Notes on Starlike log-Harmonic Functions of Order α

Melike Aydoğan

Department of Mathematics
Işık University, Meşrutiyet Koyu
Şile İstanbul, Turkey
melike.aydogan@isikun.edu.tr

Emel Yavuz Duman

Department of Mathematics and Computer Science İstanbul Kültür University İstanbul, Turkey e.yavuz@iku.edu.tr

Shigeyoshi Owa

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502, Japan
shige21@ican.zaq.ne.jp

Abstract

For log-harmonic functions $f(z)=zh(z)\overline{g(z)}$ in the open unit disk \mathbb{U} , two subclasses $H^*_{LH}(\alpha)$ and $G^*_{LH}(\alpha)$ of $S^*_{LH}(\alpha)$ consisting of all starlike log-harmonic functions of order α ($0 \le \alpha < 1$) are considered. The object of the present paper is to discuss some coefficient inequalities for h(z) and g(z).

Mathematics Subject Classification: Primary 30C55, Secondary 30C45

Keywords: Analytic, log-harmonic, starlike, coefficient inequality.

1 Introduction

Let H be the class of functions which are analytic in the open unit disc $\mathbb{U} = \{z \in C : |z| < 1\}$. A log-harmonic function f(z) is a solution of the non-linear elliptic partial differential equation

(1.1)
$$\frac{\overline{f_{\overline{z}}}}{\overline{f}} = w(z)\frac{f_z}{f},$$

where $w(z) \in H$ satisfies |w(z)| < 1 $(z \in \mathbb{U})$ and is said to be the second dilatation, and

(1.2)
$$f_z = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad f_{\overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

Let a function f(z) given by

$$(1.3) f(z) = zh(z)\overline{g(z)}$$

with $0 \notin hg(\mathbb{U})$ be log-harmonic function in \mathbb{U} , where $h(z) \in H$ and $g(z) \in H$. Then f(z) is said to be starlike log-harmonic function of order α if it satisfies

(1.4)
$$\frac{\partial(\arg f(re^{i\theta}))}{\partial\theta} = \operatorname{Re}\left(\frac{zf_z - \overline{z}f_{\overline{z}}}{f}\right) > \alpha \quad (z \in \mathbb{U})$$

for some real α ($0 \le \alpha < 1$). We denote by $S_{LH}^*(\alpha)$ all starlike log-harmonic functions f(z) of order α in \mathbb{U} .

The class $S_{LH}^*(\alpha)$ was studied by Abdulhadi and Muhanna [4], and Polatoğlu and Deniz [6]. Furthermore, the classes of univalent log-harmonic functions have been studied by Abdulhadi [1], [2], and Abdulhadi and Hengartner [3].

2 Coefficient Inequalities for h(z)

In order to consider our problem, we have to introduce the following subclass $H_{LH}^*(\alpha)$ of $S_{LH}^*(\alpha)$. A function $f(z) = zh(z)\overline{g(z)} \in S_{LH}^*(\alpha)$ is said to be in a class $H_{LH}^*(\alpha)$ if it satisfies

(2.1)
$$h(z) = h(0) + \sum_{n=1}^{\infty} a_n z^n \quad (h(0) > 0)$$

with $a_n = |a_n| e^{i(n\theta + \pi)}$ $(\theta \in \mathbb{R})$.

Now we derive

Theorem 2.1. If $f = zh(z)\overline{g(z)} \in H_{LH}^*(\alpha)$ with

(2.2)
$$\beta_1 < \min_{z \in \mathbb{U}} \operatorname{Re} \left(\frac{zg'(z)}{g(z)} \right) < 0,$$

then

(2.3)
$$\sum_{n=1}^{\infty} (n+1-\alpha-\beta_1) |a_n| \le (1-\alpha-\beta_1)h(0).$$

