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ESTIMATING COEFFICIENTS FOR SUBCLASSES OF

MEROMORPHIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH

LINEAR OPERATOR
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Abstract. In this paper we define a differential linear operator, applying it on the
subclasses HΣ∗

B
(α, n, λ) of meromorphic starlike bi-univalent functions of order α, and

HΣ̃∗
B
(α, n, λ) of meromorphic strongly starlike bi-univalent functions of order α, also we

find estimates on the coefficients |bo| and |b1| for functions in these subclasses.
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1. Introduction

Let A be the class of functions of the form:

f(z) = z +
∞∑
k=2

akz
k, (1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1} and let S denote the
subclass of functions in A which are univalent in U . The well-known Koebe one-quarter
theorem asserts that the function f ∈ S has an inverse defined on disc Uρ = {z ∈ C :
|z| < ρ}, (ρ ≥ 1

4). Thus, the inverse of f ∈ S is a univalent analytic function on the disc

Uρ. The function f ∈ A is called bi-univalent in U if f−1 is also univalent in the whole
disc U . The class µ of bi-univalent analytic functions was introduced in 1967 by Lewin
[11] and he showed that, for every function f ∈ µ of the form (1), the second coefficient
of f satisfy the inequality |a2| < 1.51. Subsequently, Brannan and Clunie [3] improved
Lewin’s result by showing |a2| ≤

√
2. Later, Netanyahu [12] proved that maxf∈µ|a2| = 4

3 .
Also, several authors such as Brannan and Taha [4], Taha [18] investigated subclasses of
bi-univalent analytic functions and found estimates on the initial coefficients for functions
in these subclasses. Recently Ali et al. [2], Frasin and Aouf [7], Srivastava et al.[16], Juma
and Aziz [1] also introduced new subclasses of bi-univalent functions and found estimates
on the coefficients a2 and a3 for functions in these classes.
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Suzeini et al.[17] considered and studied the concept of bi-univalency for classes of
meromorphic functions defined on ∆ = {z : z ∈ C and 1 < |z| < ∞}. For this purpose
they denote by Σ the class of all meromorphic univalent functions g of the form

g(z) = z +

∞∑
k=0

bk
zk

, (2)

defined on the domain ∆. Since g ∈ Σ is univalent, it has an inverse g−1 that satisfy

g−1(g(z)) = z (z ∈ ∆),

and

g(g−1(w)) = w (M < |w| < ∞,M > 0).

Furthermore, the inverse function g−1 has a series expansion of the form

g−1(w) = w +

∞∑
k=0

Bk

wk
, (3)

where M < |w| < ∞. Analogous to the bi-univalent analytic functions, a function g ∈ Σ is
said to be meromorphic bi-univalent if g−1 ∈ Σ. The class of all meromorphic bi-univalent
functions is denoted by ΣB.

Estimates on the coefficients of meromorphic univalent functions were investigated in
the literature; for example, Schiffer [13] obtained the estimate |b2| ≤ 2

3 for meromorphic
univalent functions g ∈ Σ with bo = 0. In 1971, Duren [6] gave an elementary proof of
the inequality |bn| ≤ 2

n+1 on the coefficient of meromorphic univalent functions g ∈ Σ
with bk = 0 for 1 ≤ k < n

2 . For the coefficients of the inverse of meromorphic univalent
functions, Springer [15] proved that

|B3| ≤ 1 and |B3 +
1

2
B2

1 | ≤
1

2
,

and conjectured that

|B2n−1| ≤
(2n− 2)!

n!(n− 1)!
(n = 1, 2, 3, ...).

In 1977, Kubota [10] has proved that the Springer conjecture is true fore n = 3, 4, 5 and
subsequently Schober [14] obtained sharp bounds for the coefficients B2n−1, 1 ≤ n ≤ 7,
of the inverse of meromorphic univalent functions in ∆. Recently, Kapoor and Mishra [9]
found the coefficient estimates for a class consisting of inverses of meromorphic starlike
univalent functions of order α in ∆.

For functions g(z) ∈ Σ, in the form (2) we define the following linear operator

F 0
λg(z) = g(z) (0 ≤ λ <

1

k + 1
) and Fn

0 g(z) = g(z) (n = 0, 1.2, ...),

F 1
λg(z) = Fλg(z) = (1− λ)g(z) + λzg′(z) = z +

∞∑
k=0

[1− (k + 1)λ]
bk
zk

(0 ≤ λ <
1

k + 1
),

and

F 2
λg(z) = Fλ[Fλg(z)] = z +

∞∑
k=0

[1− (k + 1)λ]2
bk
zk

(0 ≤ λ <
1

k + 1
),

hence, it can be easily seen that

Fn
λ g(z) = z +

∞∑
k=0

[1− (k + 1)λ]n
bk
zk

(0 ≤ λ <
1

k + 1
, n ∈ No = {0, 1, 2, ...}). (4)
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In the present investigation, certain subclasses of meromorphic bi-univalent functions
are introduced and estimates for the coefficients bo and b1 of functions in these sub-
classes are obtained. These coefficients results are obtained by associating the given func-
tions with the functions having positive real part. An analytic function p of the form
p(z) = 1 + c1z + c2z

2 + ... is called a function with positive real part in U if Re(p(z)) > 0
for all z ∈ U . The class of all functions with positive real part is denoted by P.

