# ESTIMATING COEFFICIENTS FOR SUBCLASSES OF MEROMORPHIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH LINEAR OPERATOR 

FATEH S. AZIZ ${ }^{1}$, ABDUL RAHMAN S. JUMA ${ }^{2} \S$


#### Abstract

In this paper we define a differential linear operator, applying it on the subclasses $H_{\Sigma_{\mathfrak{B}}^{*}}^{*}(\alpha, n, \lambda)$ of meromorphic starlike bi-univalent functions of order $\alpha$, and $H_{\tilde{\Sigma}_{\mathfrak{B}}^{*}}(\alpha, n, \lambda)$ of meromorphic strongly starlike bi-univalent functions of order $\alpha$, also we find estimates on the coefficients $\left|b_{o}\right|$ and $\left|b_{1}\right|$ for functions in these subclasses.


Keywords: Analytic, univalent and Bi-univalent functions, Starlike and strongly starlike functions, Linear operator,Meromorphic functions, Coefficient estimates.

AMS Subject Classification: 30C45, 30C50.

## 1. Introduction

Let $A$ be the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$ and let $S$ denote the subclass of functions in $A$ which are univalent in $U$. The well-known Koebe one-quarter theorem asserts that the function $f \in S$ has an inverse defined on disc $U_{\rho}=\{z \in \mathbb{C}$ : $|z|<\rho\},\left(\rho \geq \frac{1}{4}\right)$. Thus, the inverse of $f \in S$ is a univalent analytic function on the disc $U_{\rho}$. The function $f \in A$ is called bi-univalent in $U$ if $f^{-1}$ is also univalent in the whole disc $U$. The class $\mu$ of bi-univalent analytic functions was introduced in 1967 by Lewin [11] and he showed that, for every function $f \in \mu$ of the form (1), the second coefficient of $f$ satisfy the inequality $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [3] improved Lewin's result by showing $\left|a_{2}\right| \leq \sqrt{2}$. Later, Netanyahu [12] proved that $\max _{f \in \mu}\left|a_{2}\right|=\frac{4}{3}$. Also, several authors such as Brannan and Taha [4], Taha [18] investigated subclasses of bi-univalent analytic functions and found estimates on the initial coefficients for functions in these subclasses. Recently Ali et al. [2], Frasin and Aouf [7], Srivastava et al.[16], Juma and Aziz [1] also introduced new subclasses of bi-univalent functions and found estimates on the coefficients $a_{2}$ and $a_{3}$ for functions in these classes.

[^0]Suzeini et al.[17] considered and studied the concept of bi-univalency for classes of meromorphic functions defined on $\Delta=\{z: z \in \mathbb{C}$ and $1<|z|<\infty\}$. For this purpose they denote by $\Sigma$ the class of all meromorphic univalent functions $g$ of the form

$$
\begin{equation*}
g(z)=z+\sum_{k=0}^{\infty} \frac{b_{k}}{z^{k}}, \tag{2}
\end{equation*}
$$

defined on the domain $\Delta$. Since $g \in \Sigma$ is univalent, it has an inverse $g^{-1}$ that satisfy

$$
g^{-1}(g(z))=z \quad(z \in \Delta)
$$

and

$$
g\left(g^{-1}(w)\right)=w \quad(M<|w|<\infty, M>0) .
$$

Furthermore, the inverse function $g^{-1}$ has a series expansion of the form

$$
\begin{equation*}
g^{-1}(w)=w+\sum_{k=0}^{\infty} \frac{B_{k}}{w^{k}}, \tag{3}
\end{equation*}
$$

where $M<|w|<\infty$. Analogous to the bi-univalent analytic functions, a function $g \in \Sigma$ is said to be meromorphic bi-univalent if $g^{-1} \in \Sigma$. The class of all meromorphic bi-univalent functions is denoted by $\Sigma_{\mathfrak{B}}$.