Proof. Note that $f = zh(z)\overline{g(z)} \in H_{LH}^*(\alpha) \subset S_{LH}^*(\alpha)$ satisfies

$$\frac{\partial}{\partial \theta} (\arg f(re^{i\theta})) = \operatorname{Re} \left(\frac{zf_z - \overline{z}f_{\overline{z}}}{f} \right)$$

$$= \operatorname{Re} \left(1 + \frac{zh'(z)}{h(z)} - \frac{zg'(z)}{g(z)} \right) > \alpha \quad (z \in \mathbb{U}).$$

This gives us that

(2.4)
$$\operatorname{Re}\left(\frac{zh'(z)}{h(z)}\right) = \operatorname{Re}\left(\frac{\sum_{n=1}^{\infty} n a_n z^n}{h(0) + \sum_{n=1}^{\infty} a_n z^n}\right)$$
$$= \operatorname{Re}\left(\frac{-\sum_{n=1}^{\infty} n |a_n| e^{in\theta} z^n}{h(0) - \sum_{n=1}^{\infty} |a_n| e^{in\theta} z^n}\right)$$
$$> \operatorname{Re}\left(\alpha - 1 + \frac{zg'(z)}{g(z)}\right)$$

$$> \alpha + \beta_1 - 1$$

for all $z \in \mathbb{U}$.

Let us consider a point z such that $z=|z|\,e^{-i\theta}\in\mathbb{U}.$ Then (2.4) becomes that

(2.5)
$$\operatorname{Re}\left(\frac{zh'(z)}{h(z)}\right) = \frac{-\sum_{n=1}^{\infty} n|a_n||z|^n}{h(0) - \sum_{n=1}^{\infty} |a_n||z|^n} > \alpha + \beta_1 - 1 \quad (z \in \mathbb{U}).$$

Letting $|z| \to 1^-$, we obtain that

$$-\sum_{n=1}^{\infty} n |a_n| \ge (\alpha + \beta_1 - 1) \left(h(0) - \sum_{n=1}^{\infty} |a_n| \right),$$

that is, that

$$\sum_{n=1}^{\infty} (n+1-\alpha-\beta_1) |a_n| \le (1-\alpha-\beta_1)h(0).$$

Example 2.2. Let us consider a function $f(z) = zh(z)\overline{g(z)} \in H^*_{LH}(\alpha)$ with

$$h(z) = h(0) + \sum_{n=1}^{\infty} \frac{(1 - \alpha - \beta_1)h(0)e^{in\theta}}{n(n+1)(n+1 - \alpha - \beta_1)}z^n$$

and

$$g(z) = \frac{2\beta_1}{1-z}$$
 ($\beta_1 < 0$).

Then

$$0 > \min_{z \in \mathbb{U}} \operatorname{Re}\left(\frac{zg'(z)}{g(z)}\right) > \beta_1$$

and

$$\sum_{n=1}^{\infty} (n+1-\alpha-\beta_1) |a_n| = (1-\alpha-\beta_1)h(0) \left(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\right)$$
$$= (1-\alpha-\beta_1)h(0).$$

Theorem 2.1 gives us the following corollary.

Corollary 2.3. If
$$f(z) = zh(z)\overline{g(z)} \in H_{LH}^*(\alpha)$$
 with (2.2) then $|a_n| \le \frac{1 - \alpha - \beta_1}{n + 1 - \alpha - \beta_1}h(0)$ $(n = 1, 2, 3, \cdots).$

Next, we show

Theorem 2.4. If $f(z) = zh(z)\overline{g(z)} \in H^*_{LH}(\alpha)$ with (2.2) then

(2.6)
$$\left(1 - \frac{1 - \alpha - \beta_1}{2 - \alpha - \beta_1} |z|\right) h(0) \le |h(z)| \le \left(1 + \frac{1 - \alpha - \beta_1}{2 - \alpha - \beta_1} |z|\right) h(0)$$

and

$$(2.7) |a_1| - ((1 - \alpha - \beta)h(0) - (2 - \alpha - \beta)|a_1|)|z|$$

$$\leq |h'(z)| \leq |a_1| + ((1 - \alpha - \beta)h(0) - (2 - \alpha - \beta)|a_1|)|z|$$

for $z \in \mathbb{U}$. The equality in (2.6) holds for $f(z) = zh(z)\overline{g(z)}$ with

$$h(z) = h(0) + \frac{1 - \alpha - \beta_1}{2 - \alpha - \beta_1} h(0) e^{i\theta} z.$$

