manually. Additionally, a CAD based method
was used by taking delineation of lesion borders such as in Figure 5.1. As it is seen
easily, the border with the CAD based method is much more accurate than manually

drawn border and reflects the shape irregularity better.

Figure 5.1: Sample skin cancer images showing borders delineated by the
dermatologist (red) and a CAD based method, BD-DBSCAN (blue).
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Then for measuring irregularities of every lesion border image generated by a CAD
based method, eleven different fractal methods were used as we mentioned in Chapter
3. It was already known that which images belong to malignant lesions and which
images belong to benign lesions because they were determined before by
dermatologists, so the dataset we obtained for this project contains 100 dermoscopy
images which are diagnosed by dermatologist. We used the images showing borders
delineated by a CAD based method which was boundary driven density based
clustering algorithm (BD-DBSCAN). 30 of them were diagnosed as malignant

melanoma and 70 of them were diagnosed as benign.

5.2 Computational Experiments

The objective of this section is to evaluate the performances of the models which were
defined in Chapter 4 in terms of false ratios. At the first stage, we created 4 different
training samples randomly. Each training sample was constituted of 50 patients. The
rest 50 patients formed testing sample automatically. We ran each model in Step-2
with training sample and in Step-3 with testing sample respectively four times, and
observed the results.

We used false negative, false positive and total false values for comparison. For our
study, true negative and true positive are the proper evaluations. Dermatologists
diagnose your situation correct. On the other hand, false negative and false values are
false diagnosis. False negative means that you have malignant lesion, but
dermatologists say that you do not have. On the contrary, false positive means that
dermatologists say that you have malignant lesion despite you do not have in real
(Figure 5.2). Total false values are the summations of mistaken diagnosis, so we

mostly based on total false values during our comparison.
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Test says you don't have it Test says you do have it

You really

don't have it
FALSE POSITIVE

You really
do have it FALSE NEGATIVE

Figure 5.2 False-negative, false-positive, true-negative, true positive

All the experiments were performed on an Intel Core™ i5 (5200U) 2.20GHz machine
with 6 GB RAM. They were implemented using GAMS 23.9.5 that runs with CPLEX
12.4 solver.

As it is seen from Table 5.1, the best results were observed in Model-2 on each false-
negative, false-positive and total false results. Despite the best total false result is 34%
in Model-1, 40% in Model-3 and 30% in Model 4, we observed 20% in Model-2. In
addition to this, the worst total-false result is still better than the best results of other
models. Not only total false values are important in our evaluations, but also false
negative and false positive values are important. Model-1 and Model-4 are really bad
in false-negative results. For example let us examine the results for Model-4, Random-
1. As it is seen on the figure, false-negative value is 90%. There is written that 18/20.
It means that the model found 18 patients as healthy despite they have cancer in the
real life. For Random-1, there are 20 patients who have cancer in real life. But, the
model could find only 2 of them as cancer patients. As we seen, false-positive value is
0%. It means that the model could find all 30 patients who do not have any cancer
cells. Additionally, our model did not claim patients as sick patients despite they are
healthy. So, we know that the model diagnosed 18 patients from 50 patients wrongly

in total. Because of this, total false value is 18/50 which means 36%.
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Total False for Each Model

50,00%
45,00%
40,00%
35,00%
30,00%
25,00%
20,00%
15,00%
10,00%

5,00%

0,00%

Total False Rates

Random-1 Random-2 Random-3 Random-4
H Model-1 42,00% 32,00% 42,00% 34,00%

B Model-2 30,00% 26,00% 28,00% 20,00%
B Model-3 44,00% 40,00% 42,00% 48,00%
= Model-4 36,00% 30,00% 42,00% 32,00%

Graph 5.1. Total false values for first 4 random samples

The graph also shows the best results were taken from Model-2 and the worst results
were taken from Model-3. After observing this, we decided to continue our analysis
with Model-2 and created 6 more random training samples. You can see the ratios for
these 10 samples with the first 4 samples in Table 5.2 and Graph 5.2.

