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ANALYTICAL AND NUMERICAL ANALYSIS OF THE

DISSIPATIVE KUNDU-ECKHAUS EQUATION

Abstract

It is well-known that the Kundu-Eckhaus equation (KEE) is a nonlinear equa-

tion which belongs to nonlinear Schrödinger class and it is commonly used as a

model to investigate the dynamics of diverse phenomena in many areas including

but are not limited to hydrodynamics, fiber and nonlinear optics, plasmas and

finance. However, the effects of dissipation on the dynamics of KEE have not

been investigated so far. In this thesis, in order to address this open problem

we propose the dissipative Kundu-Eckhaus equation (dKEE) and perform an an-

alytical and numerical analysis of the dKEE. With this motivation, we derive

a simple monochromatic wave solution to dKEE. Then, we propose a split step

Fourier method (SSFM) for the numerical solution of the dKEE and we test the

stability of the SSFM using the analytical solution derived as a benchmark prob-

lem. Observing the stability and the accuracy of the scheme, we first investigate

the rogue wave dynamics of the dKEE using the SSFM. More specifically, we

show that modulation instability (MI) turns the monochromatic wave field into

a chaotic one, thus the appearance of rogue waves become obvious. We discuss

the properties and characteristics of such rogue waves. Additionally, we depict

the amplitude probability distribution functions (PDFs) and discuss the effects

of diffusion, Raman and dissipation coefficient as well as the MI parameters on

the probability of rogue wave occurrence. Secondly, we investigate the effects of

dissipation on the self-localized solitons of the KEE. For this purpose, we pro-

pose a Petviashvili method (PM) to obtain the self-localized solitons of the KEE

and analyze the effects of dissipation by time stepping of these solitons using the

SSFM proposed for dKEE. It is known that, KEE admits stable single, two and

N-soliton solutions for the no potential case. It has been recently found that,

under the effect of photorefractive and saturable potentials, such solitons of the

KEE become unstable. We show that the dissipation parameter can be used to

stabilize the single, two and three solitons of the KEE which do not satisfy the

necessary Vakhitov-Kolokolov condition for the soliton stability. With this aim,

we present the power graphs as functions of soliton eigenvalue and as well as

time. Additionally, we depict the soliton shapes for various times to show that

they are preserved for time scales long enough for many engineering purposes.
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We comment on our findings and discuss the applicability and uses of our results.

Additionally, we suggest possible directions for the near future research activities.

Keywords: dissipative Kundu-Eckhaus equation, nonlinear Schrödinger equa-

tion, Petviashvili method, split step Fourier method, rogue waves, modula-

tion instability
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SÖNÜMLÜ KUNDU-ECKHAUS DENKLEMİNİN

ANALİTİK VE HESAPLAMALI ANALİZİ

Özet

Kundu-Eckhaus denkleminin (KEE), doğrusal olmayan Schrödinger sınıfına ait

bir denklem olduğu ve hidrodinamik, fiber ve doğrusal olmayan optik, plazma

ve finans alanlarında bilinen ama bu alanlarla sınırlı kalmayan farklı olayların

dinamiklerini araştırmak için yaygın olarak kullanılan bir model olduğu iyi bilin-

mektedir. Ancak KEE’nin dinamiği üzerinde sönümün etkileri araştırılmamıştır.

Bu tezde, bu açık sorunu çözmek için, sönümlü Kundu-Eckhaus denklemi (dKEE)

önerilmiş ve dKEE’nin analitik ve hesaplamalı çözümlerini ele alınmıştır. Bu

motivasyon ile ilkin, dKEE için basit ve tek zamanlı bir dalga çözümü elde

edilmiştir. Daha sonra dKEE’nin hesaplamalı çözümü için yarık basamaklama

Fourier metodu (SSFM) önerilerek türetilen analitik çözüm test problemi olarak

kullanılmış ve SSFM’nin hassasiyeti ve kararlılığı test edilmiştir. Şemanın has-

sasiyeti ve kararlılığı gözlendikten sonra, ilk önce dKEE’nin dev dalga dinamikleri

SSFM kullanarak araştırılmıştır. Daha spesifik olarak, modülasyon kararsızlığının

(MI) tek zamanlı dalga sahasını kaotik bir alana dönüştürdü ‘gü gösterilmiş ve

böylece dKEE bünyesinde dev dalgaların oluşabileceği gösterilmiştir. Ardından

bu tür dev dalgaların özellikleri ve karakterleri tartışılmıştır. Ek olarak, dalga

genlikleri için olasılık dağılım fonksiyonları (PDFs) üretilmiş ve difüzyon, Raman

ve sönüm katsayısının yanı sıra ilgili MI parametrelerinin dev dalgaların ortaya

çıkma olasılığı üzerine etkileri tartışılmıştır. İkincil olarak, sönümün KEE’nin

öz yerel solitonlarının (tekil dalga) üzerine etkileri araştırılmıştır. Bu amaçla,

KEE’nin öz yerel solitonlarını elde etmek için bir Petviashvili yöntemi (PM)

önerilmiştir. Daha sonra PM ile elde edilen bu solitonlar SSFM kullanılarak za-

man basamaklamaya tabi tutulmuştur. KEE’nin potansiyelsiz durumda kararlı

tek, iki ve N-soliton çözümleri olduğu bilinmektedir. Son zamanlarda, fotorefrak-

tif ve doyurulabilir potansiyellerin etkisi altında, KEE’nin bu tür solitonlarının

dengesiz hale geldiği gösterilmiştir. Sönüm parametresinin, KEE’nin soliton den-

gesi için gerekli olan Vakhitov-Kolokolov koşulunu sağlamayan tekli, ikili ve üçlü

solitonları dengelemek için kullanılabileceği gösterilmiştir. Bu amaçla, güç grafik-

leri soliton özdeğerinin ve zamanın birer fonksiyonu olarak sunulmuştur. Ek

olarak, soliton şekilleri çeşitli zamanlarda oluşturulmuş ve birçok mühendislik

amacı için yeterince uzun zaman ölçeklerinde korundukları gösterilmiştir. Sonuç
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olarak, bu tezin bulguları hakkında yorumlar yapılmış ve sonuçların uygulan-

abilirliği, olası kullanım alanları ve yakın gelecekteki araştırma faaliyetleri için

olası fikirler tartışılmıştır.

Anahtar kelimeler: Sönümlü Kundu-Eckhaus denklemi, doğrusal olmayan

Schrödinger denklemi, spektral renormalleştirme metodu, zaman basamak-

lama Fourier metodu, dev dalgalar, modülasyon kararsızlığı
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Chapter 1

Introduction

Nonlinear differential equations play a vital role in understanding vastly di-

verse phenomena in mathematics, physics, chemistry and other branches of ap-

plied sciences [1–5]. These diverse phenomena include but are not limited to

fluid mechanics, solid-state physics, plasma physics, nonlinear optics, quantum

mechanics, finance, atmospheric studies, celestial mechanics, biology, evolution

etc [1,2,6–8]. One of the most commonly employed models in this fields is the non-

linear Schrödinger equation (NLSE) which was initially proposed by Schrödinger

to describe the quantum state of an atomic particle. Later, it has been derived

and employed for many different studies including but are not limited to water

waves, plasmas, laser beams and electromagnetic transmission [9–20]. It is well-

known that NLSE admit many different types of analytical solutions obtained by

various techniques. These solutions include but are not limited to single, two, N-

solitons solutions; rogue waves, rational solutions, chaoticons, kinks just to name

a few [21–27]. The method employed for this purpose include but are not limited

to brute force method, bilinear method, Darboux transforms, partial or discrete

of the Painleve methods, Lax pairs, Bernoulli sub-equation method, exp-function

method, gauge transformation, tangent-expansion method and extended auxil-

iary equation method [21, 24, 28–35]. The effects of dissipation on the dynamics

and solutions of the NLSE have also attracted researchers’ attention. In this con-

text, the behavior of the dissipative NLSE in large-time is investigated in [36].

A new theory for the dissipative systems taking the velocity dependent frictional

1



forces into account in the frame of NLSE was studied in [37]. The phase-locked

solitons with damped NLSE is analyzed in [38]. The slow manifold in a two-mode

truncation of the damped forced NLSE is investigated in [39]. An analytical so-

lution for the dissipative NLSE valid in the average sense was derived in [40].