Proof. We note that the inequality (2.3) gives us that

$$\sum_{n=1}^{\infty} |a_n| \le \frac{1 - \alpha - \beta_1}{2 - \alpha - \beta_1} h(0)$$

and

$$\sum_{n=2}^{\infty} n |a_n| \le (1 - \alpha - \beta_1) h(0) - (2 - \alpha - \beta_1) |a_1|.$$

Thus, we have that

$$|h(z)| \le h(0) + |z| \sum_{n=1}^{\infty} |a_n| \le \left(1 + \frac{1 - \alpha - \beta_1}{2 - \alpha - \beta_1} |z|\right) h(0)$$

and

$$|h(z)| \ge h(0) - |z| \sum_{n=1}^{\infty} |a_n| \ge \left(1 - \frac{1 - \alpha - \beta_1}{2 - \alpha - \beta_1} |z|\right) h(0).$$

Furthermore, we have that

$$|h'(z)| \le |a_1| + |z| \sum_{n=2}^{\infty} n |a_n|$$

$$\le |a_1| + ((1 - \alpha - \beta_1)h(0) - (2 - \alpha - \beta_1)|a_1|)|z|$$

and

$$|h'(z)| \ge |a_1| - |z| \sum_{n=2}^{\infty} n |a_n|$$

$$\ge |a_1| - ((1 - \alpha - \beta_1)h(0) - (2 - \alpha - \beta_1)|a_1|)|z|.$$

Next, we consider

Theorem 2.5. Let $f(z) = zh(z)\overline{g(z)}$, where h(z) is given by (2.1) and $a_n = |a_n| e^{i(n\theta + \pi)}$ $(\theta \in \mathbb{R})$. If f(z) satisfies

(2.8)
$$\beta_2 > \max_{z \in \mathbb{U}} \operatorname{Re}\left(\frac{zg'(z)}{g(z)}\right) > 0$$

and

(2.9)
$$\sum_{n=1}^{\infty} (n+1-\alpha-\beta_2)|a_n| \le (1-\alpha-\beta_2)h(0),$$

then $f(z) \in H_{LH}^*(\alpha)$, where $0 < \beta_2 < 1 - \alpha$.

Proof. Note that if f(z) satisfies

(2.10)
$$\left| \frac{zh'(z)}{h(z)} \right| < 1 - \alpha - \beta_2 \quad (z \in \mathbb{U}),$$

then we have that

$$\operatorname{Re}\left(\frac{zh'(z)}{h(z)}\right) > \alpha + \beta_2 - 1 \quad (z \in \mathbb{U}).$$

This implies that

$$\operatorname{Re}\left(1 + \frac{zh'(z)}{h(z)} - \frac{zg'(z)}{g(z)}\right) > \alpha \quad (z \in \mathbb{U}).$$

Therefore, if f(z) satisfies the inequality (2.10), then $f(z) \in H_{LH}^*(\alpha)$. Indeed we see that

$$\left| \frac{zh'(z)}{h(z)} \right| = \left| \frac{-\sum_{n=1}^{\infty} n |a_n| e^{in\theta} z^n}{h(0) - \sum_{n=1}^{\infty} |a_n| e^{in\theta} z^n} \right| < \frac{\sum_{n=1}^{\infty} n |a_n|}{h(0) - \sum_{n=1}^{\infty} |a_n|}.$$

Thus, if f(z) satisfies (2.9), then we have the inequality (2.10).

