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THE CONNECTED DETOUR MONOPHONIC NUMBER OF A

GRAPH

P. TITUS1, A.P. SANTHAKUMARAN2, K. GANESAMOORTHY3 , §

Abstract. For a connected graph G = (V,E) of order at least two, a chord of a path
P is an edge joining two non-adjacent vertices of P . A path P is called a monophonic
path if it is a chordless path. A longest x− y monophonic path is called an x− y detour
monophonic path. A set S of vertices of G is a detour monophonic set of G if each vertex
v of G lies on an x − y detour monophonic path, for some x and y in S. The minimum
cardinality of a detour monophonic set of G is the detour monophonic number of G and
is denoted by dm(G). A connected detour monophonic set of G is a detour monophonic
set S such that the subgraph G[S] induced by S is connected. The minimum cardinality
of a connected detour monophonic set of G is the connected detour monophonic number
of G and is denoted by dmc(G). We determine bounds for dmc(G) and characterize
graphs which realize these bounds. It is shown that for positive integers r, d and k ≥ 6
with r < d, there exists a connected graph G with monophonic radius r, monophonic
diameter d and dmc(G) = k. For each triple a, b, p of integers with 3 ≤ a ≤ b ≤ p − 2,
there is a connected graph G of order p, dm(G) = a and dmc(G) = b. Also, for every pair
a, b of positive integers with 3 ≤ a ≤ b, there is a connected graph G with mc(G) = a
and dmc(G) = b, where mc(G) is the connected monophonic number of G.

Keywords: detour monophonic set, detour monophonic number, connected detour mono-
phonic set, connected detour monophonic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively. For basic
graph theoretic terminology we refer to Harary [5]. The neighborhood of a vertex v is the
set N(v) consisting of all vertices u which are adjacent with v. The closed neighborhood
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of a vertex v is the set N [v] = N(v)
∪
{v}. A vertex v is an extreme vertex if the subgraph

induced by its neighbors is complete.
The closed interval I[x, y] consists of all vertices lying on some x − y geodesic of G,

while for S ⊆ V, I[S] =
∪

x,y∈S
I[x, y]. A set S of vertices is a geodetic set if I[S] = V, and

the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set of
cardinality g(G) is called a g-set. The geodetic number of a graph was introduced and
further studied in [1, 6]. The detour distance D(u, v) between two vertices u and v in G is
the length of a longest u− v path in G. An u− v path of length D(u, v) is called an u− v
detour [2]. It is known that D is a metric on the vertex set V of G. The closed detour
interval ID[x, y] consists of x, y, and all the vertices in some x−y detour of G. For S ⊆ V ,
ID[S] is the union of the sets ID[x, y] for all x, y ∈ S. A set S of vertices is a detour set
if ID[S] = V , and the minimum cardinality of a detour set is the detour number dn(G).
The concept of detour distance, detour number were introduced and studied in [3, 4].

For a connected graph G of order at least two, a chord of a path P is an edge joining
two non-adjacent vertices of P . A path P is called a monophonic path if it is a chordless
path. A longest x−y monophonic path is called an x−y detour monophonic path. A set S
of vertices of G is a monophonic set of G if each vertex v of G lies on an x−y monophonic
path for some elements x and y in S. The minimum cardinality of a monophonic set of G
is defined as the monophonic number of G, denoted by m(G) [9]. A connected monophonic
set of G is a monophonic set S such that the subgraph G[S] induced by S is connected.
The minimum cardinality of a connected monophonic set of G is the connected monophonic
number of G and is denoted by mc(G). The connected monophonic number of a graph
was introduced and studied in [10]. A set S of vertices of G is a detour monophonic set
if each vertex v of G lies on an x − y detour monophonic path, for some x, y ∈ S. The
minimum cardinality of a detour monophonic set of G is the detour monophonic number
of G and is denoted by dm(G). The detour number of a graph was introduced in [12] and
further studied in [11].

For any two vertices u and v in a connected graph G, the monophonic distance dm(u, v)
from u to v is defined as the length of a longest u − v monophonic path in G. The
monophonic eccentricity em(v) of a vertex v in G is em(v) = max {dm(v, u) : u ∈ V (G)}.
The monophonic radius, radm(G) of G is radm(G) = min {em(v) : v ∈ V (G)} and the
monophonic diameter, diamm(G) of G is diamm(G) = max {em(v) : v ∈ V (G)}. A vertex
u in G is a monophonic eccentric vertex of a vertex v in G if em(u) = dm(u, v).