Then, a numerical framework is proposed in [41] for the numerical solution of the

dissipative NLSE.

The Eckhaus equation, on the other hand, is a nonlinear differential equation sim-

ilar to the nonlinear Schrödinger equation(NLSE) in mathematics and physics.

This equation was introduced by Kundu [4] and Eckhaus [5], independently.

Therefore, this equation is more commonly known as Kundu-Eckhaus equation

(KEE). KEE has two extension terms to the NLSE. The first extension term is the

quintic nonlinearity term and the second one is the Raman effect term [4, 5, 41].

Similar to the NLSE, the KEE can be used to model various physical phenomena

in nonlinear physics. These phenomena include but are not limited to nonlin-

ear dispersive water waves, nonlinear optical waves, nonlinear processes in the

quantum field theory, ion-acoustic waves, cosmic plasmas and various processes

in finance [42–52]. Similar to the NLSE, the KEE admits many different type

of solutions including but are not limited to single, two, N-solitons; rogue waves,

kinks, rational solutions etc. [33, 45, 47–51, 53–58]. The methods utilized to de-

rive such analytical solutions include but are not limited to brute force method,

gauge and the Darboux transformations [45], Lie symmetry method [17], Bernoulli

sub-equation function method [54], Laplace-Adomian decomposition method [55],

Hamiltonian perturbation method [59], Miura transformation [3], similarity trans-

formation method [60], Fokas method [56], extended trial equation method and

extended G
′
/G expansion scheme [61].

However, dissipative Kundu-Eckhaus equation (dKEE) has not been investigated

so far.This thesis aims to address this open problem. With this motivation, in

Chapter 2, we begin by deriving an analytical solution to the dKEE in the form

of a monochromatic wave with time dependent amplitude and velocity. Later,
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this analytical solution will serve as a benchmark problem for our numerical

simulations.

In Chapter 3 of this thesis, we propose a numerical method to investigate the

solutions of the dKEE with no potential. More specifically, for the time stepping

of the dKEE we propose a split step Fourier method (SSFM). In this method

that we propose with dKEE, the time stepping is handled by a first order time

stepping and the spectral derivatives are computed using Fast Fourier transforms

(FFTs). After checking the accuracy and the stability of this numerical scheme

using the analytical solution of the dKEE presented in Chapter 2, we show that

the rogue wave dynamics of the dKEE by can be studied by using SSFM proposed.

It is well-known that when the sinusoidal solution of the NLSE like equations are

subjected to noise, the modulation instability (MI) turns the monochromatic wave

field into a chaotic one exhibiting unexpected large amplitude waves known as

rogue waves [11–13] observed in diverse areas [62–66]. The SSFM proposed in

Chapter 3 can be used to analyze such rogue waves of the dKEE as discussed in

Chapter 5 of this thesis. Additionally, we propose a Petviashvili method (PM)

to investigate the self-localized solitons of the dKEE with no potential.

In Chapter 4, we extend the mathematical framework proposed in Chapter 3

for the no potential case to account for the potential case. More specifically,

we extend the SSFM and PM to account for the effects of the potential term.

Although different potentials can be studied using this framework, we consider the

case of a photorefractive potential and perform the extensions of the methodology

accordingly.

In Chapter 5, we present a comprehensive discussion on our findings. Firstly, we

discuss the dynamics and properties of rogue waves of the dKEE. We also discuss

the effects of coefficients of the dKEE, the effects of MI and the effects of photore-

fractive potential term on the amplitude and rogue wave probability distributions.

We show that all coefficients have an effect on these probabilities, however, the

most dominant effect is the effect of dissipation. Although, the potential term

3



increases the probability of rogue wave occurrence, a small dissipation coefficient

suppresses this effect by dissipating the waves in the chaotic field significantly.

Secondly, we present an analysis on the self-localized solitons of the dKEE. We

show that single, two and N-solitons of the KEE can be stabilized using an ap-

propriate dissipation coefficient which guarantees that the solitons do not blow

up and keep their soliton shapes for times scales long enough for many practical

purposes.

In Chapter 6, we discuss the importance and possible uses of our findings as well

as our methodology implemented for the dKEE. We propose possible extensions

to our analysis and conclude.
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Chapter 2

Analytical Aspects of the Dissipative Kundu-Eckhaus

Equation

The dissipative Kundu-Eckhaus equation (dKEE) can be written by extending

the KEE given in [4, 5] using a dissipation parameter as

i
∂U

∂t
+ µ1

∂2U

∂ξ2
+ µ2 |U |2 U + iµ3U + µ2

4 |U |
4 U − 2µ4i

(
|U |2

)
ξ
U = 0, (2.1)

where t is the time and ξ is the space parameter. In here, µi (i = 1, 2, 3, 4) are some

real constant coefficients and U (ξ, t) is the unknown function to be determined

from the solution of the nonlinear equation. The parameter µ1 is the diffraction

constant, the parameter µ2 is the cubic nonlinearity constant and the parameter

µ4 is the quintic nonlinearity and Raman scattering constant. The parameter µ3

controls the dissipation or gain, depending on its sign [40]. Seeking a solution of

Eq.(2.1) in the form

U(ξ, t) = a (t) ei[kξ−Ω(t)] (2.2)

where a(t) and Ω(t) are some unknown real functions of time t, one can obtain

the expression

5



U = Ae−µ3te
i

[
kξ−µ1k2t− µ2

2µ3
A2e−2µ3t−µ

2
4A

4

4µ3
e−4µ3t+c

]
(2.3)

In here, A and c are some constants referring to the amplitude and phase, re-

spectively. This is the most fundamental harmonic solution of the dKEE. It is

possible to construct higher order solutions starting from the seed solution given

by Eq.(2.3) using Darboux transformation formalism. We use the analytical so-

lution given in Eq.(2.3) as a benchmark problem for the numerical computations

presented in the coming sections.
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Chapter 3

Numerical Aspects of the Dissipative Kundu-Eckhaus

Equation Under No Potential

3.1 Split-Step Fourier Method for the Dissipative Kundu-Eckhaus

Equation Under No Potential

Split-Step Fourier Method (SSFM) is a numerical method used to solve partial

differential equations like NLSE in numerical analysis [67]. SSFM can be used to

model equations with constant or variable coefficients [68]. Some researchers have

used this method for the studies in the field of optical fiber communications [69].

They analyzed the efficiencies of the SSFM in solving the NLSE with different

step sizes [69, 70]. Some other researchers have developed the SSFM using the

migration method [71]. In SSFMs, various order splittings are possible, such as

the operator exponential scheme (OES) and the simplified operator exponential

scheme (SOES) proposed for the numerical solution of the NLSE [72]. In order

to develop a SSFM utilizing a first order splitting for the numerical solution of

the dKEE we begin by rewriting it as

iUt = −(µ2 |U |2 + µ2
4 |U |

4 − 2iµ4(|U |2)ξ + iµ3)U (3.1)

which can be exactly solved as

Ũ(ξ, t0 + ∆t) = ei(µ2|U0|2+µ24|U0|4−2iµ4(|U0|2)ξ+iµ3)∆t U0 (3.2)
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where U0 = U(ξ, t0) is the initial condition, ∆t is the time step. One can evaluate

the spatial derivatives here using the Fourier series so that it is possible to write

Ũ(ξ, t0 + ∆t) = ei(µ2|U0|2+µ24|U0|4−2iµ4F−1{ikF [|U0|2]}+iµ3)∆t U0 (3.3)

where the Fourier transform of a function f(ξ) is defined as

f̂(k) = F [f(ξ)] =

∫ +∞

−∞
f(ξ) exp[−ikξ]dξ (3.4)

in which k is the Fourier transform parameter. In here, F and F−1 denote the

forward and inverse Fourier transforms, respectively. Additionally, the remaining

part of the dKEE is linear can be given as

iUt = −µ1Uξξ (3.5)

This part of the equation can be solved spectrally using the Fourier series as

U(ξ, t0 + ∆t) = F−1
[
e−iµ1k

2∆tF [Ũ(ξ, t0 + ∆t)]
]

(3.6)

Lastly, one can combine the Eq.(3.3) and Eq.(3.6) to get the final form of the

time stepping algorithm as

U(ξ, t0+∆t) = F−1
[
e−iµ1k

2∆tF [ei(µ2|U0|2+µ24|U0|4−2iµ4F−1[ikF [|U0|2]]+iµ3)∆t U0]
]

(3.7)

Starting from the initial condition U0, the time stepping is performed using the

Eq.(3.7) in order to obtain the numerical solution of the dKEE. In the coming

results section of this thesis, we first check the accuracy and the stability of

the SSFM by comparing it with the analytical solution given by Eq.(2.3) as a

benchmark problem. Then, using the SSFM proposed, we investigate the rogue

wave dynamics and the stability of the self-localized solutions of the dKEE.
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3.2 Petviashvili Method for the Dissipative Kundu-Eckhaus Equation

Under No Potential

One of the possible ways of finding the self-localized solitons of the nonlinear

wave equations is to transform them into Fourier space and iterate until the

solutions converge. Petviashvili’s method is one of these Fourier domain methods

[73]. Petviashvili’s method was later improved by Ablowitz and Musslimani [74]

and this improved method is known as the Spectral Renormalization method.

