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In this paper, we examine pseudo-Riemannian submanifolds of a pseudo-
hyperbolic spaceHm−1

s (−1) ⊂ Em
s+1 with finite type pseudo-hyperbolic Gauss

map. We begin by providing a characterization of pseudo-Riemannian sub-
manifolds in Hm−1

s (−1) with 1-type pseudo-hyperbolic Gauss map, and we
obtain the classification of maximal surfaces in Hm−1

2 (−1) ⊂ Em
3 with 1-type

pseudo-hyperbolic Gauss map. Then we investigate the submanifolds of
Hm−1

s (−1) with 1-type pseudo-hyperbolic Gauss map containing nonzero
constant component in its spectral decomposition.
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1. Introduction

The notion of a finite type submanifold of the Euclidean space was introduced
by B.-Y. Chen in the late 1970s. Since then the finite type submanifolds of
Euclidean spaces or pseudo-Euclidean spaces have been studied extensively, and
many important results have been obtained ([3, 4, 6, 7], etc.).

In [8], Chen and Piccinni extended the notion of finite type to differentiable
maps, in particular, to the Gauss map of submanifolds. A smooth map φ from
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a compact Riemannian manifold M into a Euclidean space Em is said to be of
finite type if φ can be expressed as a finite sum of Em-valued eigenfunctions of
the Laplacian ∆ of M , that is,

φ = φ0 + φ1 + φ2 + · · ·+ φk, (1.1)

where φ0 is a constant map, φ1, . . . , φk are non-constant maps such that ∆φi =
λpiφi, λpi ∈ R, i = 1, . . . , k. If λp1 , . . . , λpk

are mutually distinct, then the map
φ is said to be of k-type. If φ is an isometric immersion, then M is called a
submanifold of finite type (or of k-type) if φ is. In the spectral decomposition of
the immersion φ on a compact manifold, the constant vector φ0 is the center of
mass.

Chen and Piccinni characterized and classified compact hypersurfaces with
1-type Gauss map. They also provided the complete classification of minimal
surfaces of Sm−1(1) with 2-type Gauss map.

Let Sm−1(1) ⊂ Em denote the unit hypersphere of Em centered at the origin
Em. A spherical finite type map φ : Mn → Sm−1(1) ⊂ Em of a compact Rie-
mannian manifold Mn into Sm−1(1) is called mass-symmetric if the vector φ0 in
its spectral decomposition is the center of Sm−1(1) (which is the origin of Em).
Otherwise, φ is called non-mass-symmetric.

If Mn is not compact, we cannot make the spectral decomposition of a map on
Mn in general. However, it is possible to define the notion of a map of finite type
on a non-compact manifold [6, page 124]. When Mn is non-compact, the vector
φ0 in the spectral decomposition in (1.1) is not necessarily a constant vector.

Let x : Mn
t → Em

s be an oriented isometric immersion from a pseudo-
Riemannian n-manifold Mn

t into a pseudo-Euclidean m-space Em
s . Let G(n,m)

denote the Grassmannian manifold consisting of all oriented n-planes of Em
s . The

classical Gauss map ν : Mn
t → G(n, m) associated with x is a map which carries

each point p ∈ Mn
t to the oriented n-plane of Em

s obtained by parallel displace-
ment of the tangent space TpM

n
t to the origin of Em

s . Since G(n, m) can be
canonically imbedded in the vector space

∧n Em
s = EN

q for some integer q, the
classical Gauss map ν gives rise to a well-defined map from Mn

t into the pseudo-
Euclidean N -space EN

q , where N =
(
m
n

)
and

∧n Em
s is the vector space obtained

by the exterior products of n vectors in Em
s [17].

An isometric immersion from a Riemannian n-manifold Mn into an (m− 1)-
sphere Sm−1(1) can be viewed as one into a Euclidean m-space, and therefore the
Gauss map associated with such an immersion can be determined in the ordinary
sense. However, for the Gauss map to reflect the properties of the immersion into
a sphere, instead of into the Euclidean space, Obata modified the definition of
the Gauss map appropriately, [19].

Let x : Mn → M̃m be an isometric immersion from a Riemannian n-manifold
Mn into a simply-connected complete m-space M̃m of constant curvature. The
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generalized Gauss map in Obata’s sense is a map which assigns to each p ∈ Mn

the totally geodesic n-space tangent to x(Mn) at x(p). In the case M̃m = Sm(1)
( or resp. M̃m = Hm(−1)), the generalized Gauss map is also called the spherical
Gauss map ( or resp. the hyperbolic Gauss map).

Later, in [15], Ishihara studied the Gauss map in a generalized sense of pseudo-
Riemannian submanifolds of pseudo-Riemannian manifolds that also gives the
Gauss map in Obata’s sense.

Let M̃m−1
s denote the pseudo-sphere Sm−1

s (1) ⊂ Em
s or the pseudo-hyperbolic

space Hm−1
s (−1) ⊂ Em

s+1. Let x : Mn
t → M̃m−1

s be an oriented isometric immer-
sion from a pseudo-Riemannian n-manifold Mn

t with index t into the complete
pseudo-Riemannian (m− 1)-space M̃m−1

s of constant curvature. The generalized
Gauss map in Obata’s sense is a map associated to x, which assigns to each
p ∈ Mn

t a totally geodesic n-subspace of M̃m−1
s tangent to x(Mn

t ) at x(p). Since
the totally geodesic n-subspace of M̃m−1

s tangent to x(Mn
t ) at x(p) is the pseudo-

sphere Sn
t (1) or the pseudo-hyperbolic space Hn

t (−1), it determines a unique ori-
ented (n + 1)-plane containing Sn

t (1) or Hn
t (−1). Thus, the generalized Gauss

map in Obata’s sense can be extended to a map ν̂ of Mn
t into the Grassmannian

manifold G(n + 1,m) in the natural way, and the composition ν̃ of ν̂ followed
by the natural inclusion of G(n + 1,m) into a pseudo-Euclidean N -space EN

q ,
N =

(
m

n+1

)
, for some integer q is the pseudo-spherical Gauss map or the pseudo-

hyperbolic Gauss map according to M̃m−1
s = Sm−1

s (1) or M̃m−1
s = Hm−1

s (−1),
respectively.

In [9], Chen and Lue studied spherical submanifolds with finite type spherical
Gauss map, and they obtained some characterization and classification results.
In particular, they proved that Veronese surface and equilateral minimal torus
are the only minimal surfaces in Sm−1(1) with 2-type spherical Gauss map. As
it was explained in [9], the geometric behavior of the classical Gauss map differs
from that of the spherical Gauss map. For example, the classical Gauss map
of every compact Euclidean submanifold is mass-symmetric, but the spherical
Gauss map of a spherical compact submanifold is not mass-symmetric in general.

In [14], the first author and Bektaş determined submanifolds of the unit sphere
Sm−1(1) with non-mass-symmetric 1-type spherical Gauss map, and they also
classified surfaces in S3(1) with constant mean curvature and mass-symmetric
2-type spherical Gauss map.

There are many results obtained on the finite type submanifolds of hyper-
bolic spaces, pseudo-spheres and pseudo-hyperbolic spaces [4–6]. In [12], the first
author studied hypersurfaces of hyperbolic space with 1-type Gauss map, and
he provided the classification of hypersurfaces of a hyperbolic space canonically
imbedded in Lorentz–Minkowski space Em

1 with at most two distinct principal
curvatures and 1-type Gauss map.
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Recently, in [13], we investigated submanifolds of hyperbolic spaces with finite
type hyperbolic Gauss map. We characterized and classified submanifolds of the
hyperbolic m-space Hm(−1) with 1-type hyperbolic Gauss map, and we obtained
some results on hypersurfaces of Hm(−1) with 2-type hyperbolic Gauss map.

