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ENERGY PRESERVING INTEGRATION OF KDV-KDV SYSTEMS

B. KARASÖZEN1, G. ŞİMŞEK2 §

Abstract. Coupled Korteweg de Vries (KdV) equations in Hamiltonian form are inte-
grated by the energy preserving average vector field (AVF) method. Numerical results
confirm long term preservation of the energy and the quadratic invariants. Produced
generalized solitary waves are similar to those in the literature for larger mesh sizes and
time steps. Numerical and continuous dispersion relations of the linearized equations
are compared to analyze the behavior of the traveling waves and the interaction of the
solitons.
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1. Introduction

The coupled equations of Boussinesq type, KdV-KdV system [4]

ut + uux + vx +
1
6vxxx = 0,

vt + (uv)x + ux +
1
6uxxx = 0

(1)

and the symmetric KdV-KdV system [5]

ut +
3
2uux +

1
2vvx + vx +

1
6vxxx = 0,

vt +
1
2(uv)x + ux +

1
6uxxx = 0.

(2)

model surface water waves. They represent approximation to two dimensional Euler equa-
tions for surface wave propagation along a horizontal channel. The space and time variables
x and t represent the position and the elapsed time, respectively along the channel, where
u is the horizontal velocity and v is the deviation of the free surface from its rest position.
Both systems are Hamiltonian partial differential equations (PDEs) of the form

∂u

∂t
= J δH

δu
(3)

1 Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University,
06800 Ankara, Turkey
e-mail: bulent@metu.edu.tr

2 Eindhoven University of Technology, Faculty of Mechanical Engineering, Multiscale Engineering Fluid
Dynamics Institute, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
e-mail: G.Simsek@tue.nl

§ Manuscript received July 01, 2012.
TWMS Journal of Applied and Engineering Mathematics Vol.2 No.2 c⃝ Işık University, Department
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in the domain Ω = (x, t) ∈ R × R. H and J denote the Hamiltonian functional and the
skew-adjoint Hamiltonian operator, respectively [11]. The variational derivative is given
by

δH
δu

=
∂H
∂u

− ∂x

(
∂H
∂ux

)
+ ∂2

x

(
∂H
∂uxx

)
− · · · .

The corresponding skew-adjoint operators and Hamiltonians for the KdV-KdV system
(1) are [4]

J =

(
0 Dx

Dx 0

)
, H =

1

2

∫ (
−v2 − u2 − u2v +

1

6
(u2x + v2x)

)
dx. (4)

The symmetric KdV-KdV system (2) can also be written in Hamiltonian form as [8]

J =

(
Dx 0
0 Dx

)
, H =

1

2

∫ (
−uv − 1

4
uv2 − u3

4
− 1

6
uvxx

)
dx, (5)

where Dx denotes the partial derivative with respect to the space variable x.

Both KdV-KdV systems (1, 2) under periodic boundary conditions possess generalized
solitary waves”, consisting of a solitary pulse decaying symmetrically to oscillations of
small, constant amplitude. In other words, for both systems the solutions are in form of
traveling waves with main pulses like the classical solitary waves and dispersive oscilla-
tions following the main pulses. The small amplitude oscillations appear immediately and
propagate in the system with a higher speed than the main pulses. As a result of this
propagation, the main pulses start to decay and the energy is transferred to the small
oscillations, the ripples. These waves are named as “radiating solitary waves”. The for-
mation of the ripples, stability and the interaction and long time behavior of the wave
forms are studied in [4, 5] by discretizing (1 and 2) in space with the Galerkin finite ele-
ment method by using smooth splines. The resulting stiff system of ordinary differential
equations (ODEs) are discretized with the fourth order accurate two-stage implicit Gauss-
Legendre Runge-Kutta method.

Many partial differential equations like the Korteweg de Vries equation, non-linear
Schrödinger equation, sine-Gordon equation are Hamiltonian PDEs of the form (3). In
the last two decades various geometric integrators were developed for solving Hamiltonian
PDEs by preserving the integrals and symplectic/multisymplectic structure very accu-
rately in long time integration [10]. In this paper we consider energy preserving methods
for integrable evolutionary equations in Hamiltonian form like the coupled KdV-KdV sys-
tems (1) and (2). The energy preserving discrete gradient methods rely on appropriate
approximation of the Hamiltonian H and the skew-adjoint operator J . After suitable
spatial discretization of J and H in (3), the finite dimensional Hamiltonian system

u̇ = J∇H(u), u ∈ RN (6)

is obtained. J stands for the N × N skew-symmetric structure matrix, representing the
discrete approximation of the skew-adjoint operator J andH(u) for the discretized Hamil-
tonian. Recently linear energy preserving collocation methods were developed for Hamil-
tonian ODEs (6) known as average vector field methods (AVF’s) [9, 6] as an extension to
the mid-point rule. The finite-difference semi-discretized KdV-KdV systems (1) and (2)
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have skew-symmetric constant structure matrices J . The energy preserving AVF integra-
tor [9] for these semi-discretized Hamiltonian PDEs is given by

un+1 − un

∆t
= J

∫ 1

0
∇H(un + τ(un+1 − un))dτ. (7)