This computational method plays an important role in nonlinear sciences for

computing self-localized states or solution of nonlinear wave guides [74–76]. The

fundamental idea of the PM is to transform the governing equation, i.e. NLSE

like equation, into Fourier space to obtain a nonlinear non-local integral equation.

This nonlinear non-local integral equation is then coupled to an algebraic equation

[74, 77]. The iterations are continued unless the convergence of the algebraic

equation is satisfied [74, 77]. For the details of applying PM to NLSE and a

coupled system of NLSE, the reader is referred to [74]. In this section, we apply

the PM to the dKEE to obtain its self-localized solutions when the effects of

potential are neglected. The dKEE with no potential can be given as

iUt + µ1Uξξ + µ2 |U |2 U + µ2
4 |U |

4 U − 2µ4i
(
|U |2

)
ξ
U + iµ3U = 0 (3.8)

as discussed above. The dependent and independent parameters are as before. It

is possible to rewrite the Eq. (3.8) as

iUt + µ1Uξξ +N(|U |2)U = 0 (3.9)

where the nonlinear term becomes N(|U |2) = µ2 |U |2+µ2
4 |U |

4−2µ4i
(
|U |2

)
ξ
+iµ3.

Using the ansatz, U(ξ, t) = η(ξ, µ)exp(iµt) where µ shows the soliton eigenvalue,

the dKEE becomes

− µη + µ1ηξξ +N(|η|2)η = 0 (3.10)
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Furthermore by 1D Fourier transforming the η as

η̂(k) = F [η(ξ)] =

∫ +∞

−∞
η(ξ) exp[−ikξ]dξ (3.11)

the spectral representation of the Eq. (3.10) becomes

η̂(k) =
F
[
N(|η|2 η)

]
µ+ µ1 |k|2

(3.12)

The formula given by Eq. (3.12) can be applied iteratively to obtain the self-

localized solutions of the dKEE. It is known that this iteration scheme may diverge

or may tend to zero [74]. In order to overcome this problem, one can introduce a

new variable in the form of η̂(k) = αφ̂(k) which has the spectral representation

given by η̂(k) = αφ̂(k). Using these substitutions, Eq. (3.12) becomes

φ̂(k) =
F
[
N(|α|2 |φ|2)φ

]
µ+ µ1 |k|2

= Rα[φ̂(k)] (3.13)

and corresponding iteration scheme becomes

φ̂j+1(k) =
F
[
N(|αj|2 |φj|2)φj

]
µ+ µ1 |k|2

(3.14)

One can multiply both sides of Eq. (3.13) with the the complex conjugate of the

term in the left-hand-side of Eq. (3.13), i.e. φ̂∗(k), and can obtain the total energy

by integrating the multiplied the expression which eventually leads to

∫ +∞

−∞

∣∣∣φ̂(k)
∣∣∣2 dk =

∫ +∞

−∞
φ̂∗(k)Rα[φ̂(k)]dk (3.15)

which is the normalization constraint. This energy constraint guarantees the

scheme to converge to the self-localized solitons of the system under investigation.

This procedure of obtaining self-localized solutions of a nonlinear system, which

is applied to the dKEE in this thesis, is known as the PM which can applied

to many different nonlinear systems [74, 78]. When a single Gaussian or multi-

Gaussians are used as the initial conditions, the system given by Eq. (3.13) and

10



Eq. (3.14), can be applied iteratively to find the self-localized solitons. This

system of equations is subjected to successive iterations until the parameter α

converges. We investigate the effects of various parameters of the dKEE and PM

on the properties and stabilities of the self-localized solitons in Chapter 5 of this

thesis.
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Chapter 4

Numerical Aspects of the Dissipative Kundu-Eckhaus

Equation Under Photorefractive Potential

The dissipative Kundu-Eckhaus equation (dKEE) under the effect of a photore-

fractive potential, V (ξ), can be written as

i
∂U

∂t
+µ1

∂2U

∂ξ2
+µ2 |U |2 U + iµ3U +µ2

4 |U |
4 U−2µ4i

(
|U |2

)
ξ
U−V (ξ)U = 0, (4.1)

where the parameters are as discussed in Chapter 2. In here, V (ξ) refers to the

potential term. In fiber optical communications and femto-laser studies, the most

common choice for the potential is the photorefractive potential. The photore-

fractive potential can be formulated by the expression V (ξ) = Io cos2(ξ) where

Io is a constant. It is important to note that the stability of the solutions of the

dKEE, especially its self-localized solutions obtained by PM, may significantly de-

pend on the value of Io as discussed in [78]. However, this parameter is selected

as I0 = 2.5 throughout this thesis. The form of the photorefractive potential with

these parameters is given in Fig. (4.1).

12



-20 -15 -10 -5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

V
(

)

Figure 4.1: The photorefractive potential V = Io cos2(ξ) for I0 = 2.5.

4.1 Split-Step Fourier Method for the Dissipative Kundu-Eckhaus

Equation Under Photorefractive Potential

In here, we extend the SSFM discussed in Chapter 3.1 to account for the effects

of the photorefractive potential. With this aim, we rewrite Eq. 4.1 as

iUt = −(µ2 |U |2 + µ2
4 |U |

4 − 2iµ4(|U |2)ξ + iµ3 − V (ξ))U (4.2)

which can be solved as

Ũ(ξ, t0 + ∆t) = ei(µ2|U0|2+µ24|U0|4−2iµ4(|U0|2)ξ+iµ3−V (ξ))∆t U0 (4.3)

where U0 = U(ξ, t0) is the initial condition and ∆t is the time step, as discussed

before in Chapter 3.1. Again, the spatial derivatives can be computed using the
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Fourier series as

Ũ(ξ, t0 + ∆t) = ei(µ2|U0|2+µ24|U0|4−2iµ4F−1{ikF [|U0|2]}+iµ3−V (ξ))∆t U0 (4.4)

where k shows the wavenumber parameter, and again F and F−1 denote the

forward and inverse FFTs, respectively. Similar to before, the linear part of the

dKEE becomes

iUt = −µ1Uξξ (4.5)

which can be solved by utilizing the FFTs as

U(ξ, t0 + ∆t) = F−1
[
e−iµ1k

2∆tF [Ũ(ξ, t0 + ∆t)]
]

(4.6)

Thus, the final form of the SSFM for the numerical solution of the dKEE can be

obtained by combining Eq. (4.4) and Eq. (4.6), which leads to the expression

U(ξ, t0 + ∆t) = F−1
[
e−iµ1k

2∆tF [ei(µ2|U0|2+µ24|U0|4−2iµ4F−1[ikF [|U0|2]]+iµ3−V (ξ))∆t U0]
]

(4.7)

We investigate the effect of the photorefractive potential on rogue wave formation

probabilities and on the stability of the self-localized solutions of the dKEE using

Eq. (4.7), as discussed in the Chapter 5 of this thesis.