In this work, we study the pseudo-Riemannian submanifold of pseudo-hyper-
bolic space Hm−1

s (−1) ⊂ Em
s+1 with finite type pseudo-hyperbolic Gauss map. We

mainly obtain the following results:
1) An oriented pseudo-Riemannian submanifold Mn

t with index t of a pseudo-
hyperbolic space Hm−1

s (−1) ⊂ Em
s+1 has 1-type pseudo-hyperbolic Gauss map

if and only if Mn
t has a zero mean curvature in Hm−1

s (−1), a constant scalar
curvature and a flat normal bundle.

2) Let M be an oriented space-like surface in a pseudo-hyperbolic space
Hm−1

s (−1) ⊂ Em
s+1 for some values of s and m. Then, M has 1-type pseudo-

hyperbolic Gauss map if and only if M is congruent to an open part of maximal
surface H1(−2) × H1(−2) lying in H3

1(−1) ⊂ Hm−1
s (−1) ⊂ Em

s+1 or the totally
geodesic space H2(−1) in Hm−1

s (−1) ⊂ Em
s+1.

3) An oriented n-dimensional pseudo-Riemannian submanifold Mn
t with index

t and non-zero mean curvature vector Ĥ of a pseudo-hyperbolic spaceHm−1
s (−1) ⊂

Em
s+1 has a 1-type pseudo-hyperbolic Gauss map with nonzero constant compo-

nent in its spectral decomposition if and only if Mn
t is an open part of a non-flat,

non-totally geodesic and totally umbilical pseudo-Riemannian hypersurface of
a totally geodesic pseudo-hyperbolic space Hn+1

s∗ (−1) ⊂ Hm−1
s (−1) ⊂ Em

s+1 for
s∗ = t ≤ s or s∗ = t + 1 ≤ s, that is, Mn

t is an open part of Hn
t (−c) ⊂ Hn+1

t+1 (−1)
of curvature −c for c > 1 or Hn

t (−c) ⊂ Hn+1
t (−1) of curvature −c for 0 < c < 1

or Sn
t (c) ⊂ Hn+1

t (−1) of curvature c > 0.

2. Preliminaries

Let Em
s denote the pseudo-Euclidean m-space with the canonical pseudo-

Euclidean metric of index s given by

g0 =
m−s∑

i=1

dx2
i −

m∑

j=m−s+1

dx2
j , (2.1)

where (x1, x2, . . . , xm) is a rectangular coordinate system of Em
s . We put

Sm−1
s (x0, c) = {x = (x1, x2, . . . , xm) ∈ Em

s | 〈x− x0, x− x0〉 =
1
c

> 0},

Hm−1
s (x0,−c) = {x = (x1, x2, . . . , xm) ∈ Em

s+1| 〈x− x0, x− x0〉 = −1
c

< 0},

where 〈, 〉 is the indefinite inner product on Em
s and c is a positive real number.

Then Sm−1
s (x0, c) and Hm−1

s (x0,−c) are pseudo-Riemannian manifolds with index
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s and of constant curvatures c and−c called pseudo-sphere and pseudo-hyperbolic
space, respectively. For xm > 0 and s = 0, Hm−1(x0,−c) = Hm−1

0 (x0,−c) is
called a hyperbolic space of curvature −c centered at x0. The manifolds Em

s ,
Sm−1

s (c) and Hm−1
s (−c) are known as indefinite space forms. In particular, Em

1 ,
Sm−1

1 (c) and Hm−1
1 (−c) are called Minkowski space, de Sitter space and anti-de

Sitter space in relativity, respectively. In order to simplify our notation, we will
denote Sm

s (x0, 1), Hm
s (x0,−1) and Hm(x0,−1) by Sm

s (1), Hm
s (−1) and Hm(−1),

respectively, when x0 is the origin.
Let Mn

t be an oriented n-dimensional pseudo-Riemannian submanifold with
index t in an m-dimensional pseudo-Riemannian manifold M̃m

s with index s.
We choose a local orthonormal frame e1, . . . , en, en+1, . . . , em with signatures
εA = 〈eA, eA〉 = ∓1, A = 1, 2, . . . , m, on Mn

t such that the vectors e1, e2, . . . , en

are tangent to Mn
t , and the vectors en+1, . . . , em are normal to Mn

t . We use the
following convention on the ranges of indices:

1 ≤ A,B, C, . . . ,≤ m; 1 ≤ i, j, k, . . . ,≤ n; n + 1 ≤ r, s, t, . . . ,≤ m.

Let {ωA} be the dual 1-forms of {eA} defined by ωA(X) = 〈eA, X〉, and {ωAB} the
connection forms with ωAB + ωBA = 0 according to the chosen frame field {eA}.
Let ∇ and ∇̃ denote the Levi Civita connections on Mn

t and M̃m
t , respectively.

Therefore, the Gauss and Weingarten formulas are given as

∇̃ek
ei =

n∑

j=1

εjωij(ek)ej +
m∑

r=n+1

εrh
r
iker (2.2)

and

∇̃ek
es = −As(ek) +

m∑

r=n+1

εrωsr(ek)er, (2.3)

respectively, where hr
ik’s are the coefficients of the second fundamental form h, As

is the Weingarten map in direction es, and ωrs are the normal connection forms.
Also, the normal connection is defined by Deier =

∑m
s=n+1 εsωrs(ei)es.

The mean curvature vector H of Mn
t in M̃m

s is defined by

H =
1
n

m∑

r=n+1

εrtrArer =
1
n

∑

i,r

εiεrh
r
iier. (2.4)

The squared norm ‖h‖2 of the second fundamental form h of Mn
t in M̃m

s is defined
by

‖h‖2 =
n∑

i,j=1

m∑

r=n+1

εiεjεrh
r
ijh

r
ji. (2.5)
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The Codazzi and Ricci equations of Mn
t are defined by

hr
ij;k =hr

ik;j

hr
ij;k =ek(hr

ij)−
n∑

`=1

ε`

(
hr

i`ωj`(ek) + hr
j`ωi`(ek)

)
+

m∑

s=n+1

εsh
s
ijωsr(ek)

(2.6)

and

RD(ej , ek; er, es) = 〈[Aer , Aes ]ej , ek〉 =
n∑

i=1

εi

(
hr

kih
s
ij − hr

jih
s
ik

)
, (2.7)

where RD is the normal curvature tensor associated with the normal connection
D. If the ambient space M̃m

s is the pseudo-Euclidean space Em
s , then the scalar

curvature S of Mn
t is given by

S = n2 〈H, H〉 − ‖h‖2. (2.8)

If Mn
t is immersed in the pseudo-hyperbolic space Hm−1

s (−1) ⊂ Em
s+1, then (2.8)

gives
S = −n(n− 1) + n2〈Ĥ, Ĥ〉 − ‖ĥ‖2, (2.9)

where Ĥ and ĥ are the mean curvature vector and the second fundamental form
of Mn

t in Hm−1
s (−1). For Mn

t in Hm−1
s (−1) ⊂ Em

s+1 we also have

H = Ĥ + x, h(X, Y ) = ĥ(X, Y ) + 〈X, Y 〉x. (2.10)

A point on a pseudo-Riemannian submanifold Mn
t of a pseudo-Riemannian

manifold M̃m
s is called isotropic if, at each point p ∈ Mn

t , 〈h(X, X), h(X, X)〉 is
constant for any unit tangent vector X at p.