3 Coefficient Inequalities for g(z)

Let $f(z) = zh(z)\overline{g(z)}$ be in the class $S_{LH}^*(\alpha)$. If f(z) satisfies

(3.1)
$$g(z) = g(0) + \sum_{n=1}^{\infty} b_n z^n \quad (g(0) > 0)$$

with $b_n = |b_n| e^{in\theta}$ $(\theta \in \mathbb{R})$, then we say that $f(z) \in G_{LH}^*(\alpha)$.

Theorem 3.1. If $f(z) = zh(z)\overline{g(z)} \in G_{LH}^*(\alpha)$ with

(3.2)
$$\gamma_1 > \max_{z \in \mathbb{U}} \operatorname{Re}\left(\frac{zh'(z)}{h(z)}\right) > 0,$$

then

(3.3)
$$\sum_{n=1}^{\infty} (n - 1 + \alpha - \gamma_1) |b_n| \le (1 - \alpha + \gamma_1) g(0).$$

Proof. Note that if $f(z) \in G_{LH}^*(\alpha) \subset S_{LH}^*(\alpha)$, then

$$\operatorname{Re}\left(\frac{zg'(z)}{g(z)}\right) < \operatorname{Re}\left(1 - \alpha + \frac{zh'(z)}{h(z)}\right) \quad (z \in \mathbb{U}),$$

which implies that

$$\operatorname{Re}\left(\frac{zg'(z)}{g(z)}\right) < 1 - \alpha + \gamma_1 \quad (z \in \mathbb{U}).$$

Therefore, we see that

$$\operatorname{Re}\left(\frac{zg'(z)}{g(z)}\right) = \operatorname{Re}\left(\frac{\sum_{n=1}^{\infty} nb_n z^n}{g(0) + \sum_{n=1}^{\infty} b_n z^n}\right)$$
$$= \operatorname{Re}\left(\frac{\sum_{n=1}^{\infty} n |b_n| e^{in\theta} z^n}{g(0) + \sum_{n=1}^{\infty} |b_n| e^{in\theta} z^n}\right)$$
$$< 1 - \alpha + \gamma_1 \quad (z \in \mathbb{U}).$$

Let us consider a point z such that $z = |z| e^{-i\theta} \in \mathbb{U}$. Then, we have that

$$\operatorname{Re}\left(\frac{zg'(z)}{g(z)}\right) = \frac{\sum_{n=1}^{\infty} n |b_n| |z|^n}{g(0) + \sum_{n=1}^{\infty} |b_n| |z|^n} < 1 - \alpha + \gamma_1 \quad (z \in \mathbb{U}).$$

Thus, letting $|z| \to 1^-$, we obtain that

$$\sum_{n=1}^{\infty} (n - 1 + \alpha - \gamma_1) |b_n| \le (1 - \alpha + \gamma_1) g(0).$$

Example 3.2. If $f(z) = zh(z)\overline{g(z)} \in G_{LH}^*(\alpha)$ with

$$h(z) = \frac{2\gamma_1}{1-z} \quad (\gamma_1 > 0)$$

and

$$g(z) = g(0) + \sum_{n=1}^{\infty} \frac{(1 - \alpha + \gamma_1)g(0)e^{in\theta}}{n(n+1)(n-1+\alpha - \gamma_1)} z^n,$$

then

$$0 < \max_{z \in \mathbb{U}} \operatorname{Re}\left(\frac{zh'(z)}{h(z)}\right) < \gamma_1.$$

It follows that f(z) satisfies

$$\sum_{n=1}^{\infty} (n - 1 + \alpha - \gamma_1) |b_n| = (1 - \alpha + \gamma_1) g(0).$$

Applying Theorem 3.1, we have the following result.

Theorem 3.3. If $f(z) = zh(z)\overline{g(z)}$ with (3.2), then

$$(3.4) \qquad \left(1 - \frac{1 - \alpha + \gamma_1}{\alpha - \gamma_1} |z|\right) g(0) \le |g(z)| \le \left(1 + \frac{1 - \alpha + \gamma_1}{\alpha - \gamma_1} |z|\right) g(0)$$

and

$$|b_1| - ((1 - \alpha + \gamma_1)g(0) - (\alpha - \gamma_1)|b_1|)|z|$$

$$\leq |g'(z)| \leq |b_1| + ((1 - \alpha + \gamma_1)g(0) - (\alpha - \gamma_1)|b_1|)|z|$$

for $z \in \mathbb{U}$, where $0 < \gamma_1 < \alpha$.