Estimates on the coefficients of meromorphic univalent functions were investigated in the literature; for example, Schiffer [13] obtained the estimate $\left|b_{2}\right| \leq \frac{2}{3}$ for meromorphic univalent functions $g \in \Sigma$ with $b_{o}=0$. In 1971, Duren [6] gave an elementary proof of the inequality $\left|b_{n}\right| \leq \frac{2}{n+1}$ on the coefficient of meromorphic univalent functions $g \in \Sigma$ with $b_{k}=0$ for $1 \leq k<\frac{n}{2}$. For the coefficients of the inverse of meromorphic univalent functions, Springer [15] proved that

$$
\left|B_{3}\right| \leq 1 \quad \text { and } \quad\left|B_{3}+\frac{1}{2} B_{1}^{2}\right| \leq \frac{1}{2}
$$

and conjectured that

$$
\left|B_{2 n-1}\right| \leq \frac{(2 n-2)!}{n!(n-1)!} \quad(n=1,2,3, \ldots)
$$

In 1977, Kubota [10] has proved that the Springer conjecture is true fore $n=3,4,5$ and subsequently Schober [14] obtained sharp bounds for the coefficients $B_{2 n-1}, 1 \leq n \leq 7$, of the inverse of meromorphic univalent functions in $\Delta$. Recently, Kapoor and Mishra [9] found the coefficient estimates for a class consisting of inverses of meromorphic starlike univalent functions of order $\alpha$ in $\Delta$.

For functions $g(z) \in \Sigma$, in the form (2) we define the following linear operator

$$
\begin{gathered}
F_{\lambda}^{0} g(z)=g(z) \quad\left(0 \leq \lambda<\frac{1}{k+1}\right) \quad \text { and } \quad F_{0}^{n} g(z)=g(z) \quad(n=0,1.2, \ldots) \\
F_{\lambda}^{1} g(z)=F_{\lambda} g(z)=(1-\lambda) g(z)+\lambda z g^{\prime}(z)=z+\sum_{k=0}^{\infty}[1-(k+1) \lambda] \frac{b_{k}}{z^{k}} \quad\left(0 \leq \lambda<\frac{1}{k+1}\right)
\end{gathered}
$$

and

$$
F_{\lambda}^{2} g(z)=F_{\lambda}\left[F_{\lambda} g(z)\right]=z+\sum_{k=0}^{\infty}[1-(k+1) \lambda]^{2} \frac{b_{k}}{z^{k}} \quad\left(0 \leq \lambda<\frac{1}{k+1}\right),
$$

hence, it can be easily seen that

$$
\begin{equation*}
F_{\lambda}^{n} g(z)=z+\sum_{k=0}^{\infty}[1-(k+1) \lambda]^{n} \frac{b_{k}}{z^{k}} \quad\left(0 \leq \lambda<\frac{1}{k+1}, n \in \mathbb{N}_{o}=\{0,1,2, \ldots\}\right) \tag{4}
\end{equation*}
$$

In the present investigation, certain subclasses of meromorphic bi-univalent functions are introduced and estimates for the coefficients $b_{o}$ and $b_{1}$ of functions in these subclasses are obtained. These coefficients results are obtained by associating the given functions with the functions having positive real part. An analytic function $p$ of the form $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is called a function with positive real part in $U$ if $\operatorname{Re}(p(z))>0$ for all $z \in U$. The class of all functions with positive real part is denoted by $\mathbf{P}$.

The following lemma for functions with positive real part will be useful in the sequel.
Lemma 1.1 ([8],Theorem 3, p.80). The coefficients $c_{n}$ of a function $p \in \mathbf{P}$ satisfy the sharp inequality $\left|c_{n}\right| \leq 2 \quad(n \geq 1)$

## 2. Coefficient estimates

In this section, certain subclasses like the subclass $H_{\Sigma_{\mathfrak{B}}^{*}}(\alpha, n, \lambda)$ of the meromorphic bi-univalent functions associated with the linear operator $F_{\lambda}^{n} g(z)$ are introduced and estimates on the coefficients $b_{o}$ and $b_{1}$ for functions in these subclasses are obtained.

The class of all meromorphic starlike bi-univalent functions of order $\alpha$ is denoted by $\Sigma_{\mathfrak{B}}^{*}(\alpha)$.