The following lemma for functions with positive real part will be useful in the sequel.

Lemma 1.1 ([8],Theorem 3, p.80). The coefficients cn of a function p ∈ P satisfy the
sharp inequality |cn| ≤ 2 (n ≥ 1)

2. Coefficient estimates

In this section, certain subclasses like the subclass HΣ∗
B
(α, n, λ) of the meromorphic

bi-univalent functions associated with the linear operator Fn
λ g(z) are introduced and esti-

mates on the coefficients bo and b1 for functions in these subclasses are obtained.
The class of all meromorphic starlike bi-univalent functions of order α is denoted by

Σ∗
B(α).

Definition 2.1. A function g(z) given by (2) is said to be in the subclass HΣ∗
B
(α, n, λ) if

the following conditions are satisfied:

Re(
z(Fn

λ g(z))
′

Fn
λ g(z)

) > α (0 ≤ α < 1, 0 ≤ λ <
1

k + 1
, n = 0, 1, 2, ..., z ∈ ∆), (5)

and

Re(
w(Fn

λ h(w))
′

Fn
λ h(w)

) > α (0 ≤ α < 1, 0 ≤ λ <
1

k + 1
, n = 0, 1, 2, ..., w ∈ ∆), (6)

where the function h(w) is the inverse of g(z) given by (3).

Theorem 2.1. Let the function g(z) given by (2) be in the subclass HΣ∗
B
(α, n, λ). Then

|bo| ≤ 2
(1− α)

(1− λ)
n
2

and |b1| ≤
(1− λ)n(1− α)

√
1 + 4(1− λ)2n(1− α)2

(1− λ)n(1− 2λ)n
.

Proof. Let g(z) be the meromorphic starlike bi-univalent function of order α given by (2).
Then

z(Fn
λ g(z))

′

Fn
λ g(z)

= 1− (1− λ)nbo
z

+
(1− λ)2nb2o − 2(1− 2λ)nb1

z2

− (1− λ)3nb3o − 3(1− λ)n(1− 2λ)nbob1 + 3(1− 2λ)nb2
z3

+ ... (z ∈ ∆).

(7)

Since h(w) = g−1(w) is the inverse of g(z) whose series expansion is given in (3),
and, since

w = g(h(w)) = g(g−1(w)).

So, some calculations gives

Bo = −bo, B1 = −b1, B2 = −b2 − bob1 and B3 = −(b3 + 2bob2 + b2ob1 + b21). (8)



42 TWMS J. APP. ENG. MATH. V.4, NO.1, 2014

Using equations of (8) in (3), shows that the series expansion of the function g−1(w)
becomes

h(w) = g−1(w)

= w − bo − b1
1

w
− (b2 + bob1)

1

w2
− (b3 + 2bob2 + b2ob1 + b21)

1

w3
+ ... .

(9)

Using (9)we have

w(Fn
λ h(w))

′

Fn
λ h(w)

= 1 +
(1− λ)nbo

w
+

(1− λ)2nb2o + 2(1− 2λ)nb1
w2

+
(1− λ)3nb3o + 3(1− λ)n(1− 2λ)nbob1 + 3(1− 3λ)nb2 + 3(1− 3λ)nbob1

w3

+ ... (w ∈ ∆).
(10)

Since g(z) is a bi-univalent meromorphic starlike function of order α, there exist two
functions p,q with positive real parts in ∆ of the forms

p(z) = 1+
c1
z
+

c2
z2

+
c3
z3

+... (z ∈ ∆) and q(w) = 1+
d1
w

+
d2
w2

+
d3
w3

+... (w ∈ ∆), (11)

such that

z(Fn
λ g(z))

′

Fn
λ g(z)

= α+ (1− α)p(z) and
w(Fn

λ h(w))
′

Fn
λ h(w)

= α+ (1− α)q(w). (12)

From (11),(12),(7) and (10) we obtain

(1− α)c1 = −(1− λ)nbo , (1− α)c2 = (1− λ)2nb2o − 2(1− 2λ)nb1,

(1− α)d1 = (1− λ)nbo and (1− α)d2 = (1− λ)2nb2o + 2(1− 2λ)nb1.
(13)