The monophonic distance was introduced and studied in [7, 8]. The following theorems
will be used in the sequel.

Theorem 1.1. [10] Each extreme vertex of a connected graph G belongs to every connected
monophonic set of G.

Theorem 1.2. [10] Every cutvertex of a connected graph G belongs to every connected
monophonic set of G.

Theorem 1.3. [10] For any nontrivial tree T of order p, mc(T ) = p.

Theorem 1.4. [12] Each extreme vertex of a connected graph G belongs to every detour
monophonic set of G.

Corollary 1.1. [12] For the complete graph Kp(p ≥ 2), dm(Kp) = p.

Corollary 1.2. [12] If T is a tree with k endvertices, then dm(T ) = k.

Theorem 1.5. [12] Let G be a connected graph with a cutvertex v and let S be a detour
monophonic set of G. Then every component of G− v contains an element of S.



P. TITUS, A.P. AT ALL: THE CONNECTED DETOUR MONOPHONIC... 77

Theorem 1.6. [12] Let G be a connected graph of order p ≥ 3. Then dm(G) = p − 1 if
and only if G = K1 +

∪
mjKj, where

∑
mj ≥ 2.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Connected Detour Monophonic Number

Definition 2.1. A connected detour monophonic set of a graph G is a detour monophonic
set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of
a connected detour monophonic set of G is the connected detour monophonic number of
G and is denoted by dmc(G). A connected detour monophonic set of cardinality dmc(G)
is called a dmc-set of G.

Example 2.1. For the graph G in Figure 2.1, S1 = {w, u, z} and S2 = {x, u, z} are the
minimum detour monophonic sets of G and so dm(G) = 3. Since the subgraph G[Si] is not
connected, Si is not a connected detour monophonic set of G for i = 1, 2. It is clear that
T = {u, x, y, z} is a minimum connected detour monophonic set of G and so dmc(G) = 4.

b bv
y

u

w x

b

b b

b
z

Figure 2.1: G

Theorem 2.1. Each extreme vertex of a connected graph G belongs to every connected
detour monophonic set of G.

Proof. Since every connected detour monophonic set of G is a detour monophonic set of
G, it follows from Theorem 1.4. �
Corollary 2.1. For the complete graph Kp(p ≥ 2), dmc(Kp) = p.

Theorem 2.2. Let G be a connected graph with cutvertices and let S be a connected detour
monophonic set of G. If v is a cutvertex of G, then every component of G − v contains
an element of S.

Proof. Since every connected detour monophonic set of G is a detour monophonic set of
G, it follows from Theorem 1.5. �
Theorem 2.3. Every cutvertex of a connected graph G belongs to every connected detour
monophonic set of G.

Proof. Let v be any cutvertex of G and let G1, G2, ..., Gr(r ≥ 2) be the components of
G − v. Let S be any connected detour monophonic set of G. Then by Theorem 2.2, S
contains at least one element from each Gi(1 ≤ i ≤ r). Since G[S] is connected, it follows
that v ∈ S. �

For a cutvertex v in a connected graph G and a component H of G− v, the subgraph
H and the vertex v together with all edges joining v and V (H) is called a branch of G at
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v. Since every endblock B is a branch of G at some cutvertex, it follows from Theorem
2.2 that every minimum connected detour monophonic set of G contains at least one
vertex from B that is not a cutvertex. Thus the following corollaries are consequences of
Theorems 2.2 and 2.3.

Corollary 2.2. If G is a connected graph with k ≥ 2 endblocks, then dmc(G) ≥ k + 1.

Corollary 2.3. If k is the maximum number of blocks to which a vertex in a graph G
belongs, then dmc(G) ≥ k + 1.

Corollary 2.4. For any nontrivial tree T of order p, dmc(T ) = p.

Proof. It follows from Theorems 2.1 and 2.3. �
Theorem 2.4. For the complete bipartite graph G = Kr,s (2 ≤ r ≤ s), dmc(G) = 3 or 4.

Proof. Let X = {x1, x2, ..., xr} and Y = {y1, y2, ..., ys} be the partite sets of Kr,s. For
r = 2, S = X is the unique minimum detour monophonic set of G. Since G[S] is not
connected, and since S′ = S ∪ {yi} is a connected detour monophonic set of G for any
i(1 ≤ i ≤ s), we have dmc(G) = 3.

Now, let r ≥ 3. Let S be any set formed by taking two vertices from X and two vertices
from Y . Then clearly, it is a minimum connnected detour monophonic set of G and so
dmc(G) = 4. �
Theorem 2.5. For any connected graph G of order p ≥ 2, 2 ≤ dmc(G) ≤ p.