Definition 2.1. A function $g(z)$ given by (2) is said to be in the subclass $H_{\Sigma_{\mathfrak{B}}^{*}}(\alpha, n, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z\left(F_{\lambda}^{n} g(z)\right)^{\prime}}{F_{\lambda}^{n} g(z)}\right)>\alpha \quad\left(0 \leq \alpha<1,0 \leq \lambda<\frac{1}{k+1}, n=0,1,2, \ldots, z \in \Delta\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{w\left(F_{\lambda}^{n} h(w)\right)^{\prime}}{F_{\lambda}^{n} h(w)}\right)>\alpha \quad\left(0 \leq \alpha<1,0 \leq \lambda<\frac{1}{k+1}, n=0,1,2, \ldots, w \in \Delta\right) \tag{6}
\end{equation*}
$$

where the function $h(w)$ is the inverse of $g(z)$ given by (3).
Theorem 2.1. Let the function $g(z)$ given by (2) be in the subclass $H_{\Sigma_{\mathfrak{B}}^{*}}(\alpha, n, \lambda)$. Then

$$
\left|b_{o}\right| \leq 2 \frac{(1-\alpha)}{(1-\lambda)^{\frac{n}{2}}} \quad \text { and } \quad\left|b_{1}\right| \leq \frac{(1-\lambda)^{n}(1-\alpha) \sqrt{1+4(1-\lambda)^{2 n}(1-\alpha)^{2}}}{(1-\lambda)^{n}(1-2 \lambda)^{n}}
$$

Proof. Let $g(z)$ be the meromorphic starlike bi-univalent function of order $\alpha$ given by (2). Then

$$
\begin{align*}
\frac{z\left(F_{\lambda}^{n} g(z)\right)^{\prime}}{F_{\lambda}^{n} g(z)} & =1-\frac{(1-\lambda)^{n} b_{o}}{z}+\frac{(1-\lambda)^{2 n} b_{o}^{2}-2(1-2 \lambda)^{n} b_{1}}{z^{2}}  \tag{7}\\
& -\frac{(1-\lambda)^{3 n} b_{o}^{3}-3(1-\lambda)^{n}(1-2 \lambda)^{n} b_{o} b_{1}+3(1-2 \lambda)^{n} b_{2}}{z^{3}}+\ldots \quad(z \in \Delta)
\end{align*}
$$

Since $h(w)=g^{-1}(w)$ is the inverse of $g(z)$ whose series expansion is given in (3), and, since

$$
w=g(h(w))=g\left(g^{-1}(w)\right)
$$

So, some calculations gives

$$
\begin{equation*}
B_{o}=-b_{o}, \quad B_{1}=-b_{1}, \quad B_{2}=-b_{2}-b_{o} b_{1} \quad \text { and } \quad B_{3}=-\left(b_{3}+2 b_{o} b_{2}+b_{o}^{2} b_{1}+b_{1}^{2}\right) \tag{8}
\end{equation*}
$$

Using equations of (8) in (3), shows that the series expansion of the function $g^{-1}(w)$ becomes

$$
\begin{align*}
h(w) & =g^{-1}(w) \\
& =w-b_{o}-b_{1} \frac{1}{w}-\left(b_{2}+b_{o} b_{1}\right) \frac{1}{w^{2}}-\left(b_{3}+2 b_{o} b_{2}+b_{o}^{2} b_{1}+b_{1}^{2}\right) \frac{1}{w^{3}}+\ldots \tag{9}
\end{align*}
$$

Using (9)we have

$$
\begin{align*}
\frac{w\left(F_{\lambda}^{n} h(w)\right)^{\prime}}{F_{\lambda}^{n} h(w)} & =1+\frac{(1-\lambda)^{n} b_{o}}{w}+\frac{(1-\lambda)^{2 n} b_{o}^{2}+2(1-2 \lambda)^{n} b_{1}}{w^{2}} \\
& +\frac{(1-\lambda)^{3 n} b_{o}^{3}+3(1-\lambda)^{n}(1-2 \lambda)^{n} b_{o} b_{1}+3(1-3 \lambda)^{n} b_{2}+3(1-3 \lambda)^{n} b_{o} b_{1}}{w^{3}} \\
& +\ldots \quad(w \in \Delta) \tag{10}
\end{align*}
$$