A pseudo-Riemannian hypersurface Mn
t of a pseudo-Riemannian manifold

M̃n+1
s is called proper if the shape operator Aξ in a unit normal direction ξ can

be expressed by a real diagonal matrix with respect to an orthonormal frame at
each point of Mn

t .
A proper hypersurface Mn

t in Hn+1
s (−1) is said to be isoparametric if it has

constant principal curvatures.

3. Pseudo-Hyperbolic Gauss Map

Let x : Mn
t −→ Hm−1

s (−1) ⊂ Em
s+1 be an oriented isometric immersion from a

pseudo-Riemannian n-manifold Mn
t with index t into a pseudo-hyperbolic (m−1)-

space Hm−1
s (−1) ⊂ Em

s+1. The pseudo-hyperbolic Gauss map in Obata’s sense
ν̂ : Mn

t −→ G(n + 1, m) of an immersion x into the Grassmannian manifold
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G(n + 1,m) is a map which to each point p of Mn
t assigns the great pseudo-

hyperbolic n-space Hn
t (−1) of Hm−1

s (−1) tangent to x(Mn
t ) at x(p). The great

pseudo-hyperbolic n-spacesHn
t (−1) in Hm−1

s (−1) are naturally identified with the
Grassmannian manifold of oriented (n+1)-planes through the center ofHm−1

s (−1)
in Em

s+1 since such (n + 1)-planes determine unique great pseudo-hyperbolic n-
spaces and vice versa.

On the other hand, since the Grassmannian manifold G(n + 1,m) can be
canonically imbedded in a pseudo-Euclidean space

∧n+1 Em
s+1

∼= EN
q obtained by

the exterior products of n + 1 vectors in Em
s+1 for some positive integer q, the

composite ν̃ of ν̂ followed by the natural inclusion of G(n + 1,m) in EN
q is also

called the pseudo-hyperbolic Gauss map where N =
(

m
n+1

)
.

For each point p ∈ Mn
t , let e1, . . . , en be an orthonormal basis of TpM

n
t

with the signatures εi = 〈ei, ei〉 = ∓1, i = 1, . . . , n. Then the n + 1 vectors
x(p), e1, . . . , en determine a linear (n + 1)-subspace in Em

s+1. The intersection
of this linear subspace and Hm−1

s (−1) is a totally geodesic pseudo-hyperbolic
n-space Hn

t (−1) determined by TpM
n
t .

Let Em
s+1 be a pseudo-Euclidean space with index s + 1. Let fi1 ∧ · · · ∧ fin+1

and gi1 ∧ · · · ∧ gin+1 be two vectors in
∧n+1 Em

s+1, where {f1, f2, . . . , fm} and
{g1, g2, . . . , gm} are two orthonormal bases of Em

s+1. Define an indefinite inner
product 〈〈, 〉〉 on

∧n+1 Em
s+1 by

〈〈
fi1 ∧ · · · ∧ fin+1 , gj1 ∧ · · · ∧ gjn+1

〉〉
= det(〈fi` , gjk

〉). (3.1)

Therefore, we can identify
∧n+1 Em

s+1 with some pseudo-Euclidean space EN
q for

some positive integer q where N =
(

m
n+1

)
[17].

For an oriented immersion x : Mn
t → Hm−1

s (−1) ⊂ Em
s+1, the map in Obata’s

sense can be considered as ν̂ : Mn
t → G(n + 1,m) which carries each p ∈ Mn

t to
ν̂(p) = (x∧e1∧e2∧· · ·∧en)(p). Since 〈〈ν̂, ν̂〉〉 = −ε1ε2 · · · εn = ∓1, the Grassman-
nian manifold G(n+1,m) is a submanifold of SN−1

q (1) ⊂ EN
q or HN−1

q−1 (−1) ⊂ EN
q .

Thus, considering the natural inclusion of G(n + 1,m) into EN
q , the pseudo-

hyperbolic Gauss map ν̃ associated with x is given by

ν̃ = x ∧ e1 ∧ e2 ∧ · · · ∧ en : Mn
t → G(n + 1,m) ⊂ EN

q . (3.2)

Now, by differentiating ν̃ from (3.2), we find

ei(ν̃) =
m−1∑

r=n+1

n∑

j=1

εrh
r
ijx ∧ e1 ∧ · · · ∧ er︸︷︷︸

j−th

∧ · · · ∧ en. (3.3)

Since ∇ek
ei =

∑n
j=1 εjωij(ek)ej , we have

(∇eiei)ν̃ =
m−1∑

r=n+1

n∑

j,k=1

εkεrωik(ei)hr
kjx ∧ e1 ∧ · · · ∧ er︸︷︷︸

j−th

∧ · · · ∧ en. (3.4)
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Considering that the Laplacian of ν̃ is defined by

∆ν̃ =
n∑

i=1

εi(∇eiei − eiei)ν̃, (3.5)

by a direct calculation, we obtain that

∆ν̃ = ‖ĥ‖2ν̃ + nĤ ∧ e1 ∧ · · · ∧ en

− n
n∑

k=1

x ∧ e1 ∧ · · · ∧Dek
Ĥ︸ ︷︷ ︸

k−th

∧ · · · ∧ en

+
n∑

j,k=1
j 6=k

m−1∑
r,s=n+1

s<r

εrεsR
r
sjkx ∧ e1 ∧ · · · ∧ es︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en,

(3.6)

where Rr
sjk = RD(ej , ek; er, es).

In [4], Chen studied non-compact finite type pseudo-Riemannian submanifold
of a pseudo-Riemannian sphere Sm−1

s (1) or a pseudo-hyperbolic space Hm−1
s (−1),

and the definition of spectral decomposition of an immersion was stated without
a constant component.

A smooth map φ : Mn
t → Sm−1

s (1) ⊂ Em
s (resp., φ : Mn

t → Hm−1
s (−1) ⊂

Em
s+1) from a pseudo-Riemannian manifold Mn

t into a pseudo-Riemannian sphere
Sm−1

s (1) (resp., into a pseudo-hyperbolic space Hm−1
s (−1)) is called of finite type

in Sm−1
s (1) (resp., in Hm−1

s (−1)) if the map φ has the spectral decomposition

φ = φ1 + · · ·+ φk, (3.7)

where φi’s are non-constant Em
s -valued maps on Mn

t such that ∆φi = λpiφi with
λpi ∈ R, i = 1, . . . , k. If the spectral decomposition (3.7) contains exactly k
non-constant components, the map φ is called of k-type, [12].

For a finite type map, one of the components in its spectral decomposition
may still be constant. A criteria for finite type maps was given in [13] as follows:

Theorem 3.1. Let φ : Mn
t −→ Em

s be a smooth map from a pseudo-Riemannian
manifold Mn

t with index t into a pseudo-Euclidean space Em
s , and let τ = div(dφ)

be the tension field of φ. Then,

(i) If there is a non-trivial polynomial Q such that Q(∆)τ = 0, then φ is either
of infinite type or of finite type with type number k 6 deg(Q) + 1;

(ii) If there is a non-trivial polynomial P with simple roots such that P (∆)τ = 0,
then φ is of finite type with type number k 6 deg(P ).
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A smooth map φ between two pseudo-Riemannian manifolds is said to be
harmonic if its tension field τ = div(dφ) vanishes identically. For a harmonic
pseudo-hyperbolic Gauss map we have the following.