4.2 Petviashvili Method for the Dissipative Kundu-Eckhaus Equation

Under Photorefractive Potential

In this section of the thesis, we extend the PM proposed for dKEE in Chapter 3.2

to account for the effect of a potential term. For this scenario, the dKEE having

a potential term becomes

iUt + µ1Uξξ + µ2 |U |2 U + µ2
4 |U |

4 U − 2µ4i
(
|U |2

)
ξ
U + iµ3U − V (ξ)U = 0 (4.8)
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In here, the parameters are as discussed before in Chapter 3.2. Similarly, we

consider a photorefractive potential given as V (ξ) = Io cos2(ξ), where I0 = 2.5 as

before. It is possible to rewrite the Eq. (4.8) as

iUt + µ1Uξξ +N(|U |2)U = 0 (4.9)

where the nonlinear term is N(|U |2) = µ2 |U |2+µ2
4 |U |

4−2µ4i
(
|U |2

)
ξ
+iµ3−V (ξ).

Using the same ansatz as before, U(ξ, t) = η(ξ, µ)exp(iµt) where µ shows the

soliton eigenvalue, the dKEE with potential term becomes

− µη + µ1ηξξ +N(|η|2)η = 0 (4.10)

The 1D Fourier transform of η, would give its spectral representation as

η̂(k) = F [η(ξ)] =

∫ +∞

−∞
η(ξ) exp[−ikξ]dξ (4.11)

Therefore, by taking the 1D Fourier transform Eq. (4.10), the iteration scheme

for η̂ can be obtained. However, it is known that such an iteration scheme can

turn out to be singular [74, 78]. In order to avoid such a singularity, one can

add or subtract a pη term with p > 0 to the 1D Fourier transform of Eq. (4.10).

Throughout this thesis, a value of p = 10 is accepted. After these steps, one can

obtain the iteration formula as

η̂(k) =
(p+ |µ|)η̂
p+ µ1 |k|2

−
F [V η]− F

[
N(|η|2)η

]
p+ µ1 |k|2

(4.12)

where V is the potential term. As before, the iterations of Eq. (4.12) may grow

unboundedly or it may tend to zero [74]. Again, by introducing a new variable

as η(ζ) = αφ(ξ) and its Fourier transform as η̂(k) = αφ̂(k), helps us to overcome

this problem. After these substitutions, Eq. (4.12) can be rewritten as

φ̂(k) =
F
[
N(|α|2 |φ|2)φ

]
µ+ µ1 |k|2

= Rα[φ̂(k)] (4.13)
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and corresponding iteration scheme becomes

φ̂j+1(k) =
F
[
N(|αj|2 |φj|2)φj

]
µ+ µ1 |k|2

(4.14)

where α is used in an algebraic condition to check the convergence of the PM.

This algebraic condition is basically an energy conservation principle. By multi-

plying the both sides of Eq. (4.14) with φ̂∗(k), where the sign ∗ refers to complex

conjugation, the total energy can be calculated as

∫ +∞

−∞

∣∣∣φ̂(k)
∣∣∣2 dk =

∫ +∞

−∞
φ̂∗(k)Rα[φ̂(k)]dk (4.15)

which is the normalization constraint of the PM algorithm. Starting from single

or multi-Gaussians, the PM summarize above can be used to find the self-localized

solitons of the dKEE with the potential term. We discuss the effects of various pa-

rameters of dKEE and PM as well as the photorefractive potential on existences,

characteristics and stabilities on self-localized solitons in Chapter 5.
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Chapter 5

Results and Discussion

In here, we present the numerical results for the dKEE obtained by the SSFM

and PM. With this motivation, we first check the accuracy and stability of the

SSFM using the analytical solution of the dKEE as a benchmark problem. In

Chapter 5.1, we analyze the rogue wave fields generated in the frame of the dKEE

and discuss the effects of dissipation on such fields. In Chapter 5.2 we investigate

the effects of a photorefractive potential on the dynamics and statistics of rogue

waves of the dKEE using the SSFM. Then, in Chapter 5.3 and in Chapter 5.4,

we analyze the self-localized single, two and three soliton solutions of the dKEE

with no and with photorefractive potential term, respectively. For this part of

the analysis, we first utilize the PM to construct the self-localized soliton shapes,

then we perform time stepping starting from these self-localized solitons using the

SSFM. This procedure allows us to analyze the temporal dynamics and stabilities

of such solitons, including the effects of dissipation.

5.1 Results and Discussion of the Rogue Wave Dynamics of the Dis-

sipative Kundu-Eckhaus Equation

In Fig. (5.1), we compare the numerical solution of the dKEE and its analytical

solution given by Eq. (2.3) at t = 0. For this simulation, the parameters of

computation are selected as µ1 = 1, µ2 = 2, µ3 = 0.1 and µ4 = 0.66, A = 0.2. As
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mentioned before, the number of spectral components is selected to be N = 1024

for this and other simulations presented in this thesis.
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Figure 5.1: Comparison of the split-step vs exact solution of the dKEE at t = 0.0 for
µ1 = 1, µ2 = 2, µ3 = 0.1, µ4 = 0.66 and A = 0.2,.
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Figure 5.2: Comparison of the split-step vs exact solution of the dKEE at t = 7.6 for
µ1 = 1, µ2 = 2, µ3 = 0.1, µ4 = 0.66 and A = 0.2.

In order to check the accuracy and stability of the SSFM, we perform the same

comparison for t = 7.6 in Fig. (5.2). The time stepping is performed using a

time step value of ∆t = 10−5 for all of our numerical simulations, as well as this

one. As Fig. (5.2) confirms, the numerical solution is in good agreement with the
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analytical solution, validating the accuracy and the stability of the SSFM scheme.
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Figure 5.3: Comparison of the split-step vs exact solution of the dKEE at t = 0.0 for
µ1 = 1, µ2 = 2, µ3 = 1, µ4 = 0.66 and A = 0.2.
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Figure 5.4: Comparison of the split-step vs exact solution of the dKEE at t = 7.6 for
µ1 = 1, µ2 = 2, µ3 = 1, µ4 = 0.66 and A = 0.2.

We repeat the similar simulations under the effect of stronger dissipation and plot

the corresponding results in Fig. (5.3) and in Fig. (5.4) for t = 0 and t = 7.6,

respectively. With this aim, we select the dissipation constant as µ3 = 1, and keep
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the other parameters as before. As Fig. (5.3) and Fig. (5.4) confirm, the accuracy

and stability of the SSFM is achieved, however, due to the larger dissipation

coefficient the effects of the dissipation becomes more significant. This significant

effect can be understood by realizing that the amplitude of the monochromatic

wave vanishes at t = 7.6.

Next, we turn our attention to rogue wave dynamics of dKEE. For this purpose,

we use the SSFM to analyze chaotic wave fields of the dKEE numerically. One of

the possible mechanisms to excite such chaotic wave fields is the modulation in-

stability (MI). It is well-known that MI can be triggered when an initial condition

in the form of

U0 = eimk0ξ + βa (5.1)

is used in time stepping. In here, U0 is the initial condition, m is a constant,

k0 = 2π/L is the fundamental wave number, β is MI parameter and a is a set of

uniformly distributed random numbers which lie in the interval of [−1, 1]. The

length of spatial domain is selected as L = 400 in the simulations presented in

this thesis, and we zoom to wave profiles for better presentation purposes when

it deems necessary.
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Figure 5.5: A typical chaotic wave field generated in the frame of dKEE for µ1 =
1, µ2 = 2, µ3 = 0, µ4 = 0.66,m = 16 and β = 0.4.
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A typical chaotic wave field exhibiting rogue waves triggered by the MI in the

frame of the dKEE is depicted in Fig. (5.5). The parameters of computation

for this case is selected to be µ1 = 1, µ2 = 2, µ3 = 0, µ4 = 0.66, m = 16,

β = 0.4, A = 0.2. During the time stepping we observed that majority of the

wave amplitudes occur in the interval of |U | ∈ [0, 5]. These waves have very

suddenly changing behavior in the chaotic wave fields, that is ‘they appear from

nowhere and disappear without a trace’ [13,47]. The waves having an amplitude

of |U | > 2 can be classified as rogue waves, since we start our simulations using

a sinusoid having a unit amplitude which is approximately the significant wave

amplitude in the chaotic wave field.
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Figure 5.6: Amplitude probability distribution for a chaotic wave field for µ1 = 1, µ2 =
2, µ4 = 0.66 for various values of µ3, m = 4, β = 0.1.