Since $g(z)$ is a bi-univalent meromorphic starlike function of order $\alpha$, there exist two functions $\mathrm{p}, \mathrm{q}$ with positive real parts in $\Delta$ of the forms

$$
\begin{equation*}
p(z)=1+\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\frac{c_{3}}{z^{3}}+\ldots \quad(z \in \Delta) \quad \text { and } \quad q(w)=1+\frac{d_{1}}{w}+\frac{d_{2}}{w^{2}}+\frac{d_{3}}{w^{3}}+\ldots \quad(w \in \Delta) \tag{11}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{z\left(F_{\lambda}^{n} g(z)\right)^{\prime}}{F_{\lambda}^{n} g(z)}=\alpha+(1-\alpha) p(z) \quad \text { and } \quad \frac{w\left(F_{\lambda}^{n} h(w)\right)^{\prime}}{F_{\lambda}^{n} h(w)}=\alpha+(1-\alpha) q(w) \tag{12}
\end{equation*}
$$

From (11),(12),(7) and (10) we obtain

$$
\begin{align*}
& (1-\alpha) c_{1}=-(1-\lambda)^{n} b_{o} \quad, \quad(1-\alpha) c_{2}=(1-\lambda)^{2 n} b_{o}^{2}-2(1-2 \lambda)^{n} b_{1} \\
& (1-\alpha) d_{1}=(1-\lambda)^{n} b_{o} \quad \text { and } \quad(1-\alpha) d_{2}=(1-\lambda)^{2 n} b_{o}^{2}+2(1-2 \lambda)^{n} b_{1} \tag{13}
\end{align*}
$$

Since $\operatorname{Re}(p(z))>0$ in $\Delta$, the function $p\left(\frac{1}{z}\right) \in \mathbf{P}$ and hence the coefficients $c_{n}$ and similarly the coefficients $d_{n}$ of the function $q$ satisfy the inequality in lemma 1.1 and this immediately with equations in (13) yields the following estimates:

$$
\begin{equation*}
\left|b_{o}\right| \leq 2 \frac{(1-\alpha)}{(1-\lambda)^{\frac{n}{2}}} \quad \text { and } \quad\left|b_{1}\right| \leq \frac{(1-\lambda)^{n}(1-\alpha) \sqrt{1+4(1-\lambda)^{2 n}(1-\alpha)^{2}}}{(1-\lambda)^{n}(1-2 \lambda)^{n}} \tag{14}
\end{equation*}
$$

This completes the proof of Theorem 2.1.
If we put $n=0$ or $\lambda=0$, in Theorem 2.1 then we get the following corollary due to [17].

Corollary 2.1. Let the function $g(z)$ given by (2) be in the subclass $H_{\Sigma_{\mathfrak{B}}^{*}}(\alpha)$. Then

$$
\begin{equation*}
\left|b_{o}\right| \leq 2(1-\alpha), \quad \text { and } \quad\left|b_{1}\right| \leq(1-\alpha) \sqrt{1+4(1-\alpha)^{2}} \tag{15}
\end{equation*}
$$

The class of all meromorphic strongly starlike bi-univalent functions of order $\alpha$ is denoted by $\tilde{\Sigma}_{\mathfrak{B}}^{*}(\alpha)$.)

Definition 2.2. A function $g(z)$ given by (2) is said to belong to the subclass $H_{\tilde{\Sigma}_{\mathfrak{B}}^{*}}(\alpha, n, \lambda)$ of bi-univalent strongly starlike meromorphic functions of order $\alpha, 0<\alpha \leq 1$ if the following conditions are satisfied:

$$
\begin{equation*}
\left|\arg \left(\frac{z\left(F_{\lambda}^{n} g(z)\right)^{\prime}}{F_{\lambda}^{n} g(z)}\right)\right|<\frac{\alpha \pi}{2} \quad\left(0<\alpha \leq 1,0 \leq \lambda<\frac{1}{k+1}, n=0,1,2, \ldots, z \in \Delta\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left(F_{\lambda}^{n} h(w)\right)^{\prime}}{F_{\lambda}^{n} h(w)}\right)\right|<\frac{\alpha \pi}{2} \quad\left(0<\alpha \leq 1,0 \leq \lambda<\frac{1}{k+1}, n=0,1,2, \ldots, w \in \Delta\right) \tag{17}
\end{equation*}
$$

where the function $h(w)$ is the inverse of $g(z)$ given by (3).
Theorem 2.2. Let the function $g(z)$ given by (2) be in the subclass $H_{\tilde{\Sigma}_{\mathfrak{B}}^{*}}(\alpha, n, \lambda)$. Then

$$
\left|b_{o}\right| \leq \frac{2 \alpha}{|1-\lambda|^{n}} \quad \text { and } \quad\left|b_{1}\right| \leq \sqrt{5} \frac{\alpha^{2}}{(1-2 \lambda)^{n}}
$$