Higher order AVF methods are constructed by using the Gaussian quadrature and they
are interpreted as Runge-Kutta method with continuous stages for canonical and non-
canonical Hamiltonian systems. The computation of the integrals occurring in the AVF
method may be time consuming compared to the symplectic integrators like the mid-pint
rule and implicit Runge-Kutta methods of Gauss-Legendre type. When the Hamiltonian
is polynomial as the coupled KdV equations (1) and (2), the integrals can be computed
exactly and the computational cost is comparable with the symplectic Gauss-Legendre
Runge-Kutta methods.

The dispersion and group velocity analysis of the discretized linear wave equations are
essential tools to understand the behavior of the numerical solutions and to determine
how accurately the nonlinear dynamics is resolved by the discretization. Numerical errors
in the dispersion can destroy the qualitative features of the solutions. In order to analyze
the wave forms of the solitary traveling waves we have performed a dispersion analysis.
The dispersive properties of symplectic and multisymplectic methods were investigated
for the KdV equation [1, 2]. We investigate here the energy preserving AVF integrator (7)
under the aspect of preservation of the dispersion properties for the linearized KdV-KdV
systems (1) and (2).

The structure of the paper is as follows. In the next section, the formulation of the
AVF method for the KdV-KdV systems is presented with some numerical experiments,
illustrating the energy preservation in long term integration. In Section 3, the numerical
dispersion relations of the AVF method are investigated for linearized KdV-KdV systems.
The paper ends with some conclusions.

2. Average vector field integration of coupled KdV equations

We consider periodic boundary conditions such that no additional boundary terms will
appear after semi-discretization. For the discretization of (3) in space, it is crucial to
preserve the skew-adjoint structure of J to obtain the Hamiltonian system ODEs. The
integrals in the Hamiltonians can be approximated either by the rectangle or trapezoidal
rule. We use here the forward finite difference approximation for the first order derivatives
in the Hamiltonians and the rectangle rule for approximation of the integrals.

For semi-discrete systems we use the notation unj where the index j corresponds to in-

crements in space and n to increments in time. The discrete approximation of u(j∆x, n∆t)
is denoted by un = (un1 , . . . , u

n
j , . . . , u

n
N )T .

Discrete forms of the skew-adjoint Hamiltonian operator J and the Hamiltonian (4)
are

J =
1

2∆x

(
0 A
A 0

)
, H =

1

2

N∑
j=1

(
−v2j − u2j − u2jvj +

1

6∆x2
((uj+1 − uj)

2 + (vj+1 − vj)
2)

)
∆x,
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A =


0 1 −1
−1 0 1

. . .
. . .

. . .

−1 0 1
1 −1 0

 ,

where A is an N×N tridiagonal circulant matrix due to the periodic boundary conditions.
Applying the AVF method to (1) gives

un+1 − un

∆t
= − 1

4∆x
A

(
vn +

1

3
ûn

)
− 1

24∆x3
A
(
ṽn + ṽn+1

)
,

vn+1 − vn

∆t
= − 1

4∆x
A (un + ũv)− 1

24∆x3
A
(
ũn + ũn+1

)
,

where the vectors ûn, ũn, and ũv are defined as

ûn = (. . . , (unj )
2 + unj u

n+1
j + (un+1

j )2, . . .)T ,

ũn = (. . . , unj+1 − 2unj + unj−1, . . .)
T ,

ũv = (. . . ,
2

3
unj v

n
j +

1

3

(
unj v

n+1
j + un+1

j vnj

)
+

2

3
un+1
j vn+1

j , . . .)T ,

with the corresponding vectors ũn+1, ṽn, ṽn+1. The corresponding semi-discrete skew-
symmetric J matrix and the disretized HamiltonianH for the symmetric KdV-KdV system
(2) are

J =
1

2∆x

(
A 0
0 A

)
, H =

1

2

N∑
j=1

(
−ujvj −

1

4
ujv

2
j −

u3j
4

− uj(vj+1 − 2vj + vj−1)

6∆x2

)
∆x.