Next, we focus on the statistics of chaotic wave fields and rogue waves of dKEE.

For this purpose, we perform massive numerical computations and plot the cor-

responding probability distribution functions (PDFs) of chaotic wave fields of

dKEE in Figs. (5.6)-(5.10). After a dimensionless adjustment time of t = 5, the

chaotic wave fields are recorded at 6 different times until t = 10. Each of these

simulations performed for 10 realization. Thus, each of the PDFs presented in

Figs. (5.6)-(5.10) include more than 6× 104 waves. Checking Fig. (5.6), one can

realize that dissipation constant of µ3 = 0.1 is strong enough to dissipate rogue
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waves in the chaotic wave fields. We investigate the effect of MI parameter β
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Figure 5.7: Amplitude probability distribution in a chaotic wave field for µ1 = 1, µ2 =
2, µ4 = 0.66 for various values of µ3, m = 4 and β = 0.5.

under the effect of dissipation in Fig. (5.7). It is well-known that an increase in β

results in an increase of the probability of rogue wave occurrence [47]. However,

as Fig. (5.7) confirms under the effect of dissipation such an increase becomes

indistinguishable.
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Figure 5.8: Amplitude probability distribution in a chaotic wave field for µ1 = 1, µ2 =
2, µ4 = 0.66 for various values of µ3, m = 16 and β = 0.1.
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Figure 5.9: Amplitude probability distribution in a chaotic wave field for µ1 = 1, µ2 =
2, µ4 = 0.66 for various values of µ3,m = 16 and β = 0.5.

It is also known that the parameter m of Eq. (5.1) has an important effect on

PDFs of amplitudes generally leading to an increase. Therefore, we perform

similar simulations using the value of m = 16 for the cases of β = 0.1 and

β = 0.5, and plot the resulting PDFs in Fig. (5.8) and Fig. (5.9), respectively. As

before, the effect of dissipation turns out to be more significant compared to the

effect of m.
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Figure 5.10: Amplitude probability distribution in a chaotic wave field for µ1 = 1, µ2 =
2, µ4 = 0.66 for µ3 = 0.1, m = 4, β = 0.1 and µ3 = 0.
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Lastly, we compare the overall effect of the dissipation parameter, µ3, on the PDFs

of wave amplitudes. With this motivation, we depict the red curve obtained

for the non-dissipative case using µ3 = 0 and the blue curve obtained for the

dissipative case using µ3 = 0.1 in Fig. (5.10). As it can be realized from the

figure, even a small dissipation coefficient of µ3 = 0.1 has a significant effect

on rogue wave formation. It is possible to argue that the amplitudes for which

the probability is nonzero, lie in the interval of approximately |U | ∈ [0, 4.5] for

non-dissipative case, whereas the same interval reduces to |U | ∈ [0, 0.75] for the

dissipative case. This finding shows that even a small dissipation/gain coefficient

can significantly change the probability of rogue wave occurrence when they are

desired or not.

5.2 Results and Discussion of the Rogue Wave Dynamics of the Dis-

sipative Kundu-Eckhaus Equation Under Photorefractive Poten-

tials

In this section, we analyze the effect of photorefractive potential term on rogue

waves of the dKEE. We perform the numerical simulations using the SSFM.

Starting from the monochromatic wave superimposed with the white noise we

perform the time stepping using Eq. (3.7) and Eq. (4.7) for the case of no and

photorefractive potential, respectively. Using the same procedure of extracting

rogue wave statistics as before, we depict the PDFs in Fig. (5.11).

The parameters of computation are selected to be µ1 = 1, µ2 = 2, µ3 = 0, µ4 =

0.66,m = 4, β = 0.1, the resulting statistics is depicted in Fig. (5.11). In this fig-

ure, the blue curve represents the PDF of amplitude distribution of the wave fields

generated in the frame of dKEE when no potential term is considered. Whereas,

the red curve represents the same PDF under the effect of the photorefractive

potential. As Fig. (5.11) confirms, the photorefractive potential term leads to
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Figure 5.11: Amplitude probability distribution in a chaotic wave field under photore-
fractive potential for µ1 = 1, µ2 = 2, µ3 = 0, µ4 = 0.66,m = 4 and β = 0.1.

generation of larger amplitude waves in the frame of dKEE. One can easily rec-

ognize this fact by checking the probability increase for the amplitudes in the

interval of approximately |U | ∈ [1.7, 3.5].
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Figure 5.12: Amplitude probability distribution in a chaotic wave field under photore-
fractive potential for µ1 = 1, µ2 = 2, µ3 = 0.1, µ4 = 0.66,m = 4 and β = 0.1.

In order to analyze the effect of such a potential under stronger dissipation, we

repeat the same analysis using a dissipation parameter of µ3 = 0.1 and depict
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the resulting PDFs in Fig. (5.12). In here we observe that the effect of dissipa-

tion becomes more dominant compared to the effect of photorefractive potential.

However, after a careful checking of figure, we can argue that the potential term

causes more waves in the interval of approximately |U | ∈ [0.4, 0.7] to occur, re-

sulting in a slight rightwards shift in the peak of the PDF. However due to higher

dissipation, the effect of photorefractive potential becomes in distinguishable for

the larger amplitudes of PDF.

5.3 Results and Discussion of the Self-Localized Solutions of the Dissi-

pative Kundu-Eckhaus Equation Obtained by Petviashvili Method

In this section, we analyze the single, two and three self-localized solitons of the

KEE under the effect of no potential term, V = 0. It is known that KEE with no

potential admits single, two and N-soliton solutions [33,58]. For this purpose, we

employ Eqs. (3.14) and (3.15) until the convergence of parameter α is achieved.

5.3.1 Single soliton

In this part, we discuss the properties of single self-localized soliton of the KEE.

Starting from a simple Gaussian as initial condition, the PM rapidly converges

to the single self-localized soliton. The convergence criteria is accepted as the

normalized change of α to be less than 1× 10−10. The single soliton obtained by

PM using this convergence criteria is depicted and compared with the analytical

solution given by Eq.(3.13) in [33] for µ = 1 in Fig. (5.13). As this figure confirms,

the soliton shape can be constructed using PM and turns out to be in agreement

with the analytical solution.

The self-localized soliton obtained by PM for various values of µ1 (µ1 = 0.5, 1.0, 1.5,

2.0) is depicted in Fig. (5.14) and the direction of increase of µ1 is shown there.

As one can see in Fig. (5.14), the self-localized single soliton of the KEE widens

and its peak value decreases as µ1 increase.
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Figure 5.13: Comparison of the numerical solution obtained by PM with the analytical
solution given by Eq.(3.13) in [33] for µ = 1.
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Figure 5.14: Self-localized single soliton solution as a function of ξ for various µ1

values.

In Fig. (5.15) and Fig. (5.16), self-localized single solitons of the KEE obtained

in a similar fashion is depicted for various values of µ2 and µ4, respectively. The

values used in Fig. (5.15) for the µ2 parameter are taken as µ2 = 1, 2, 3, 4, 5. As

indicated in Fig. (5.15) the self-localized single soliton of the KEE gets narrower

and it is peak value decreases due to stronger diffusion. Similarly, as indicated in

Fig. (5.16), the self-localized single soliton of the KEE gets narrower, however its
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Figure 5.15: Self-localized single soliton solution as a function of ξ for various µ2

values.
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Figure 5.16: Self-localized single soliton solution as a function of ξ for various µ4

values.

peak value is conserved for increasing values of µ4 = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5.

In Fig. (5.17), we show the self-localized single soliton power as a function of

soliton eigenvalue, µ. It is known that one of the necessary conditions is the slope
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Figure 5.17: Self-localized single soliton solution power as a function of soliton eigen-
value, µ.

condition dP/dµ ≥ 0 for the soliton stability where

P =

∫ +L

−L
|U |2 dx (5.2)

is the soliton power. This condition is also known as Vakhitov-Kolokolov con-

dition [79–81]. We depict the soliton power as a function of soliton eigenvalue

in Fig. (5.17) for the values of µ ∈ [0, 100]. Clearly, it can be observed that

Vakhitov-Kolokolov slope condition is satisfied.