As seen from Table 5.2, our best result did not change despite we added 6 more

samples. The total false result interval is from 20% to 34%.
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Total False

35,00%

30,00% |~
25,00%
20,00%
15,00%
10,00%

5,00%

0,00%

1 2 3 4 5 6 7 8 9 10
| H Total False [30,00/26,00(28,00/20,00(30,00/32,00(32,00/32,00[30,00,34,00

Graph 5.2 Total false values for 10 random samples for model-2

After we examined the results, we wanted to check which fractal methods are used in
which ratio. Let us remember fractal methods that were used in our study. These
methods are; Dilation, Euclidean Distance Map, Box Counting, Fast, Fast (Hybrid),
Parallel Lines, Mass Radius (Long), Mass Radius (Short), Corner (Count), Corner
(Perimeter) and Cumulative Intersection. We examined usage of these methods on our
10 random samples. As it is seen in Table 5.3, some methods are always used in all
random samples and some of them are not. For example, Fractal Methods-3,4,6,7,8,10
are never used in these random samples. On the other hand, Method-2 is always used
in highest fraction. So, we concluded that Euclidean Distance Map method is a good
method on determining the patient who has melanoma or not. You can see and observe
other methods from Table 5.3.
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After observing these results, we decided to try a new approach and created our random
scenarios according to patients who have melanoma. As we mentioned before in
Section 4.1, we were choosing our training and testing sample randomly. Now, we
changed this selection method. We chose again 50 random patients, but this time we
paid attention by choosing these 50 patients as 15 random patients from 30 patients
who have melanoma and 35 random patients from 70 patients who do not have
melanoma. Again this selection was randomly but this time we changed the selection
clusters. With this scenario, we created 20 more random training samples as 15-35 and
ran Model-2. (You can see the results in Table 5.4) In addition to these 20 random
samples, we created 20 different more random training samples with the first usual

way by choosing 50 patients from 100 patients randomly. (See Table 5.6)

We ran Model-2 for these 40 samples and examined the results. One of our targets was
to find a better solution than 20%, other one was not to find really bad results. Interval
was important for our study. During our study, we have never encountered with a result
higher than 40% total false.

After that, again we observed the usage rates of fractal methods for these 40 random
samples (See Table 5.5 & Table 5.7). As before, fractal methods 3,4,6,8 were never
used again.
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Total False

40,00%

35,00%

30,00%
25,00%
20,00%

15,00%

Total False Rates

10,00%
5,00%

0,00%

O Total False|26/30(28(32|26|30|26(40(30|22|30(|22(26(30|28|32|26(32(26|40

Graph 5.3 Total false values for 20 more random samples

As it is seen from Graph 5.3, the best result is 22%, but still worse than Random-4
which we found in first test. Additionally, our worst result is 40% in these 20 random

samples which is worse than our first 10 results.
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Total False

40,00%
35,00%
30,00%
25,00%
20,00%
15,00%
10,00%

5,00%

0,00% [~

Total False Rates

|lTate| False |38/30/32|36/30|32(28(30|24(32|38(38|30(24|30(30|30(36|32|32

Graph 5.4 Total false values for last 20 random samples

The worst total-false result is 38% in these 20 random sample set. When we analyzed
Table 5.7, method 2 was not used for random sample-42 and random sample-44 for

the first time. Fractal method-11 was the only method that was used in these samples.
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After examining these 50 results, we decided to choose the best fractal methods. The
best fractal method means here, fractal methods which were used in random sample
that gave the best total-false results. As we have mentioned above, the best total-false
results were observed in Random-4. You can see the fractal methods which are used
in this sample with their weights in Table 5.8 and Graph 5.5. These were method-1,
method-2, method-5, method-9 and method-11.

Table 5.8 Fractal methods with their fractions for best random sample

0.152337612|0.73900079 | 0.101009 | 0.000207 | 0.007445602

1 2 5 9 11
Euclidean _
Dilation Distance Fast Corner | Cumulative

Map (Hybrid) | (Count) | Intersection

Used Methods with Their Weights

1%

0,
0% m Dilation
10% |

. = Euclidean
Distance Map

Fast
(Hybrid)

m Corner
(Count)

® Cumulative
Intersection

Graph 5.5 Used fractal methods with their weights for the best random sample result

After observing this, we created 20 more random samples by usual way. This time, we
did not run the model for Step-2 because we already chosed our fractal methods and

their weights. We only ran the model for Step-3 with the weights given above.
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Graph 5.6 Total false values for last 20 Random Samples

After 70 runs, we saw that our best result for total-false value is still 20%. It means
80% success in diagnosis of melanoma skin cancer on dermoscopy images. As it is
observed in Table 5.10, the average value for total false values of these last 20 random
samples is 26.6%, the minimum total false value is 22%, and the maximum total false

values is 36%.