Since Re(p(z)) > 0 in ∆, the function p(1z ) ∈ P and hence the coefficients cn and
similarly the coefficients dn of the function q satisfy the inequality in lemma 1.1 and this
immediately with equations in (13) yields the following estimates:

|bo| ≤ 2
(1− α)

(1− λ)
n
2

and |b1| ≤
(1− λ)n(1− α)

√
1 + 4(1− λ)2n(1− α)2

(1− λ)n(1− 2λ)n
. (14)

This completes the proof of Theorem 2.1. �

If we put n = 0 or λ = 0, in Theorem 2.1 then we get the following corollary due to
[17].

Corollary 2.1. Let the function g(z) given by (2) be in the subclass HΣ∗
B
(α). Then

|bo| ≤ 2(1− α), and |b1| ≤ (1− α)
√

1 + 4(1− α)2. (15)

The class of all meromorphic strongly starlike bi-univalent functions of order α is de-
noted by Σ̃∗

B(α).)

Definition 2.2. A function g(z) given by (2) is said to belong to the subclass HΣ̃∗
B
(α, n, λ)

of bi-univalent strongly starlike meromorphic functions of order α, 0 < α ≤ 1 if the fol-
lowing conditions are satisfied:

|arg(
z(Fn

λ g(z))
′

Fn
λ g(z)

)| < απ

2
(0 < α ≤ 1, 0 ≤ λ <

1

k + 1
, n = 0, 1, 2, ..., z ∈ ∆), (16)
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and

|arg(
w(Fn

λ h(w))
′

Fn
λ h(w)

)| < απ

2
(0 < α ≤ 1, 0 ≤ λ <

1

k + 1
, n = 0, 1, 2, ..., w ∈ ∆), (17)

where the function h(w) is the inverse of g(z) given by (3).

Theorem 2.2. Let the function g(z) given by (2) be in the subclass HΣ̃∗
B
(α, n, λ). Then

|bo| ≤
2α

|1− λ|n
and |b1| ≤

√
5

α2

(1− 2λ)n
.

Proof. Consider the function g ∈ HΣ̃∗
B
(α, n, λ). Then, by Definition 2 of the subclass

HΣ̃∗
B
(α, n, λ)

z(Fn
λ g(z))

′

Fn
λ g(z)

= (p(z))α, (18)

and
w(Fn

λ h(w))
′

Fn
λ h(w)

= (q(w))α, (19)

where
z(Fn

λ g(z))′

Fn
λ g(z) is given by (7) and p(z) is given in (11) so,

1− (1− λ)nbo
z

+
(1− λ)2nb2o − 2(1− 2λ)nb1

z2

− (1− λ)3nb3o − 3(1− λ)n(1− 2λ)nbob1 + 3(1− 2λ)nb2
z3

+ ...

= 1 +
αc1
z

+
1
2α(α− 1)c21 + αc2

z2

+
1
6α(α− 1)(α− 2)c31 + α(α− 1)c1c2 + αc3

z3
+ ... .

(20)

Equating the coefficients in both sides of equation (20) we get

αc1 = −(1− λ)nbo and
1

2
α(α− 1)c21 + αc2 = (1− λ)2nb2o − 2(1− 2λ)nb1. (21)

Applying q(w) from (11) and
w(Fn

λ h(w))′

Fn
λ h(w) from (12) in (19) we get

1+
(1− λ)nbo

w
+

(1− λ)2nb2o + 2(1− 2λ)nb1
w2

+
(1− λ)3nb3o + 3(1− λ)n(1− 2λ)nbob1 + 3(1− 3λ)nb2 + 3(1− 3λ)nbob1

w3
+ ....

= 1 +
αd1
w

+
1
2α(α− 1)d21 + αd2

w2

+
1
6α(α− 1)(α− 2)d31 + α(α− 1)d1c2 + αd3

w3
+ ... .

(22)

Equating the coefficients in both sides of equation (22) we get

αd1 = (1− λ)nbo and
1

2
α(α− 1)d21 + αd2 = (1− λ)2nb2o + 2(1− 2λ)nb1. (23)

From (21), (23) and applying Lemma 1.1, follows that

|bo| ≤
2α

|1− λ|n
and |b1| ≤

√
5

α2

(1− 2λ)n
.
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This completes the proof of Theorem 2.2. �
If we put n = 0 or λ = 0, in Theorem 2.2 then we get the following corollary due to

[17].

Corollary 2.2. Let the function g(z) given by (2) be in the subclass HΣ̃∗
B
(α). Then

|bo| ≤ 2α, and |b1| ≤
√
5α2. (24)
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