The second condition, for the slope stability is the spectral condition [79–81]. One

can perform an eigenvalue analysis of the operator of the governing equation for

this purpose. Alternatively, checking the stability of such solitons via a numerical

scheme is a more popular choice. For this purpose, we use the SSFM and perform

the time stepping of the self-localized single soliton of the KEE as an initial

condition in the SSFM. We plot the soliton power as a function of time obtained

using SSFM in Fig. (5.18). As Fig. (5.18) confirms, the soliton power remains

bounded during time stepping with a small amount of distortion due to round-

off errors of the SSFM. This result suggests the stability of the self-localized

single soliton of the KEE, which is no surprise since the analytical forms of this
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Figure 5.18: Self-localized single soliton solution power as a function of time under no
dissipation, µ3 = 0.
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Figure 5.19: Self-localized single soliton peak amplitude as a function of time under
no dissipation, µ3 = 0.

solution are given in [33,58]. In order to investigate the self-localized single soliton

dynamics during time stepping, we depict Fig. (5.20).

In Fig. (5.20), the real part, imaginary part and absolute value of U is depicted for

two different times of t = 0 and t = 5. As this figure confirms, the validity of the

numerical solution is achieved since a stable behavior of the soliton is observed
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Figure 5.20: Self-localized single soliton solution at two different times t = 0 and t = 5
for µ3 = 0; a) Real part of U, b) Imaginary part of U, c) Absolute value of U.

and its peak is conserved at these two different times.
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Figure 5.21: Self-localized single soliton power as a function of time for various dissi-
pation parameter, µ3, values.

If such a self-localized single soliton of the KEE undergoes a dissipative process,

it is likely that the soliton power and its properties will change. In order to

investigate the effects of dissipation parameter on soliton power and the peak

soliton amplitude, we depict Fig. (5.21) and Fig. (5.22) for various values of µ3.
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Figure 5.22: Self-localized single soliton peak amplitude as a function of time for
various dissipation parameter, µ3, values.

While such a dissipation term will dissipate out the stable self-localized single

soliton of the KEE, it will render as an important parameter for the soliton

stabilization when the photorefractive potential term will show up in the coming

sections of this thesis.

5.3.2 Two soliton

In this section, we perform the similar analysis for self-localized two soliton solu-

tion of the KEE. With this aim, we start PM numerical solutions with an initial

condition which has two Gaussians superimposed. The convergence criteria of

the PM simulations is relaxed to normalized change of α to be less than 1×10−5.

In these numerical simulations, we observe that the initial condition rapidly con-

verges to the self-localized to soliton solution of the KEE. As before we depict

the self-localized two soliton shapes in Fig. (5.23), Fig. (5.24) and Fig. (5.25) for

various values of µ1, µ2 and µ4, respectively. The characteristics and changes

of the soliton shapes with changing coefficients is similar to the one soliton case

discussed above.
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Figure 5.23: Self-localized two soliton solution as a function of ξ for various µ1 values.
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Figure 5.24: Self-localized two soliton solution as a function of ξ for various µ2 values.

Similar to the one soliton case, we depict the two soliton power as a function

of soliton eigenvalue, µ, in Fig. (5.26). The behavior of power presented in this

figure also confirms that the Vakhitov-Kolokolov slope condition is satisfied for

the self-localized two soliton solution of the KEE. As before, this result is not

surprising and is in accordance with the analytical results given in [33,58].
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Figure 5.25: Self-localized two soliton solution as a function of ξ for various µ4 values.
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Figure 5.26: Self-localized two soliton solution power as a function of soliton eigenvalue,
µ.

However, as mentioned before the Vakhitov-Kolokolov slope condition is a neces-

sary but not sufficient condition. Therefore, it is mandatory to check the temporal

dynamics of the two soliton solution. As before, taking this two soliton solution

as our initial condition, we perform time integration via SSFM described before.

As indicated in Fig. (5.27) and Fig. (5.28), the self-localized two soliton power

and the peak soliton amplitude remains almost constant when small round-off
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errors are ignored. This finding suggests the stability of the soliton, as expected.
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Figure 5.27: Self-localized two soliton solution power as a function of time under no
dissipation, µ3 = 0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

M
ax

(|
U

|)

Figure 5.28: Self-localized two soliton peak amplitude as a function of time under no
dissipation, µ3 = 0.

Checking Fig. (5.29), where the two soliton solution is depicted at two different

times of t = 0 and t = 5, we observe that two peaks of the soliton are conserved

which confirms both the stability of the soliton and the accuracy of SSFM, con-

sidering the exact analytical solutions.
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Figure 5.29: Self-localized two soliton solution at two different times t = 0 and t = 5
for µ3 = 0; a) Real part of U, b) Imaginary part of U, c) Absolute value of U.
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Figure 5.30: Self-localized two soliton power as a function of time for various dissipation
parameter, µ3, values.

Lastly, we check the effect of dissipation parameter on the power and the peak

amplitude of the two soliton solution and depict our findings in Fig. (5.30) and

Fig. (5.31). In this figure, various values of µ3 is considered and it is observed that

even a small value of this parameter has a strong effect to dissipate the two soliton

solution. The analysis presented here will be more critical when the stabilization

of such solitons under the effect of photorefractive potential considered in the
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Figure 5.31: Self-localized two soliton peak amplitude as a function of time for various
dissipation parameter, µ3, values.

next sections of this work.

5.3.3 Three soliton

We extend the analysis presented above for the single and two soliton solutions

of the KEE to its three soliton solution. In order to reconstruct the three soliton

solutions we begin PM simulations using an initial condition where we superim-

posed three Gaussians. In our simulations, we observe that it is customary to

relax the convergence criteria to normalized change of α to be less than 1× 10−2.

Otherwise, we observed that three Gaussians may converge to self-localized single

or two soliton solutions.

Following the analysis performed for the single and two solitons of the KEE,

we present the self-localized three soliton solutions of the KEE in Fig. (5.32),

Fig. (5.33) and Fig. (5.34) for various values of µ1, µ2 and µ4, respectively, and

we observe a similar tendency in the soliton properties for changing values of

these parameters.
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Figure 5.32: Self-localized three soliton solution as a function of ξ for various µ1 values.
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Figure 5.33: Self-localized three soliton solution as a function of ξ for various µ2 values.

In order to analyze the stability and temporal dynamics of the self-localized three

soliton solution we depict Fig. (5.35), Fig. (5.36), Fig. (5.37) and Fig. (5.38), in

which we present soliton eigenvalue-power graph, time-power graph, time-peak

soliton amplitude graph and the three soliton solution at two different times.

As these figures confirm, our numerical simulations indicate that three soliton

solution of the KEE turns out to be stable in accordance with the analytical

solutions. Similarly, the time-power graph given in Fig. (5.39) calculated using
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Figure 5.34: Self-localized three soliton solution as a function of ξ for various µ4 values.
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Figure 5.35: Self-localized three soliton solution power as a function of soliton eigen-
value, µ.

various values of µ3 shows that a small dissipation parameter can have significant

effect on the soliton stability and dissipate it within short time scales.
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Figure 5.36: Self-localized three soliton solution power as a function of time under no
dissipation, µ3 = 0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

M
ax

(|
U

|)

Figure 5.37: Self-localized three soliton peak amplitude as a function of time under no
dissipation, µ3 = 0.
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Figure 5.38: Self-localized three soliton solution at two different times t = 0 and t = 5
for µ3 = 0; a) Real part of U, b) Imaginary part of U, c) Absolute value of U.
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Figure 5.39: Self-localized three soliton solution power as a function of time for various
dissipation parameter, µ3, values.