Proof. Since V (G) is a connected detour monophonic set of G, it follows that dmc(G) ≤ p.
Also it is clear that dmc(G) ≥ 2 and so 2 ≤ dmc(G) ≤ p. �
Theorem 2.6. For a connected graph G of order p ≥ 2, 2 ≤ dm(G) ≤ dmc(G) ≤ p.

Proof. Any detour monophonic set needs at least two vertices and so dm(G) ≥ 2. Since
every connected detour monophonic set of G is also a detour monophonic set of G, it
follows that dm(G) ≤ dmc(G). Also, since V (G) induces a connected detour monophonic
set of G, it is clear that dmc(G) ≤ p. �
Theorem 2.7. For a connected graph G of order p ≥ 2, 2 ≤ mc(G) ≤ dmc(G) ≤ p.

Proof. Any connected monophonic set needs at least two vertices and so mc(G) ≥ 2. Since
every connected detour monophonic set is also a connected monophonic set, it follows that
mc(G) ≤ dmc(G). Also, since V (G) induces a connected detour monophonic set of G, it
is clear that dmc(G) ≤ p. �

Now we proceed to characterize graphs G for which the lower bound in Theorem 2.5 is
attained.

Theorem 2.8. Let G be a connected graph of order p ≥ 2. Then G = K2 if and only if
dmc(G) = 2.

Proof. If G = K2, then dmc(G) = 2. Conversely, let dmc(G) = 2. Let S = {u, v} be
a minimum connected detour monophonic set of G. Then uv is an edge. If G ̸= K2,
there exists a vertex w different from u and v. Then w can not lie on any u − v detour
monophonic path, so that S is not a detour monophonic set, which is a contradiction.
Thus G = K2. �
Theorem 2.9. If G is a connected graph of order p ≥ 2 with every vertex of G is either
a cutvertex or an extreme vertex, then dmc(G) = p.
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Proof. It follows from Theorems 2.1 and 2.3. �

Remark 2.1. The converse of the Theorem 2.9 is not true. For the graph G given in
Figure 2.2, S = V (G) is the unique minimum connected detour monophonic set of G and
so dmc(G) = p, but the vertex x is neither a cutvertex nor an extreme vertex of G.
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Figure 2.2: G
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We leave the following problem as an open question.

Problem 2.1. Characterize graphs G for which (i) mc(G) = dmc(G) and (ii) dm(G) =
dmc(G).

Theorem 2.10. If G is a connected non-complete graph of order p ≥ 2 such that it has a
minimum cutset consisting of κ vertices, then dmc(G) ≤ p− κ(G) + 1.

Proof. If G is non-complete, it is clear that 1 ≤ κ(G) ≤ p− 2. Let U = {u1, u2, ..., uκ} be
a minimum cutset of G. Let G1, G2, ..., Gr(r ≥ 2) be the components of G − U and let
S = V (G) − U. Then every vertex ui(1 ≤ i ≤ κ) is adjacent to at least one vertex of Gj

for every j(1 ≤ j ≤ r). It is clear that S is a detour monophonic set of G and G[S] is not
connected. Also, it is clear that G[S ∪ {x}] is a connected detour monophonic set for any
vertex x in U so that dmc(G) ≤ p− κ(G) + 1. �

Remark 2.2. The bound in Theorem 2.10 is sharp. For any tree T of order p ≥ 2,
dmc(T ) = p. Also, κ(T ) = 1, p− κ(T ) + 1 = p. Thus dmc(T ) = p− κ(T ) + 1.

Corollary 2.5. If G is a connected non-complete graph of order p ≥ 2 having no cutver-
tices, then dmc(G) ≤ p− 1.

Proof. Since κ(G) ≥ 2, the result follows from Theorem 2.10. �

Theorem 2.11. If G is a nontrivial connected graph of order p and monophonic diameter
d = p− 1, then dmc(G) ≥ p− d+ 1.

Proof. For any graph G, dmc(G) ≥ 2. Since d = p − 1, we have p − d + 1 = 2 and so
dmc(G) ≥ p− d+ 1. �

Remark 2.3. The converse of Theorem 2.11 is not true. For the graph G given in Figure
2.3, p = 8 and monophonic diameter d = 2 so that p − d + 1 = 7. Also by Theorem 2.9,
dmc(G) = 8. Thus dmc(G) > p− d+ 1, but d ̸= p− 1.
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Figure 2.3: G

Theorem 2.12. Let G be a connected graph of order p ≥ 2 such that every vertex v of G
is either an endvertex or a cutvertex, then dmc(G) ≥ p−d+1, where d is the monophonic
diameter of G.