Proposition 3.1. Let x : (Mn
t , g) −→ Hm−1

s (−1) ⊂ Em
s+1 be an isomet-

ric immersion from a pseudo-Riemannian n-manifold Mn
t with metric g into a

pseudo-hyperbolic space Hm−1
s (−1) ⊂ Em

s+1. Then we have the following:

(i) the Obata map ν̂ : (Mn
t , g) −→ G(n + 1,m) is a harmonic map if and only

if the immersion x : (Mn
t , g) −→ Hm−1

s (−1) has a zero mean curvature;

(ii) the pseudo-hyperbolic Gauss map ν̃ : (Mn
t , g) −→ EN

q with N =
(

m
n+1

)
and

for some positive integer q is a harmonic map if and only if Mn
t has a zero

mean curvature in Hm−1
s (−1), a flat normal bundle and the scalar curvature

S = −n(n− 1).

P r o o f. The proof of (i) is similar to that of Proposition 3.2 given in [9],
and the proof of (ii) comes from (2.9) and (3.6).

4. Submanifolds with 1-Type Pseudo-Hyperbolic Gauss Map

In this section, we examine submanifolds of a pseudo-hyperbolic space
Hm−1

s (−1) ⊂ Em
s+1 with 1-type pseudo-hyperbolic Gauss map ν̃.

If the pseudo-hyperbolic Gauss map ν̃ is of 1-type, then we have ∆ν̃ = λpν̃
from (3.7).

Theorem 4.1. A pseudo-Riemannian oriented submanifold Mn
t with index

t of a pseudo-hyperbolic space Hm−1
s (−1) ⊂ Em

s+1 has a 1-type pseudo-hyperbolic
Gauss map if and only if Mn

t has a zero mean curvature in Hm−1
s (−1), a constant

scalar curvature and a flat normal bundle.

P r o o f. Assume that a pseudo-Riemannian oriented submanifold Mn
t in

Hm−1
s (−1) has a 1-type pseudo-hyperbolic Gauss map ν̃ in Hm−1

s (−1), that is,
∆ν̃ = λpν̃ for some nonzero constant λp ∈ R. Therefore, from (3.6) we obtain
that ν̃ is of 1-type if and only if Ĥ = RD = 0, and ‖ĥ‖2 is a nonzero constant,
i.e., Mn

t has a zero mean curvature in Hm−1
s (−1), the normal bundle of Mn

t is
flat, and from (2.9) the scalar curvature is constant.

Corollary 4.2. Totally geodesic pseudo-Riemannian oriented submanifolds
of Hm−1

s (−1) ⊂ Em
s+1 have a harmonic pseudo-hyperbolic Gauss map which is of

1-type.
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Corollary 4.3. Let Mn
t be an n-dimensional pseudo-Riemannian oriented

hypersurface with index t in a pseudo-hyperbolic space Hn+1
s (−1) ⊂ En+2

s+1 . Then
Mn

t has a 1-type pseudo-hyperbolic Gauss map if and only if Mn
t has a zero mean

curvature in Hn+1
s (−1) and a constant scalar curvature.

Corollary 4.4. Isoparametric proper pseudo-Riemannian oriented hypersur-
faces of Hm−1

s (−1) ⊂ Em
s+1 with zero mean curvature in Hm−1

s (−1) have a 1-type
pseudo-hyperbolic Gauss map.

In [2], Zhen-qi and Xian-hua determined a space-like isoparametric hyper-
surface M in Hn+1

1 (−1) ⊂ En+2
2 . They showed that a space-like isoparametric

hypersurface M in Hn+1
1 (−1) can have at most two distinct principal curvatures.

Moreover, they showed that M is congruent to an open subset of the umbilical
hypersurface Hn(−c) ⊂ Hn+1

1 (−1) where c > 0 or the product of two hyperbolic
spaces

Hk(−c1)×Hn−k(−c2) = {(x, y) ∈ Ek+1
1 × En−k+1

1 : 〈x, x〉 = − 1
c1

, 〈y, y〉 = − 1
c2
},

where c1, c2 > 0.
In [11], Cheng gave the following corollary.

Corollary 4.5. Let M be a complete isoparametric maximal space-like hy-
persurface in an anti-de Sitter space Hn+1

1 (−c). Then M = Hn(−c) or M =
Hn1

(−n
n1c

)×Hn−n1
( −n

(n−n1)c

)
for (n > n1 ≥ 1).

Therefore, we obtain the following corollary using Corollary 4.3 and Corol-
lary 4.5.

Corollary 4.6. A totally geodesic hyperbolic space Hn(−1) and the product
hypersurface M = Hn1

(−n
n1c

) × Hn−n1
( −n

(n−n1)c

)
for (n > n1 ≥ 1) in Hn+1

1 (−1)
are the only maximal isoparametric hypersurfaces with 1-type pseudo-hyperbolic
Gauss map.

We need the connection forms of the following surface to be used later:

E x a m p l e 4.7. (Maximal space-like surface in H3
1(−1))

Let x : M = H1(−a−2)×H1(−b−2) −→ H3
1(−1) ⊂ E4

2 be an oriented isometric
immersion from the space-like surface M into the anti-de Sitter space H3

1(−1)
defined by

x(u, v) = (a sinhu, b sinh v, a coshu, b cosh v)

with a2 + b2 = 1. If we put e1 = 1
a

∂
∂u , e2 = 1

b
∂
∂v ,

e3 = (b sinhu,−a sinh v, b coshu,−a cosh v), e4 = x,
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then {e1, e2, e3, e4} form an orthonormal frame field on M in E4
2. A straightfor-

ward computation gives

ω12 = ω34 = 0, ω13 = − b

a
ω1, ω23 =

a

b
ω2, ω14 = −ω1, ω24 = −ω2. (4.1)

It follows from (4.1) that Ĥ = a2−b2

2ab e3, which implies that M is a maximal
surface if and only if a = b = 1√

2
. Therefore, H1(−2) × H1(−2) ⊂ H3

1(−1) ⊂ E4
2

is a maximal and flat surface, and hence H1(−2)×H1(−2) has a 1-type pseudo-
hyperbolic Gauss map by Theorem 4.1.

Theorem 4.8. Let M be a space-like oriented surface in a pseudo-hyperbolic
space Hm−1

s (−1) ⊂ Em
s+1 for some values of s and m. Then M has a 1-type

pseudo-hyperbolic Gauss map if and only if M is congruent to an open part of
maximal surface H1(−2) × H1(−2) lying in H3

1(−1) ⊂ Hm−1
s (−1) ⊂ Em

s+1 or the
totally geodesic space H2(−1) in Hm−1

s (−1) ⊂ Em
s+1.

P r o o f. Let M be a space-like oriented surface in a pseudo-hyperbolic
space Hm−1

s (−1) ⊂ Em
s+1 with 1-type pseudo-hyperbolic Gauss map. Then, from

Theorem 4.1, for t = 0, we obtain that M is a maximal surface in Hm−1
s (−1) with

constant scalar curvature and flat normal bundle. Thus, (2.9) yields that ‖ĥ‖2 is
constant.