5.4 Results and Discussion of the Self-Localized Solutions of the Dis-

sipative Kundu-Eckhaus Equation with Photorefractive Potential

Obtained by Petviashvili Method

In this section, we extend the analysis presented in the preceding section to include

the effects of a potential term. More specifically, we consider the dynamics of self-

localized single, two and three soliton solutions of the KEE under the effect of
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Figure 5.40: Self-localized three soliton peak amplitude as a function of time for various
dissipation parameter, µ3, values.

the photorefractive potential term given as V (ξ) = Io cos2(ξ), where I0 = 2.5

as before. To our best knowledge, the analytical solutions of such a system

is unknown. With this motivation, we perform the numerical solutions of the

KEE with the photorefractive potential term using Eq.(4.14) and Eq.(4.15). A

recent analysis on KEE having photorefractive and saturable type of nonlinearities

show that its self-localized single, two and three soliton solutions are unstable

[78]. In here, we show that those solitons can be stabilized using a dissipation

parameter which physically models a dissipative medium. With this motivation,

we perform the time integration of these solitons using SSFM considering the

effects of dissipation and show that self-localized single, two and three soliton

solutions can be stabilized in a dissipative medium.

5.4.1 Single soliton

As before, using the same computational parameters utilized for the numerical

simulations in the preceding part and using a convergence criteria as the normal-

ized change of α to be less than 1 × 10−10, we construct the self-localized single

soliton solution of the KEE under the effect of dissipation. In here, the initial
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condition is taken to be a Gaussian as before. In Fig. (5.41), Fig. (5.42) and

Fig. (5.43), we depict the self-localized single soliton of the KEE under the effect

of the photorefractive potential term for various values of µ1, µ2 and µ4. The

similar changes soliton profile changes observed for the KEE having no potential

can be observed for the changing values of µ1, µ2 and µ4.
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Figure 5.41: Self-localized single soliton solution as a function of ξ for various µ1 values
with photorefractive potential.
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Figure 5.42: Self-localized single soliton solution as a function of ξ for various µ2 values
with photorefractive potential.
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Figure 5.43: Self-localized single soliton solution as a function of ξ for various µ4 values
with photorefractive potential.

As Fig. (5.41), Fig. (5.42) and Fig. (5.43) confirm, the self-localized single soliton

solution of the KEE under the effect of a photorefractive potential term can be

constructed using the PM. The significant effect of potential on this soliton is a dip

on its peak, similar to the effects discussed in [74] for the NLSE. However, a recent

analysis showed that it is unstable for the soliton eigenvalues, µ, considered [78].

Such an unstable behavior can also be observed for our simulations as depicted

in Fig. (5.44), Fig. (5.45) and Fig. (5.46), that is although Vakhitov-Kolokolov

condition is satisfied, the solutions grow unboundedly in time.

In order to discuss the stability and observe the temporal dynamics of the self-

localized single soliton solution of the KEE with the photorefractive potential, we

again perform its time integration using the SSFM. The time-power and time-

peak amplitude graphs obtained for this soliton are depicted in Fig. (5.45) and

Fig. (5.46), which clearly exhibits an unstable behavior for the non-dissipative

case.

In this thesis, we argue the uses of dissipation to stabilize such solitons. Starting

from the self-localized single soliton solution of the KEE with photorefractive

potential term, we perform its numerical time integration using the dKEE model
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Figure 5.44: Self-localized single soliton solution power as a function of soliton eigen-
value, µ, with photorefractive potential.
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Figure 5.45: Self-localized single soliton solution power as a function of time under no
dissipation, µ3 = 0 with photorefractive potential.

for various values of the dissipation parameter and depict the time-power graph

for these values in Fig. (5.47).

By checking Fig. (5.47) and Fig. (5.48), it is possible to argue that a dissipation

constant of µ3 = 0.01 is enough to prevent the divergence of the power as well

as the peak amplitude of the soliton. While the same behavior can be attained
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Figure 5.46: Self-localized single soliton peak amplitude as a function of time under
no dissipation, µ3 = 0 with photorefractive potential.
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Figure 5.47: Self-localized single soliton solution power as a function of time for various
dissipation parameter, µ3 with photorefractive potential.

using larger µ3, the smallest possible one is desired to keep the soliton dynamics

and shapes unaffected for time scales long enough for many practical purposes.

In order to illustrate the effects of dissipation parameter on the self-localized sin-

gle soliton behavior, we depict Fig. (5.49). This figure presents the self-localized

single soliton solution of the dKEE at two different times of t = 0 and t = 40.

Although some distortion effects can be observed in the soliton shape due to
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Figure 5.48: Self-localized single soliton solution peak amplitude as a function of time
for various dissipation parameter, µ3 with photorefractive potential.
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Figure 5.49: Self-localized single soliton solution at two different times t = 0 and
t = 40 for µ3 = 0.01 with photorefractive potential; a) Real part of U, b) Imaginary
part of U, c) Absolute value of U.

photorefractive potential and dissipation, one can argue that the soliton profile

and localized peak are mainly conserved. This suggests that stabilization of the

unstable solitons of the KEE can be achieved by taking the dissipative effects

into account. In different physical context, the dissipation may refer to diverse
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phenomena including but are not limited to the turbulent losses in a hydrody-

namic medium or dissipation of femtosecond laser pulses used in fiber optical

communication.

5.4.2 Two soliton

We extend the analysis summarized in the preceding section for self-localized

single soliton solution of the dKEE to the two soliton solutions in this section

of thesis. As before, starting from two Gaussians as the initial condition and

relaxing convergence criteria as the normalized change of α to be 1×10−5, one can

numerically obtain the self-localized two soliton solution of the KEE having the

photorefractive potential term using PM. Such self-localized two soliton solutions

are depicted in Fig. (5.50), Fig. (5.51) and Fig. (5.52) for various values of µ1, µ2

and µ4, respectively. It can be seen in these figures that, the self-localized two

soliton solutions have similar characteristics with their single soliton counterparts.

Additionally, the changes in coefficients µ1, µ2 and µ4, have identifiable effects

similar to those discussed in the preceding section for KEE having no and having

photorefractive potential term.
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Figure 5.50: Self-localized two soliton solution as a function of ξ for various µ1 values
with photorefractive potential.
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Figure 5.51: Self-localized two soliton solution as a function of ξ for various µ2 values
with photorefractive potential.
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Figure 5.52: Self-localized two soliton solution as a function of ξ for various µ4 values
with photorefractive potential.

In order to analyze the stability characteristics of the self-localized two soliton

solution of the KEE, we depict Fig. (5.53) and Fig. (5.54). Fig. (5.53) indicate that

self-localized two soliton solution of the KEE satisfied the Vakhitov-Kolokolov

slope condition necessary for soliton stability, however Fig. (5.54) and Fig. (5.55)

show that soliton power and peak amplitude do not remain bounded during time

stepping as discussed before and in [78].
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Figure 5.53: Self-localized two soliton solution power as a function of soliton eigenvalue,
µ with photorefractive potential.
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Figure 5.54: Self-localized two soliton solution power as a function of time under no
dissipation, µ3 = 0 with photorefractive potential.

In order to investigate the possible stabilization of the two soliton solution by

dissipation, we depict Fig. (5.56) and Fig. (5.58). As before, starting from the

two soliton solution as our initial condition, we perform the time stepping of

dKEE under the effect of photorefractive potential term using various values of

dissipation parameter µ3. Fig. (5.56) and Fig. (5.57) confirm that the unbounded

growth of the power and the peak amplitude of the two soliton solution KEE can
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Figure 5.55: Self-localized two soliton peak amplitude as a function of time under no
dissipation, µ3 = 0 with photorefractive potential.
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Figure 5.56: Self-localized two soliton solution power as a function of time for various
dissipation parameter, µ3 with photorefractive potential.

be prevented using the dissipation coefficient of µ3 = 0.002.

Similar to the one soliton case, we depict Fig. (5.58) to investigate the temporal

dynamics of the two soliton solution of the dKEE for µ3 = 0.002. One can realize

that there is distortion in the two soliton profile due to photorefractive potential

term and dissipative effects. However, as before, the two humps of the soliton
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Figure 5.57: Self-localized two soliton peak amplitude as a function of time for various
dissipation parameter, µ3 with photorefractive potential.
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Figure 5.58: Self-localized two soliton solution at two different times t = 0 and t = 40
for µ3 = 0.002 with photorefractive potential; a) Real part of U, b) Imaginary part of
U, c) Absolute value of U.

is quite well preserved even at time t = 40. This finding suggest the possible

stabilization of the self-localized two soliton solution of the KEE using dissipative

effects, while the fundamental attributes of soliton behavior is preserved.
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5.4.3 Three soliton

Lastly, we turn our attention to the dynamics and stability characteristics of

the three soliton solution of the dKEE under the effect of the photorefractive

potential. With this aim, starting from an initial condition in the form of three

Gaussians superimposed, we obtain the self-localized three soliton solution of

the KEE using PM. As discussed for the no potential case, a relaxation of the

convergence criteria defined as normalized change of α to be less than 1 × 10−2

deems necessary to obtain the three solitons. As before, the effects of the various

coefficients of the KEE on those soliton profile are shown in Fig. (5.59), Fig. (5.60)

and Fig. (5.61).
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Figure 5.59: Self-localized three soliton solution as a function of ξ for various µ1 values
with photorefractive potential.