Proof. Consider the function $g \in H_{\tilde{\Sigma}_{\mathfrak{B}}^{*}}(\alpha, n, \lambda)$. Then, by Definition 2 of the subclass $H_{\tilde{\Sigma}_{\mathfrak{B}}^{*}}(\alpha, n, \lambda)$

$$
\begin{equation*}
\frac{z\left(F_{\lambda}^{n} g(z)\right)^{\prime}}{F_{\lambda}^{n} g(z)}=(p(z))^{\alpha} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left(F_{\lambda}^{n} h(w)\right)^{\prime}}{F_{\lambda}^{n} h(w)}=(q(w))^{\alpha} \tag{19}
\end{equation*}
$$

where $\frac{z\left(F_{\lambda}^{n} g(z)\right)^{\prime}}{F_{\lambda}^{n} g(z)}$ is given by (7) and $p(z)$ is given in (11) so,

$$
\begin{align*}
1 & -\frac{(1-\lambda)^{n} b_{o}}{z}+\frac{(1-\lambda)^{2 n} b_{o}^{2}-2(1-2 \lambda)^{n} b_{1}}{z^{2}} \\
& -\frac{(1-\lambda)^{3 n} b_{o}^{3}-3(1-\lambda)^{n}(1-2 \lambda)^{n} b_{o} b_{1}+3(1-2 \lambda)^{n} b_{2}}{z^{3}}+\ldots \\
& =1+\frac{\alpha c_{1}}{z}+\frac{\frac{1}{2} \alpha(\alpha-1) c_{1}^{2}+\alpha c_{2}}{z^{2}}  \tag{20}\\
& +\frac{\frac{1}{6} \alpha(\alpha-1)(\alpha-2) c_{1}^{3}+\alpha(\alpha-1) c_{1} c_{2}+\alpha c_{3}}{z^{3}}+\ldots
\end{align*}
$$

Equating the coefficients in both sides of equation (20) we get

$$
\begin{equation*}
\alpha c_{1}=-(1-\lambda)^{n} b_{o} \quad \text { and } \quad \frac{1}{2} \alpha(\alpha-1) c_{1}^{2}+\alpha c_{2}=(1-\lambda)^{2 n} b_{o}^{2}-2(1-2 \lambda)^{n} b_{1} \tag{21}
\end{equation*}
$$

Applying $q(w)$ from (11) and $\frac{w\left(F_{\lambda}^{n} h(w)\right)^{\prime}}{F_{\lambda}^{n} h(w)}$ from (12) in (19) we get

$$
\begin{align*}
1+ & \frac{(1-\lambda)^{n} b_{o}}{w}+\frac{(1-\lambda)^{2 n} b_{o}^{2}+2(1-2 \lambda)^{n} b_{1}}{w^{2}} \\
& +\frac{(1-\lambda)^{3 n} b_{o}^{3}+3(1-\lambda)^{n}(1-2 \lambda)^{n} b_{o} b_{1}+3(1-3 \lambda)^{n} b_{2}+3(1-3 \lambda)^{n} b_{o} b_{1}}{w^{3}}+\ldots  \tag{22}\\
& =1+\frac{\alpha d_{1}}{w}+\frac{\frac{1}{2} \alpha(\alpha-1) d_{1}^{2}+\alpha d_{2}}{w^{2}} \\
& +\frac{\frac{1}{6} \alpha(\alpha-1)(\alpha-2) d_{1}^{3}+\alpha(\alpha-1) d_{1} c_{2}+\alpha d_{3}}{w^{3}}+\ldots
\end{align*}
$$