Application of the AVF method leads to

un+1 − un

∆t
= − 1

4∆x
A
(
vn + vn+1

)
− 1

2∆x
A

(
1

4
û+

1

12
v̂

)
− 1

12∆x3
A
(
ṽn + ṽn+1

)
,

vn+1 − vn

∆t
= − 1

4∆x
A
(
un + un+1

)
− 1

8∆x
Aũv − 1

12∆x3
A
(
ũn + ũn+1

)
.

The resulting nonlinear system of equations are solved by Newton’s method.
Both KdV-KdV systems (1) and (2) are solved with the AVF integrator with the initial

condition in [4]

u(x, 0) = 0, v(x, 0) = 0.3e−(x+100)2/25 (8)

in the interval x ∈ [−150, 150] for coarser mesh sizes N = 500 and larger time steps
∆t = 0.04 than in [4] up to t = 100. The errors in the Hamiltonian functional in Figure 1
show that energies in both systems are conserved up to the machine accuracy.

Other invariants are I1 =
∫
uv dx for the KdV-KdV system (1) and I1 =

∫ (
u2 + v2

)
dx

for the symmetric KdV-KdV system (2). It is well known that the quadratic invariants
are preserved by symplectic integrators with a small error in long time integration. The
numerical errors for these quadratic invariants in Figure 2 indicate that this is the case for
the energy preserving AVF integrator, too. There are also trivial linear invariants, which
are I2 =

∫
u dx and I3 =

∫
v dx. Since the preservation of the linear invariants is a strict

condition for the energy and the quadratic invariants preservation, they are not shown
particularly.

Since the numerical results for the initial condition (8) for both KdV-KdV systems are
similar, the solitary wave solutions of the KdV-KdV system (1) are shown in Figure 3 at
t = 100. Two wave trains are moving in opposite directions and producing solitary wave
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Figure 1. Error for the energy of the KdV-KdV (left) and the symmetric
KdV-KdV (right)
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Ī
1
−

I
1

0 10 20 30 40 50 60 70 80 90 100

−8

−6

−4

−2

0

2

4

x 10
−5

time

Ī
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Figure 2. Conserved quantities I1 of the KdV-KdV (left) and the sym-
metric KdV-KdV (right)
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Figure 3. Solutions of the KdV-KdV systems for u (left) and v (right)

solutions with ripples decaying symmetrically around the solitons as in [4].

We have also solved the symmetric KdV-KdV system (2) with the initial conditions Eq.
4.1 in [5]

u0 = ϕ(x), v0 = ϕ(x) +
1

4
ϕ2(x),
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where ϕ(x) = Asech2
(√

3A
2 x

)
, with A = 0.6 in order to show the emergence of so called

radiating waves.
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Figure 4. Solutions of the symmetric KdV-KdV system for u at t = 100
and at t = 500 (left)

The numerical results in Figure 4 are very similar for long term integration to those in
[5].

As a summary, for both KdV-KdV system the AVF method preserves the Hamiltonians
and the quadratic invariants in long term integration well. The numerical results indicate
that using second order accurate finite difference discretization and second order in time
AVF integrator numerically similar results are obtained as in [4, 5]. We would like to
remark that in both papers a fourth order space and time discretization is used which
increases the computational cost for solving the implicit equations by Newton’s method.

3. Dispersion analysis

In this section, the dispersion relations and the group velocities of the linearized KdV-
KdV (1) and the symmetric KdV-KdV (2) systems are examined. Nonlinear PDEs such
as KdV-KdV systems are dispersive, i.e. the wave packets with different wave numbers
travel with different velocities. The preservation of the energy in long time alone can not
explain the accuracy of the solutions. The behavior of a nonlinear PDE can be determined
by the dispersion relation in regions where linearized PDE is a valid approximation to the
nonlinear PDE. A dispersion relation ω = ω(k) of a constant coefficient linear evolution
equation determines how time oscillations eiωt of the frequencies are linked to spatial
oscillations eikx of a wave number k. Any linear constant coefficients PDE has a solution
of the form

u(x, t) =

∫ ∞

∞
A(k)ei(kx+ω(k)t)dk, i =

√
−1. (9)

The dispersion relation D(ω, k) = 0 is obtained by assuming that each wave Aei(kx+ωt) it-
self is a solution of the linear PDE. Each wave travels with the phase velocity ωp(k) = ω/k,
characterizing the speed of the wave front. The speed of the energy transport of the com-
posite wave packet is characterized by the the group velocity ω′(k). The non-vanishing
group velocity dispersion causes spatial spreading of the wave packet. Numerical errors in
the dispersion relation and the group velocities can lead to the propagation of the numeri-
cal wave with different velocity and can destroy the qualitative feature of the solutions. In
numerical simulations, it is important to preserve the sign of the group velocity in order
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to avoid spurious solutions. Recently, dispersive properties of symplectic and multisym-
plectic integrators for the KdV equation are examined in [1, 2]. It was shown that the
multisymplectic Preissman box scheme qualitatively preserves the dispersion relation of
the KdV equation [1, 2].