Proof. Since

$$\sum_{n=1}^{\infty} |b_n| \le \frac{1 - \alpha + \gamma_1}{\alpha - \gamma_1} g(0)$$

and

$$\sum_{n=2}^{\infty} n |b_n| \le (1 - \alpha + \gamma_1) g(0) - (\alpha - \gamma_1) |b_1|$$

for $f(z) \in G_{LH}^*(\alpha)$, we prove the inequalities (3.4) and (3.5).

Finally, we derive

Theorem 3.4. Let $f(z) = zh(z)\overline{g(z)}$, where g(z) is given by (3.1) and $b_n = |b_n| e^{in\theta}$ ($\theta \in \mathbb{R}$). If f(z) satisfies

(3.6)
$$\gamma_2 < \min_{z \in \mathbb{U}} \operatorname{Re}\left(\frac{zh'(z)}{h(z)}\right) < 0$$

and

(3.7)
$$\sum_{n=1}^{\infty} (n - 1 + \alpha - \gamma_2) |b_n| \le (1 - \alpha + \gamma_2) g(0)$$

then $f(z) \in G_{LH}^*(\alpha)$, where $\alpha - 1 < \gamma_2 < 0$.

Proof. Note that if f(z) satisfies

$$\left| \frac{zg'(z)}{g(z)} \right| < 1 - \alpha + \gamma_2 \quad (z \in \mathbb{U}),$$

then

$$\operatorname{Re}\left(\frac{zg'(z)}{g(z)}\right) < 1 - \alpha + \gamma_2 \le 1 - \alpha + \operatorname{Re}\left(\frac{zh'(z)}{h(z)}\right) \quad (z \in \mathbb{U}),$$

which shows that $f(z) \in S_{LH}^*(\alpha)$.

It follows that

(3.8)
$$\left| \frac{zg'(z)}{g(z)} \right| = \left| \frac{\sum_{n=1}^{\infty} n |b_n| e^{in\theta} z^n}{g(0) + \sum_{n=1}^{\infty} |b_n| e^{in\theta} z^n} \right|$$

$$< \frac{\sum_{n=1}^{\infty} n |b_n|}{g(0) - \sum_{n=1}^{\infty} |b_n|} \le 1 - \alpha + \gamma_2$$

if the inequality (3.7) holds true. Therefore, we see that $f(z) \in G_{LH}^*(\alpha)$. \square

4 Open questions

We know that Jahangiri [5] has showed the coefficient inequality which is the necessary and sufficient condition for harmonic convex functions f(z) of order α in \mathbb{U} . There are many necessary and sufficient inequalities for some classes of analytic functions in \mathbb{U} . We hope we will discuss some necessary and sufficient conditions for starlike log-harmonic functions f(z) in \mathbb{U} .

References

- [1] Z. Abdulhadi, Close-to-starlike logharmonic mappings, Internat. J. Math. Math. Sci. 19(1996), 563–574.
- [2] Z. Abdulhadi, *Typically real logharmonic mappings*, Internat. J. Math. Math. Sci. **31**(2002), 1–9.
- [3] Z. Abdulhadi and W. Hengartner, *Spirallike logharmonic mappings*, Complex Variables Theory Appl. **9**(1987), 121–130.
- [4] Z. Abdulhadi and Y. A. Muhanna, Starlike log-harmonic mappings of order α, J. Inequl. Pure Appl. Math. 7, Article 123(2006), 1–6.
- [5] J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska 52(1998), 57–66.

[6] Y. Polatoğlu and E. Deniz, Janowski starlike log-harmonic univalent functions, Hacettepe J. Math. Statistics 38(2009), 45–49.

Received: August, 2012