Equating the coefficients in both sides of equation (22) we get

$$
\begin{equation*}
\alpha d_{1}=(1-\lambda)^{n} b_{o} \quad \text { and } \quad \frac{1}{2} \alpha(\alpha-1) d_{1}^{2}+\alpha d_{2}=(1-\lambda)^{2 n} b_{o}^{2}+2(1-2 \lambda)^{n} b_{1} \tag{23}
\end{equation*}
$$

From (21), (23) and applying Lemma 1.1, follows that

$$
\left|b_{o}\right| \leq \frac{2 \alpha}{|1-\lambda|^{n}} \quad \text { and } \quad\left|b_{1}\right| \leq \sqrt{5} \frac{\alpha^{2}}{(1-2 \lambda)^{n}}
$$

This completes the proof of Theorem 2.2.
If we put $n=0$ or $\lambda=0$, in Theorem 2.2 then we get the following corollary due to [17].
Corollary 2.2. Let the function $g(z)$ given by (2) be in the subclass $H_{\tilde{\Sigma}_{\mathfrak{B}}^{*}}(\alpha)$. Then

$$
\begin{equation*}
\left|b_{o}\right| \leq 2 \alpha, \quad \text { and } \quad\left|b_{1}\right| \leq \sqrt{5} \alpha^{2} \tag{24}
\end{equation*}
$$

## References

[1] Juma A.S. and Aziz F.S., (2012), Applying Ruscheweyh derivative on two sub-classes of bi-univalent functions, Inter. J. of Basic \& Appl. Sci., V.,12 no.,06 , pp. 68-74.
[2] Ali R.M., Lee S.K., Ravichandran V., Supramaniam S., Coefficient estimates for bi-univalent MaMinda starlike and convex functions, preprint.
[3] Brannan D.A. and Clunie J.G., (1980), Aspects of contemporary complex analysis, (Proceedings of the NATO Advanced Study Instituteheld at the university of Durham, Durham,July 12, 1979), Academic Press, London and New York.
[4] Brannan D.A. and Taha T.S., (1986), On some classesof bi-univalent functions, Studia Univ. BabesBolyai Math. 31, no. 2, pp. 70-77.
[5] Duren P.L., (1983), Univalent functions, in: Grunddlehren der mathematischen Wissenschaften, Band 259, Springer -Verlag, New York, Berlin, Hidelberg and Tokyo, .
[6] Duren P.L., (1971), Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc., 28, pp. 169-172.
[7] Frasin B.A., Aouf M.K., (2011) New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (9) pp.1569-1573.
[8] Goodman A.W., (1983) Univalent functions, Vol. 1, Polygonal Puplishing House, Washington, New Jersey.
[9] Kapoor G.P. and Mishra A.K., (2007), Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., 329 , no. 2, pp. 922-934.
[10] Kubota Y., (1976-77), Coefficientsof meromorphic univalent functions, Kōdai Math. Sem. Rep., 28, no. 2-3, pp. 253-261.
[11] Lewin M., (1967), On a coefficient problem for bi-univalent functions, Proc. Amer.Math. Soc. 18, pp. 63-68.
[12] Netanyahu E., (1969), The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32, pp. 100-112.
[13] Schiffer M., (1938), Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France, 66 ,pp. 48-55.
[14] Schober G., (1977), Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc., 67 ,no. 1, pp. 111-116.
[15] Springer G., (1951), The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc., 70, pp. 421-450.
[16] Srivastava H.M., Mishra A.K., Gochhayat P., (2010), Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, no. 10, pp. 1188-1192.
[17] Suzeini Abd Halim, Samaneh G. Hamidi and Ravichandran V., (2011), Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089v1 [math.CV].
[18] Taha T.S., (1981) Topics in univalent function theory, Ph.D. Thesis, University of London, .


[^0]:    ${ }^{1}$ Department of Mathematics, Salahaddin University, Erbil, Region of Kurdistan, Iraq, e-mail: fatehsaber@gmail
    ${ }^{2}$ Department of Mathematics, Alanbar University, Ramadi, Iraq, e-mail:dr_juma@hotmail.com
    § Submitted for GFTA'13, held in Işık University on October 12, 2013. TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; © Işık University, Department of Mathematics 2014; all rights reserved.