Let x be the position vector of M in Em
s+1. Since M is maximal, we may

choose an orthonormal tangent frame {e1, e2} and an orthonormal normal frame
{e3, . . . , em−1, em = x} of M such that

A3 =
(

h3
11 0
0 −h3

11

)
, A4 =

(
0 h4

12

h4
12 0

)
, A5 = · · · = Am−1 = 0, Am = −I,

where I is the 2× 2 identity matrix. Hence we obtain that

‖ĥ‖2 = 2ε3(h3
11)

2 + 2ε4(h4
12)

2. (4.2)

On the other hand, as KD = −2h3
11h

4
12 = 0, we have either h3

11 = 0 or h4
12 = 0.

Case (a): h3
11 = 0. Then the first normal space of M is spanned by e4, and

hence M lies in a totally geodesic anti-de Sitter space H3
1(−1) ⊂ Hm−1

s (−1) or
a totally geodesic hyperbolic 3-space H3(−1) ⊂ Hm−1

s (−1). From (4.2), we have
‖ĥ‖2 = 2ε4(h4

12)
2, which implies that h4

12 is constant. It follows from the Codazzi
equation that ω12(ej)h4

12 = 0 for j = 1, 2, which gives that either ω12(ej) = 0 for
j = 1, 2 or h4

12 = 0.
Case (a.1): ω12(ej) = 0 for j = 1, 2. Then the Gaussian curvature K is zero.

On the other hand, from the Gauss equation we have

K = −1 + ε3 detA3 + ε4 detA4 = −1− ε4(h4
12)

2 = 0. (4.3)

Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 4 325
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Therefore, (h4
12)

2 = −ε4, which implies that ε4 = −1, and h4
12 = ∓1. That is, M

lies in H3
1(−1) ⊂ Hm−1

s (−1). Without loss of generality, we may take h4
12 = 1.

Therefore, for the maximal surface M we obtain

A4 =
(

0 1
1 0

)
.

By choosing a new orthonormal tangent frame {ē1, ē2}, we can have the shape
operator A4 as

A4 =
(

1 0
0 −1

)
.

Since M lies in a totally geodesic anti-de Sitter 3-space in H3
1(−1) ⊂ Hm−1

s (−1) ⊂
Em

s+1, we can assume that M is immersed in H3
1(−1) ⊂ E4

2 without loss of gener-
ality. Let {e1, e2, e3, e4 = x} be a local orthonormal frame on M in E4

2 such that
e1, e2 are tangent to M , and e3, e4 are normal to M . Since the normal connec-
tion of M is flat, we have ω34 = 0. In addition, as M is flat, we can take local
coordinates (u, v) on M with ω1 = du and ω2 = dv. So we have

ω12 = ω34 = 0, ω13 = −ω1, ω23 = ω2, ω14 = −ω1, ω24 = −ω2. (4.4)

Therefore, the connection forms ωAB of M coincide with the connection forms
of H1(−a−2) × H1(−b−2) ⊂ H3

1(−1) ⊂ E4
2 for a = b = 1√

2
given by (4.1). As a

consequence of the fundamental theorem of submanifolds, M is congruent to an
open part of H1(−2)×H1(−2) ⊂ H3

1(−1) ⊂ Hm−1
s (−1) ⊂ Em

s+1.
Case (a.2): h4

12 = 0 and ω12(ej) 6= 0 at least for one j = 1, 2. Thus, we have
A3 = A4 = · · · = Am−1 = 0 and Am = −I, and the Gaussian curvature K = −1.
So, M is an open part of hyperbolic space H2(−1) in Hm−1

s (−1) ⊂ Em
s+1.

Case (b): h4
12 = 0. By a similar argument given in Case (a), it can be easily

seen that M is an open part of H1(−2)×H1(−2) ⊂ H3
1(−1) ⊂ Hm−1

s (−1) ⊂ Em
s+1

or an open part of the hyperbolic space H2(−1) in Hm−1
s (−1) ⊂ Em

s+1.
The converse follows from Corollary 4.2 and Example 4.7.

We have stated before that a map may have a nonzero constant component
in its spectral decomposition. We will investigate submanifolds of a pseudo-
hyperbolic space Hm−1

s (−1) ⊂ Em
s+1 with 1-type pseudo-hyperbolic Gauss map

having a nonzero constant component in its spectral decomposition.
Now we provide the example to be used in the proof of the next theorem.

E x a m p l e 4.9. (Space-like surface with flat normal bundle and zero mean
curvature vector Ĥ in H4

1(−1) ⊂ E5
2)

Let x : M −→ H4
1(−1) ⊂ E5

2 be an oriented space-like isometric immersion
from a surface M into an anti-de Sitter space H4

1(−1) ⊂ E5
2 defined in [10] by

x(u, v) = (1, coshu sinh v, sinhu, coshu cosh v, 1). (4.5)
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If we put e1 = ∂
∂u , e2 = 1

cosh u
∂
∂v ,

e3 = (
3
2
, coshu sinh v, sinhu, coshu cosh v,

1
2
)

and
e4 = (

1
2
, coshu sinh v, sinhu, coshu cosh v,−1

2
), e5 = x,

then {ei} for i = 1, . . . , 5 form an orthonormal frame field on M . A straightfor-
ward computation gives

h3
11 = h3

22 = h4
11 = h4

22 = −1, h3
12 = h4

12 = 0,

ω12(e1) = 0, ω12(e2) = tanhu, ω34 = 0,

‖ĥ‖2 = 0, Ĥ = e4 − e3 = (−1, 0, 0, 0,−1).

(4.6)

If we use (4.6), then equation (3.6) reduces to

4ν̃ = 2Ĥ ∧ e1 ∧ e2 = −2e3 ∧ e1 ∧ e2 + 2e4 ∧ e1 ∧ e2. (4.7)

If we put
c̃ = ν̃ − e3 ∧ e1 ∧ e2 + e4 ∧ e1 ∧ e2 (4.8)

and
ν̃p = e3 ∧ e1 ∧ e2 − e4 ∧ e1 ∧ e2, (4.9)

then we have ν̃ = c̃ + ν̃p. It can be shown that ei(c̃) = 0 for i = 1, 2, i.e., c̃ is a
constant vector. Using (4.7), (4.8) and (4.9), we arrive at ∆ν̃p = −2ν̃p. Thus, M
has a 1-type pseudo-hyperbolic Gauss map with nonzero constant component in
its spectral decomposition.

Theorem 4.10. Let M be a space-like oriented surface in H4
1(−1) ⊂ E5

2 with
zero mean curvature vector Ĥ in an anti-de Sitter space H4

1(−1). Then M has
a 1-type pseudo-hyperbolic Gauss map with nonzero constant component in its
spectral decomposition if and only if M is an open part of the surface defined
by (4.5) which is of curvature −1 and totally umbilical with constant zero mean
curvature vector.