Table 5.10 Average, min., max. values for last 20 Random Samples

Average 26,6%
Minimum 22%
Maximum 36%

50



CHAPTER 6

CONCLUSION

6.1 Summary of the Research

Dermatology is a medical specialty which deals with the diagnosis and treatment of
diseases of the skin [25]. As American Cancer Society declared, the most significant
step in treatment of a disease is early and effective diagnosis. Early diagnosis saves
lives. From cancer types, the most prevalent one is skin cancer [3]. For determination
of skin cancer, dermatologists use a tool, dermatoscope. It takes high resolution images
and analyzes dark colored lesion or diagnoses melanoma. This process is known as
dermoscopy. Melanoma which begins in melanocytes constitutes the largest part of
skin cancers that results in death [1][4]. To distinguish malignant from benign lesions
is not an easy process. As normal procedure, dermatologists take dermoscopy images,
examine these images visually and then draw the lesion borders manually to follow the
process since cancer cells grow irregularly so that cancer regions’ borders have shape
irregularities. Lesion border irregularity is one of the criteria which serves to
distinguish malignant from benign lesions. Physicians currently draw lesion borders
manually with the naked eye, and this process is subjective and hard to recognize
compartments and tissue structures. Unfortunately, rate of false diagnosis is high when
lesion borders are manually drawn by physicians. Despite physicians use dermoscopy,
70% of melanoma claims are still false-negative diagnosis due to the lack of
knowledge about the diagnosis of melanocytic lesions [7]. Misdiagnosis of these

lesions results in one of the causes of medical malpractice for this group of physicians

51



because it results in overtreatment or under treatment of patients. Even though using
dermoscopy images decreases misdiagnosis of lesions, still one of the most important
objectives of dermatologists is to gain ability to diagnose pigmented skin lesions with
high accuracy as much as possible. This is the main motivation to utilize computer
assisted diagnosis (CAD) techniques for the diagnosis of the melanoma. The
techniques that are developed by fractal methods can specify irregularities on the
lesion borders since fractal properties of skin lesions reflect irregularity of shapes.
Fractal dimension (FD) values can be calculated by several different approximation
methods that differ from each other according how they measure the irregularity on a
shape. The fractal methods used in our research are Dilation, Euclidean Distance
Map, Box Counting, Fast, Fast (Hybrid), Parallel Lines, Mass Radius (Long), Mass
Radius (Short), Corner (Count), Corner (Perimeter) and Cumulative Intersection. Our
study aims to determine which fractal methods are more effective on distinguishing
malignant lesions from benign lesions to decrease ratios of false-positive, false-
negative and total false diagnosis. To reach our objective, we use the same data that
are also used in three articles of Kockara et al. [25, 27, 28]. On the first part of our
study, CAD based method for automated lesion border delineation is employed, then
11 fractal methods are implemented to measure lesion’s irregularity. After measuring
irregularities, we use the FD values found by these 11 fractal methods as input in our
study. All mathematical models that we create for Lesion Border Irregularity
Classification Problem (LBICP) in our study are mixed integer programming (MIP)
models. We developed four different MIP models which have four distinct objectives:
(i) maximizing the minimum between-group distance, (ii) minimizing the total within-
group distances, (iii) maximizing the total between-group distances, and (iv)
minimizing the maximum within-group distance. Despite all models have different
objective functions, all of them tries to classify patients as ones who have cancer and
ones who do not have cancer. First, we find optimum usage rate of fractal methods
for each models on training sample. Next, true diagnosis performances of each models
on testing sample are evaluated by using usage rates which were found on the training
sample. After several experiments have been conducted, we find that the rate of false
diagnosis is 20% at the best case, which means 80% of the time diagnosis of melanoma
skin cancer on dermoscopy images is successful. The average rate of false diagnosis,
on the other hand, is found to be 26.6%.
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6.2 Opportunities for Future Work

As we mentioned in Chapter 4, the parametric values obtained by these FD methods
measure the deviations from a smooth shape, so they are the amount of roughness on
the shapes. High level irregularities in lesion borders mean high risk of melanoma. The
values that measure the deviation from a smooth shape (i.e. irregularity) are the most
important parameters of our study. Therefore, in the future, the number of these
parametric values can be increased by using a sample larger than 100 patients. Thus,
all the experiments can be repeated for more randomly generated sets to achieve more

successful true diagnosis rates.
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