In this section, the dispersion relations and the group velocities of the linearized KdV-
KdV (1) and the symmetric KdV-KdV (2) systems are examined. The linearized KdV-
KDV system (1) around the constant solutions ū, v̄ becomes

ut +
1
6vxxx + ūux + vx = 0,

vt +
1
6uxxx + (1 + v̄)ux + ūvx = 0.

(10)

The continuous dispersion relations and group velocities are

ω1(k) =
c

6
k3 − (a+ c) k, ω2(k) =

1

6c
k3 −

(
1 + b

c
+ a

)
k, (11)

dω1(k)

dk
=

c

2
k2 − (a+ c) ,

dω2(k)

dk
=

1

2c
k2 −

(
1 + b

c
+ a

)
, (12)

with a = ū, b = v̄ and c = ū/v̄.
Numerical dispersion relations are for the discrete version of the Fourier mode (9) given

as:

ũnj = ûei(jk∆x+nω∆t) = ûei(jk̄+nω̄), (13)

where k̄ = k∆x and ω̄ = ω∆t, denote the numerical wavenumber and the numerical
velocity, respectively in the range −π ≤ k̄, ω̄ ≤ π.

Numerical dispersion relations are obtained by solving the linearized KdV-KdV equation
(10) with the AVF method are

ω̄1(k̄) = 2 arctan
( −λc
6∆x2 (sin k̄(cos k̄ − 1))− (a+ c) λ

2 sin k̄
)
,

ω̄2(k̄) = 2 arctan
( −λ
6∆x2c

(sin k̄(cos k̄ − 1))−
(
1+b
c + a

)
λ
2 sin k̄

)
.

(14)

The continuous (11) (solid curves) and the discrete (14) (dotted curves) dispersion relations
are compared in Figure 5 by choosing a = b = c = 0.1, ∆t = 0.1 for λ = 0.1 (left
plot), and for λ = 0.005 (right plot). For small wavenumbers k̄, both the analytical
and the numerical dispersion behave similarly. For small wavenumbers each frequency
ω̄ corresponds to a particular value of k̄, but for large values of wavenumber multiple
discrete wavenumbers correspond to a single frequency. This is due the fact that for
the AVF integrator there exists no diffeomorphism between the continuous and discrete
dispersion relations as opposed to the symplectic and multisymplectic integrators for the
KdV equation [1, 2, 3]. Artificial modes may also exist for large wave numbers.

The group velocity of the linearized KdV-KdV systems can be obtained by taking the
first derivative of the dispersion relations (14) with respect to k̄. The difference between
the continuous and the discrete group velocities can be observed in Figure 6. Similar to
the dispersion relations, for different values of λ, the numerical group velocities are close to
the analytical ones for small wavenumbers, corresponding to long waves. That is, the sign
of the group velocity, i.e. the direction of the flow for the waves, is well preserved for long
waves. For large k̄ values AVF integrator produces traveling waves where the numerical
results are slower than the continuous ones. Again, because for the AVF integrator there
exists no diffeomorphism between the continuous and discrete dispersion relations unlike
for symplectic and multisymplectic integrators for the KdV equation, the sign of the group
velocity is not preserved for all wave numbers.
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Figure 5. Dispersion curves for u of the linearized KdV-KdV system (1)
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Figure 6. Group velocities for u of the linearized KdV-KdV system (1)

The continuous and discrete dispersion relations and group velocities for the symmetric
KdV-KdV equations (2) are similar to those for the KdV-KdV equation (1), and they are
not given here.

4. Conclusions

The numerical results confirm the long-term preservation of the energy (Hamiltonian)
and the integrals of the underlying equations. The numerical results compare well with
those in the literature obtained by other methods. Dispersion analysis reveals that there
does not exist such a diffemorphism between the continuous and discrete dispersion rela-
tions for the AVF method. Therefore for some wavenumber parasitic waves may exist.

Because the energy preserving methods are implicit as symplectic and multisymplectic
integrators, the resulting nonlinear equations must be solved within the round-off error,
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to preserve symplecticity or the energy. This limits the applicability of these methods
to large-scale systems. In these situations, either splitting can be used which are based
on the splitting of the vector field in linear and nonlinear parts or linearly implicit meth-
ods which require the accurate solution of a linear system of equations in each time step [7].
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