P r o o f. Assume that x : M −→ H4
1(−1) ⊂ E5

2 is an oriented isometric
immersion from a space-like surface M into H4

1(−1), and the pseudo-hyperbolic
Gauss map ν̃ of x is of 1-type with nonzero constant component in its spectral
decomposition. Then we have 4ν̃ = λp(ν̃ − c̃) for a real number λp 6= 0 and for
some constant vector c̃, from which we get

(∆ν̃)i = λp(ν̃)i, (4.10)
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where (.)i = ei(.) and

ei(ν̃) =
4∑

r=3

2∑

k=1

εrh
r
ikx ∧ er︸︷︷︸

k−th

∧e2. (4.11)

By a long computation we obtain that

ei(∆ν̃) = (‖ĥ‖2)iν̃ + ‖ĥ‖2
4∑

r=3

2∑

k=1

εrh
r
ikx ∧ er︸︷︷︸

k−th

∧e2 + 4DeiĤ ∧ e1 ∧ e2

+ 2
4∑

r=3

2∑

k=1

εrh
r
ikĤ ∧ er︸︷︷︸

k−th

∧e2 + 2
2∑

k=1

δikĤ ∧ x︸︷︷︸
k−th

∧e2

− 2
2∑

j,k=1
j 6=k

ωjk(ei)x ∧ ek︸︷︷︸
j−th

∧Dek
Ĥ︸ ︷︷ ︸

k−th

−2
2∑

j,k=1
j 6=k

4∑

r=3

εrh
r
ijx ∧ er︸︷︷︸

j−th

∧Dek
Ĥ︸ ︷︷ ︸

k−th

+ 2
2∑

k=1

〈
ADek

Ĥ(ei), ek

〉
ν̃ − 2

2∑

k=1

x ∧DeiDek︸ ︷︷ ︸
k−th

Ĥ ∧ e2

+ 2ε3ε4

(
ei(R4

321)x + R4
321ei) ∧ e3 ∧ e4 − 2ε3ε4R

4
321

2∑

k=1

h3
ikx ∧ ek ∧ e4

− 2ε3ε4R
4
321

2∑

k=1

h4
ikx ∧ e3 ∧ ek. (4.12)

Since M has a zero mean curvature vector Ĥ in H4
1(−1), then 〈Ĥ, Ĥ〉 = 0

and Ĥ 6= 0. Considering (4.10) and (4.11), the term DeiĤ ∧ e1 ∧ e2 appears only
in ei(∆ν̃), not in ei(ν̃), and thus we have DeiĤ = 0. Since the co-dimension of
M in H4

1(−1) is two, and Ĥ is parallel, then RD = 0, i.e., the normal bundle is
flat. So we can choose {e1, e2} such that the shape operators A3, A4 are both
diagonal. As DĤ = 0 and RD = 0, equation (4.12) reduces to

ei(∆ν̃) = (‖ĥ‖2)iν̃ + ‖ĥ‖2
4∑

r=3

2∑

k=1

εrh
r
ikx ∧ er︸︷︷︸

k−th

∧e2

+ 2
4∑

r=3

2∑

k=1

εrh
r
ikĤ ∧ er︸︷︷︸

k−th

∧e2 + 2Ĥ ∧ x︸︷︷︸
i−th

∧e2. (4.13)

Now, using (4.11) and (4.13), from (4.10) we obtain that ‖ĥ‖2
i = 0, i.e., ‖ĥ‖2 is

constant, which implies that the scalar curvature is constant because of (2.9).
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On the other hand, we have

‖ĥ‖2
4∑

r=3

2∑

k=1

εrh
r
ikx ∧ er︸︷︷︸

k−th

∧e2 + 2Ĥ ∧ x︸︷︷︸
i−th

∧e2 = λp

4∑

r=3

2∑

k=1

εrh
r
ikx ∧ er︸︷︷︸

k−th

∧e2

(4.14)
and

2∑

k=1

4∑

r=3

εrh
r
ikĤ ∧ er︸︷︷︸

k−th

∧e2 = 0. (4.15)

Since h3
12 = h4

12 = 0, from (4.15) we get

trA4h
3
ii − trA3h

4
ii = 0 (4.16)

for i = 1, 2. Considering Ĥ = 0, we can take Ĥ = ε3ae3 + ε4be4, where a =
1
2trA3, b = 1

2trA4 and a2 = b2. That is, b = ε∗a with ε∗ = ±1. Therefore,
Ĥ = a(ε3e3 + ε∗ε4e4). Without loss of generality, if we take ε3 = 1, ε4 = −1,
then Ĥ = a(e3 − ε∗e4). As Ĥ is parallel, DĤ = 0 implies that a is a nonzero
constant.

Now, from (4.16) we have a(h3
ii − ε∗h4

ii) = 0, i = 1, 2, i.e., h3
ii = ε∗h4

ii for
i = 1, 2. These give us ‖ĥ‖2 = 0. So the scalar curvature S = −2 and the
Gaussian curvature K = −1. Hence, from (4.14) we find λph

3
ii = −2a and

λph
4
ii = −2a for i = 1, 2, which imply that hr

ii’s are constant and e3, e4 are
umbilical. Thus, M is a totally umbilical surface in H4

1(−1) ⊂ E5
2. Taking the

sum of λph
3
11 = −2a and λph

3
22 = −2a, we obtain that a(λp + 2) = 0 that

gives λp = −2. So, we have h3
11 = h3

22 = ε∗h4
11 = ε∗h4

22, and hence A3 = aI,
A4 = ε∗aI. Now it is easy to see that ∇̃eiĤ = 0, that is, Ĥ = a(e3 − ε∗e4) is a
constant vector. It follows from the proof of Theorem 8.1 given in [10] that M is
congruent to the surface defined by (4.5) which is totally umbilical with constant
zero mean curvature vector and of curvature −1.

The converse of the proof follows from Example 4.9.

Lemma 4.11. Let Mn
t be a pseudo-Riemannian hypersurface with index t in

Hn+1
s (−1) ⊂ En+2

s+1 . Then we have

∆(en+1 ∧ e1 ∧ · · · ∧ en) = −n(α̂ν̃ + en+1 ∧ e1 ∧ · · · ∧ en), (4.17)

where α̂ is the mean curvature of Mn
t in Hn+1

s (−1).

P r o o f. Let Mn
t be a pseudo-Riemannian hypersurface with index t in

Hn+1
s (−1) ⊂ En+2

s+1 . Let e1, e2, . . . , en+1, en+2 be a local orthonormal frame on
Mn

t in En+2
s+1 with signatures εA = 〈eA, eA〉 = ∓1 for A = 1, 2, . . . , n + 2 such that
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e1, e2, . . . , en are tangent to Mn
t , and en+1, en+2 = x are normal to Mn

t , where x
is the position vector of Mn

t . As Mn
t is a hypersurface in Hn+1

s (−1) ⊂ En+2
s+1 , the

normal vector en+1 in Hn+1
s (−1) is parallel, i.e., Den+1 = 0.

Let us put ν̄ = en+1 ∧ e1 ∧ · · · ∧ en. By differentiating ν̄, we obtain

eiν̄ = εien+1 ∧ e1 ∧ · · · ∧ ei−1 ∧ x ∧ ei+1 ∧ · · · ∧ en. (4.18)

Since ∇eiei =
∑

j εjωij(ei)ej and Den+1 = 0, we have

(∇eiei)ν̄ =
n∑

j=1

ωij(ei)en+1 ∧ e1 ∧ · · · ∧ x︸︷︷︸
j−th

∧ · · · ∧ en. (4.19)

Differentiating eiν̄ in (4.18), we get

eiei(ν̄) =εiν̄ + hn+1
ii ν̃ −

n∑
j=1
i6=j

ωji(ei)en+1 ∧ e1 ∧ · · · ∧ x︸︷︷︸
j−th

∧ · · · ∧ en. (4.20)

Using nα̂ = trAn+1 =
∑

i εih
n+1
ii , we obtain that

∆ν̄ = −
∑

i

εi(eiei −∇eiei)ν̄

= −nα̂ν̃ − nν̄ +
n∑

i,j=1

(ωij(ei) + ωji(ei))en+1 ∧ e1 ∧ · · · ∧ x︸︷︷︸
j−th

∧ · · · ∧ en,

(4.21)

which gives (4.17) as ωji(ei) + ωij(ei) = 0.