As these figures confirm, the three soliton solution of the KEE under the effect

of photorefractive potential exhibits similar characteristics as the single and two

soliton solutions. Additionally, by checking Fig. (5.62), Fig. (5.63) and Fig. (5.64),

one can observe that their stability characteristics are also similar. That is, the

three soliton solution satisfies the Vakhitov-Kolokolov slope condition necessary

for soliton stability, however its power and peak amplitude grows unboundedly

during temporal evolution.
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Figure 5.60: Self-localized three soliton solution as a function of ξ for various µ2 values
with photorefractive potential.
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Figure 5.61: Self-localized three soliton solution as a function of ξ for various µ4 values
with photorefractive potential.

Similar to the previous cases, we investigate the effects of dissipation parameter

on stabilization of the self-localized three soliton solution of the dKEE. For this

purpose, in Fig. (5.65) we depict its time-power graph and in Fig. (5.66) we

depict its time-peak amplitude graph for various values of µ3 and observe that

the value of µ3 = 0.002 can be used as a minimal coefficient for its stabilization.

Under the effect of this dissipation coefficient, we depict the three soliton shapes
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Figure 5.62: Self-localized three soliton solution power as a function of soliton eigen-
value, µ with photorefractive potential.
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Figure 5.63: Self-localized three soliton solution power as a function of time under no
dissipation, µ3 = 0 with photorefractive potential.

in Fig. (5.67) at two different times of t = 0 and t = 40. As before, the effects

of photorefractive potential term and the dissipation coefficient becomes obvious

in the form of distortions in the profile. However, the three soliton peaks are

especially well-preserved for the absolute value of the field. This result suggests

that the stabilization of the self-localized single, two, three and even N-soliton

solutions of KEE is possible when dissipative effects are incorporated. Although
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Figure 5.64: Self-localized three soliton peak amplitude as a function of time under no
dissipation, µ3 = 0 with photorefractive potential.
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Figure 5.65: Self-localized three soliton solution power as a function of time for various
dissipation parameter, µ3 with photorefractive potential.

some distortion are expected, the peak soliton shapes are relatively well-preserved

for time scales considered. Depending on the phenomena modeled in the frame

of KEE, various types of potential, dissipation coefficient and time scale can be

used to achieve self-localized soliton stability.
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Figure 5.66: Self-localized three soliton solution peak amplitude as a function of time
for various dissipation parameter, µ3 with photorefractive potential.
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Figure 5.67: Self-localized three soliton solution at two different times t = 0 and t = 40
for µ3 = 0.002 with photorefractive potential; a) Real part of U, b) Imaginary part of
U, c) Absolute value of U.
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Chapter 6

Conclusion

In this thesis, we performed an analytical and numerical analysis of the dissipa-

tive Kundu-Eckhaus equation. Firstly, we have derived an analytical solution of

the dissipative Kundu-Eckhaus equation in the form of a simple monochromatic

sinusoid. Then, we have developed a split step Fourier method for its numeri-

cal solution and checked the accuracy and the stability of the numerical scheme

employing the analytical solution as a benchmark problem. After checking the

accuracy and the stability of the scheme, we investigated the rogue wave dynam-

ics of the dissipative Kundu-Eckhaus equation numerically. Our analysis clearly

showed that large amplitude fluctuations with an unexpected behavior can be

observed in the frame of the dissipative Kundu-Eckhaus equation. Following the

vast majority of literature, it is possible to name these fluctuations of the dis-

sipative Kundu-Eckhaus equation as rogue waves. We have analyzed the effects

the various coefficients of dissipative Kundu-Eckhaus equation and a photore-

fractive potential term on such rogue waves. More specifically, we have presented

the probability distribution functions of the chaotic wave field generated in the

frame of the dissipative Kundu-Eckhaus equation and showed that the statistics

of rogue waves significantly depend on the parameters used in the computations

and the coefficients of the dissipative Kundu-Eckhaus equation. Among our find-

ings, we observed that the probability distributions exhibit an increase for larger

amplitudes when the modulation instability parameters β and m increase. Ad-

ditionally, we have also observed that the photorefractive potential term leads to
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generation of waves with larger amplitudes which causes a rightward shift in the

peaks of probability distribution functions. However, the parameter having the

most dominant effect of amplitude probability distribution turned out to be the

dissipation parameter. We have observed that even a small dissipation param-

eter of µ3 = 0.1 can destroy the appearance of rogue waves in the frame of the

dissipative Kundu-Eckhaus equation.

Secondly, we have also investigated the self-localized solitons of the dissipative

Kundu-Eckhaus equation. For this purpose, we have proposed a Petviashvili

method scheme for its numerical solution which can be a used the construct

the self-localized solitons starting from arbitrary initial conditions in the form

of Gaussians. Again, we have discussed the effects of coefficients of the dissi-

pative Kundu-Eckhaus equation on the properties of such self-localized solitons.

We have constructed single, two and three soliton solutions of the dissipative

Kundu-Eckhaus equation by using the Petviashvili method scheme, therefore, it

is possible to conclude that such solitons exist under the effect of no potential as

well as the photorefractive potential. Then, we have investigated the stabilities

and temporal dynamics of those self-localized solitons. In order to study their

temporal dynamics we used the self-localized solitons obtained by the Petviashvili

method as initial conditions and subjected them to time integration using the split

step Fourier method. In this thesis, by analyzing the time versus power and time

versus peak amplitude graphs, we have showed that a dissipation parameter can

be used to stabilize those unstable solitons. We have discussed the temporal

dynamics of those solitons under the effect of dissipation and showed that the

soliton shapes can be preserved with some distortion for time scales sufficient for

many engineering studies.

As discussed in the Introduction of this thesis, the Kundu-Eckhaus equation can

be used as a model to investigate various phenomena in hydrodynamics, fiber and

nonlinear optics, ion-acoustics medium, plasmas and finance, just to name a few.
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It is possible to extend these studies to include the effects of dissipation. There-

fore, the dissipative Kundu-Eckhaus equation can be used as a model to investi-

gate the similar phenomena in those branches when the effects of dissipation/gain

is important. In hydrodynamics and plasmas, for example, the dissipation/gain

term can represent energy loss/gain due to turbulence/momentum transfer into

the hydrodynamic medium or plasma. In fiber optics, the dissipation term can

represent lossy medium whereas the gain stands for energy pumping into the

medium. In finance, the dissipation/gain parameter can be used to model the in-

flow/outflow of assets and goods into/out of the market. Therefore, our findings

on the dissipative Kundu-Eckhaus equation can be used the model rogue wave

phenomena and the existence, stability and interaction of self-localized solitons

in these studies.

In near future, our results can shed light upon many different research activities.

The analysis on the effects of dissipation adopted in this thesis can be easily

extended to other types of equations in nonlinear Schrödinger class. Some possi-

bilities are to investigate the effects of dissipation on various phenomena modeled

in the frame of nonlinear Schrödinger with self-steepening and higher order disper-

sion and nonlinear terms, Dysthe, Sasa-Satsuma, Kodama-Hassegawa and other

equations in the nonlinear Schrödinger class not necessarily restricted to 1D. Ad-

ditionally, the effects dissipation under various types of potentials can also be

studied in the frame of the methodology of this thesis. The potential function

can include saturable nonlinearity terms, or it can be extended to other forms

such as the trapping-well potential for the quantum simple harmonic oscillator

and to photonic graphene potential to study the dissipative dynamics in those

fields.
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