Theorem 4.12. An n-dimensional pseudo-Riemannian oriented submanifold
Mn

t with index t and non-zero mean curvature vector Ĥ of a pseudo-hyperbolic
space Hm−1

s (−1) ⊂ Em
s+1 has a 1-type pseudo-hyperbolic Gauss map with nonzero

constant component in its spectral decomposition if and only if Mn
t is an open part

of a non-flat, non-totally geodesic and totally umbilical pseudo-Riemannian hyper-
surface of the totally geodesic pseudo-hyperbolic space Hn+1

s∗ (−1) ⊂ Hm−1
s (−1) ⊂

Em
s+1 for s∗ = t ≤ s or s∗ = t + 1 ≤ s, that is, Mn

t is an open part of
Hn

t (−c) ⊂ Hn+1
t+1 (−1) of curvature −c for c > 1 or Hn

t (−c) ⊂ Hn+1
t (−1) of curva-

ture −c for 0 < c < 1 or Sn
t (c) ⊂ Hn+1

t (−1) of curvature c > 0.

P r o o f. Let x : Mn
t −→ Hm−1

s (−1) ⊂ Em
s+1 be an oriented isometric im-

mersion from a pseudo-Riemannian manifold Mn
t into a pseudo-hyperbolic space

Hm−1
s (−1) ⊂ Em

s+1. Assume that Mn
t has a non-zero mean curvature vector Ĥ in
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Hm−1
s (−1) and a 1-type pseudo-hyperbolic Gauss map with nonzero component

in its spectral decomposition. Then we have ∆ν̃ = λp(ν̃ − c̃) for a real number
λp 6= 0 and some constant vector c̃ ∈ EN

q . So, we have

(∆ν̃)i = λp(ν̃)i, (4.22)

where (·)i = ei(·). By a direct long computation, from (4.22), we obtain that

ei(∆ν̃) = (‖ĥ‖2)iν̃ + ‖ĥ‖2
m−1∑

r=n+1

n∑

k=1

εrh
r
ik x ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en

+2nDeiĤ ∧ e1 ∧ · · · ∧ en + n
n∑

k=1

m−1∑

r=n+1

εrh
r
ikĤ ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en

+ n
n∑

k=1

εiδikĤ ∧ e1 ∧ · · · ∧ x︸︷︷︸
k−th

∧ · · · ∧ en

− n

n∑
j,k=1
j 6=k

εkωjk(ei)x ∧ e1 ∧ · · · ∧ ek︸︷︷︸
j−th

∧ · · · ∧Dek
Ĥ︸ ︷︷ ︸

k−th

∧ · · · ∧ en

− n

n∑
j,k=1
j 6=k

m−1∑

r=n+1

εrh
r
ij x ∧ e1 ∧ · · · ∧ er︸︷︷︸

j−th

· · · ∧Dek
Ĥ︸ ︷︷ ︸

k−th

∧ · · · ∧ en

+ n
n∑

k=1

εk

〈
ADek

Ĥ(ei), ek

〉
ν̃ − n

n∑

k=1

x ∧ e1 ∧ · · · ∧DeiDek
Ĥ︸ ︷︷ ︸

k−th

∧ · · · ∧ en

+
m−1∑

r,s=n+1
s<r

n∑
j,k=1
j 6=k

εrεs{ei(Rr
sjk)x + Rr

sjkei} ∧ e1 ∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en

+
m−1∑

r,s=n+1
s<r

n∑
j,k,`=1
j,k, 6̀=

εrεsR
r
sjk{

n∑

h=1

εhω`h(ei)x ∧ e1 ∧ · · · ∧ eh︸︷︷︸
`−th

∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧

er︸︷︷︸
j−th

∧ · · · ∧ en +
m−1∑

t=n+1

εth
t
i`x ∧ e1 ∧ · · · ∧ et︸︷︷︸

`−th

∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en}

−
m−1∑

r,s=n+1

n∑
j,k,`=1

j 6=k

εrεsε`R
r
sjkh

s
i`x ∧ e1 ∧ · · · ∧ e`︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en

Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 4 331
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+
m−1∑

r,s,t=n+1

n∑
j,k=1
j 6=k

εrεsεtR
r
sjkωst(ei)x ∧ e1 ∧ · · · ∧ et︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en.

(4.23)

Case (a): Ĥ = 0. Then equation (4.23) becomes

ei(∆ν̃) = (‖ĥ‖2)iν̃ + ‖ĥ‖2
m−1∑

r=n+1

n∑

k=1

εrh
r
ik x ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en

+
m−1∑

r,s=n+1
s<r

n∑
j,k=1
j 6=k

εrεs{ei(Rr
sjk)x + Rr

sjkei} ∧ e1 ∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en

+
m−1∑

r,s=n+1
s<r

n∑
j,k,`=1
j,k, 6̀=

εrεsR
r
sjk{

n∑

h=1

εhω`h(ei)x ∧ e1 ∧ · · · ∧ eh︸︷︷︸
`−th

∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en +
m−1∑

t=n+1

εth
t
i`x ∧ e1 ∧ · · · ∧ et︸︷︷︸

`−th

∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en}

−
m−1∑

r,s=n+1

n∑
j,k,`=1

j 6=k

εrεsε`R
r
sjkh

s
i`x ∧ e1 ∧ · · · ∧ e`︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en

+
m−1∑

r,s,t=n+1

n∑
j,k=1
j 6=k

εrεsεtR
r
sjkωst(ei)x ∧ e1 ∧ · · · ∧ et︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en.

(4.24)

By comparing (3.3), (4.22) and (4.24), we get ‖ĥ‖2
i = Rr

sjk = 0. So, Mn
t

has a flat normal bundle, and ‖ĥ‖2 is constant. On the other hand, the scalar
curvature is constant by (2.9). Thus, Theorem 4.1 implies that Mn

t has the 1-
type pseudo-hyperbolic Gauss map ν̃ with c̃ = 0. This is a contradiction, and
thus Ĥ 6= 0.

Case (b): Ĥ 6= 0. We observe that the term DeiĤ ∧ e1 ∧ · · · ∧ en appears
only in (∆ν̃)i, not in ei(ν̃). Hence, considering (3.3), (4.22) and (4.23), we obtain
that DĤ = 0. Then Mn

t has a nonzero parallel mean curvature vector Ĥ in

332 Journal of Mathematical Physics, Analysis, Geometry, 2016, vol. 12, No. 4



On Submanifolds of Pseudo-Hyperbolic Space...

Hm−1
2 (−1). In this case, (4.23) becomes

ei(∆ν̃) = (‖ĥ‖2)iν̃ + ‖ĥ‖2
m−1∑

r=n+1

n∑

k=1

εrh
r
ik x ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en

+ n
n∑

k=1

εiδikĤ ∧ e1 ∧ · · · ∧ x︸︷︷︸
k−th

∧ · · · ∧ en

+ n
n∑

k=1

m−1∑

r=n+1

εrh
r
ikĤ ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en

+
m−1∑

r,s=n+1
s<r

n∑
j,k=1
j 6=k

εrεs{ei(Rr
sjk)x + Rr

sjkei} ∧ e1 ∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en

+
m−1∑

r,s=n+1
s<r

n∑
j,k,`=1
j,k, 6̀=

εrεsR
r
sjk{

n∑

h=1

εhω`h(ei)x ∧ e1 ∧ · · · ∧ eh︸︷︷︸
`−th

∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en +
m−1∑

t=n+1

εth
t
i`x ∧ e1 ∧ · · · ∧ et︸︷︷︸

`−th

∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en}

−
m−1∑

r,s=n+1

n∑
j,k,`=1

j 6=k

εrεsε`R
r
sjkh

s
i`x ∧ e1 ∧ · · · ∧ e`︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en

+
m−1∑

r,s,t=n+1

n∑
j,k=1
j 6=k

εrεsεtR
r
sjkωst(ei)x ∧ e1 ∧ · · · ∧ et︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en.

(4.25)

From (3.3), (4.22) and (4.25), we get ‖ĥ‖2
i = 0, that is, ‖ĥ‖2 is constant, and

also from (2.9), the scalar curvature of Mn
t is constant. On the other hand,

considering (3.3), (4.22) and (4.25), we have

‖ĥ‖2
m−1∑

r=n+1

n∑

k=1

εrh
r
ikx ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en

+ n
n∑

k=1

εiδikĤ ∧ e1 ∧ · · · ∧ x︸︷︷︸
k−th

∧ · · · ∧ en
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−
m−1∑

r,s=n+1

n∑
j,k,`=1

j 6=k

εrεsε`R
r
sjkh

s
i`x ∧ e1 ∧ · · · ∧ e`︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en

= λp

m−1∑

r=n+1

n∑

k=1

εrh
r
ikx ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en (4.26)

and

n
n∑

k=1

m−1∑

r=n+1

εrh
r
ikĤ ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en

+
m−1∑

r,s=n+1
s<r

n∑
j,k=1
j 6=k

εrεsR
r
sjkei ∧ e1 ∧ · · · ∧ es︸︷︷︸

k−th

∧ · · · ∧ er︸︷︷︸
j−th

∧ · · · ∧ en = 0.

(4.27)

As Ĥ is non-zero, we may put Ĥ = εn+1α̂en+1, where nα̂ =
∑n

i=1 εih
n+1
ii . From

(4.27) we have Rr
sjk = 0 for r, s ≥ n+2 and j, k = 1, . . . , n. Also, as DĤ = 0, it is

seen that Rn+1
sjk = 0. Thus the normal bundle of Mn

t is flat. Therefore, equation
(4.27) is reduced to

n
n∑

k=1

m−1∑

r=n+2

εrεn+1α̂hr
ik en+1 ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en = 0. (4.28)

This equation implies that hr
ik = 0 for r ≥ n+2 and i, k = 1, . . . , n. Thus, the first

normal space Imh is spanned by en+1, i.e., from Erbacher’s Reduction Theorem,
Mn

t lies in a totally geodesic pseudo-hyperbolic space Hn+1
s∗ (−1) ⊂ Hm−1

s (−1) ⊂
Em

s+1 for s∗ = t ≤ s or s∗ = t + 1 ≤ s.
Now, using equation (4.26), we obtain that

(
‖ĥ‖2 − λp

)
hn+1

ik = nα̂εiδik (4.29)

for i, k = 1, . . . , n. It is seen that λp 6= ‖ĥ‖2 as α̂ 6= 0. If we take the sum of
(4.29) for i = k and i from 1 to n, then we get nα̂(‖ĥ‖2 − n − λp) = 0, that is,
0 6= λp = ‖ĥ‖2 − n. Hence hn+1

ik = α̂εiδik from (4.29), i.e., the shape operator of
Mn

t is diagonal. Moreover, λp = ‖ĥ‖2 − n = n(εn+1α̂
2 − 1) 6= 0, and from (2.9)

we have S = n(n− 1)(εn+1α̂
2 − 1) = (n− 1)λp, that is, Mn

t is non-flat.
Consequently, Mn

t is an open part of a non-flat, non-totally geodesic and
totally umbilical pseudo-Riemannian hypersurface of a totally geodesic pseudo-
hyperbolic space Hn+1

s∗ (−1) ⊂ Hm−1
s (−1) ⊂ Em

s+1 for s∗ = t ≤ s or s∗ = t+1 ≤ s,
that is, following [1], Mn

t is an open part of Hn
t (−c) ⊂ Hn+1

t+1 (−1) of curvature
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−c for c > 1 or Hn
t (−c) ⊂ Hn+1

t (−1) of curvature −c for 0 < c < 1 or Sn
t (c) ⊂

Hn+1
t (−1) of the curvature c > 0.

Conversely, assume that Mn
t is an open part of a non-flat, non-totally geodesic

and totally umbilical pseudo-Riemannian hypersurface of a totally geodesic pseu-
do-hyperbolic space Hn+1

s∗ (−1) ⊂ Hm−1
s (−1) ⊂ Em

s+1 for s∗ = t ≤ s or s∗ =
t + 1 ≤ s. Now we suppose that Mn

t is immersed in Hn+1
s∗ (−1) ⊂ En+2

s∗+1. Let
e1, . . . , en+1, en+2 = x be a local orthonormal frame on Mn

t in En+2
s∗+1 such that

e1, . . . , en are tangent to Mn
t , and en+1, en+2 = x are normal to Mn

t , where x
is the position vector of Mn

t . Since Mn
t is a pseudo-Riemannian hypersurface of

Hn+1
s∗ (−1), the normal bundle of Mn

t in En+2
s∗+1 is flat, and the mean curvature

vector Ĥ = εn+1α̂en+1 is parallel in En+2
s∗+1 because Mn

t has the nonzero constant
mean curvature α̂ in Hn+1

s∗ (−1). Also, as Mn
t is totally umbilical, we get ‖ĥ‖2 =

εn+1nα̂2, and hence, from (3.6) we have

∆ν̃ = εn+1nα̂(α̂ν̃ + en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en). (4.30)

We put

c̃ =
−1

εn+1α̂2 − 1
(ν̃ + εn+1α̂en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en)

and
ν̃p =

εn+1α̂

εn+1α̂2 − 1
(α̂ν̃ + en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en),

where εn+1α̂
2 − 1 6= 0 because Mn

t is a non-flat hypersurface in Hn+1
s∗ (−1) (note

that for a flat totally umbilical hypersurface in Hn+1
s∗ (−1), εn+1 = 1 and α̂2 = 1),

then we have ν̃ = c̃ + ν̃p. As α̂ is a constant, it is easily seen that ei(c̃) = 0,
i = 1, . . . , n, i.e., c̃ is a constant vector. Using (4.17) and (4.30), from a direct
computation we obtain that ∆ν̃p = n(εn+1α̂

2 − 1)ν̃p. Therefore, the pseudo-
hyperbolic Gauss map ν̃ is of 1-type with nonzero constant component in its
spectral decomposition.

We have the following corollaries.

Corollary 4.13. A hyperbolic space Hn(−c) of curvature −c for c > 1 in the
anti-de Sitter space Hn+1

1 (−1) ⊂ En+2
2 is the only space-like hypersurface with

1-type pseudo-hyperbolic Gauss map having a nonzero constant component in its
spectral decomposition.

Corollary 4.14. An anti-de Sitter space Hn
1 (−c) of curvature −c for c > 1 in

the pseudo-hyperbolic space Hn+1
2 (−1) ⊂ En+2

3 is the only Lorentzian hypersurface
with 1-type pseudo-hyperbolic Gauss map having a nonzero constant component
in its spectral decomposition.
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