Proof. By Theorem 2.9, dmc(G) = p. Since d ≥ 1, it follows that dmc(G) ≥ p− d+1. �
Theorem 2.13. For any positive integers r, d and k ≥ 6 with r < d, there exists a
connected graph G with radm(G) = r, diamm(G) = d and dmc(G) = k.

Proof. We prove this theorem by considering two cases.
Case 1. r = 1. Then d ≥ 2. Let Cd+2 : v1, v2, . . . , vd+2, v1 be the cycle of order d+ 2. Let
G be the graph obtained by adding k−3 new vertices u1, u2, . . . , uk−3 to Cd+2 and joining
each of the vertices u1, u2, . . . , uk−3, v3, v4, . . . , vd+1 to the vertex v1. The graph G is shown
in Figure 2.4. It is easily verified that 1 ≤ em(x) ≤ d for any vertex x in G and em(v1) = 1,
em(v2) = d. Then radm(G) = 1 and diamm(G) = d. Now, u1, u2, ..., uk−3, v2, vd+2 are the
extreme vertices and v1 is the only cutvertex of G. Let S = {u1, u2, ..., uk−3, v2, vd+2, v1}.
Since S is a connected detour monophonic set of G, it follows from Theorem 2.1 and
Theorem 2.3 that dmc(G) = k.
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Figure 2.4: G

Case 2. r ≥ 2. Let C : v1, v2, ..., vr+2, v1 be the cycle of order r+2 and W = K1 + Cd+2

be the wheel with V (Cd+2) = {u1, u2, ..., ud+2}. Let H be the graph obtained from C
and W by identifying v1 of C and the central vertex of W . Now add k − 6 new vertices
w1, w2, ..., wk−6 to the graph H and join each wi(1 ≤ i ≤ k−6) to the vertex v1 and obtain
the graph G of Figure 2.5. It is easy to verify that r ≤ em(x) ≤ d for any vertex x in G and
em(v1) = r and em(u1) = d. Then radm(G) = r and diamm(G) = d. Now, w1, w2, ..., wk−6

are the endvertices and v1 is the only cutvertex of G. Let S = {w1, w2, ..., wk−6, v1}. By,
Theorem 2.1 and Theorem 2.3, every connected detour monophonic set of G contains S.
It is clear that S is not a connected detour monophonic set of G. Also, S ∪{x1, x2, x3, x4}
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where xj(1 ≤ j ≤ 4) ∈ V (G) − S is not a connected detour monophonic set of G. Let
T = S∪{u1, u2, ud+2, v2, vr+2}. It is easy to verify that T is a connected detour monophonic
set of G and so dmc(G) = k. �
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Figure 2.5: G
Problem 2.2. For any three positive integers r, d and k ≥ 6 with r = d does there exist
a connected graph G with radm(G) = r, diamm(G) = d and dmc(G) = k?

Theorem 2.14. If p, d and k are positive integers such that 2 ≤ d ≤ p− 2 and 3 ≤ k ≤ p,
then there exists a connected graph G of order p, monophonic diameter d and dmc(G) = k.

Proof. We prove this theorem by considering two cases.
Case 1. Let d = 2. First, let k = 3. Let P3 : v1, v2, v3 be the path of order 3. Now, add
p − 3 new vertices w1, w2, ..., wp−3 to P3. Let G be the graph obtained by joining each
wi(1 ≤ i ≤ p− 3) to v1 and v3. The graph G is shown in Figure 2.6. Then G has order p
and monophonic diameter d = 2. Clearly S = {v1, v2, v3} is a minimum connected detour
monophonic set of G so that dmc(G) = k = 3.
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Figure 2.6: G

Now, let 4 ≤ k ≤ p. Let Kp−1 be the complete graph with the vertex set {w1, w2, ...,
wp−k+1, v1, v2, ..., vk−2}. Now, add the new vertex x to Kp−1 and let G be the graph
obtained by joining x with each vertex wi(1 ≤ i ≤ p−k+1). The graphG is shown in Figure
2.7. Then G has order p and monophonic diameter d = 2. Let S = {v1, v2, ...vk−2, x} be
the set of all extreme vertices of G. By Theorem 2.1, every connected detour monophonic
set of G contains S. It is clear that S is a detour monophonic set of G. Since the induced
subgraph G[S] is not connected, dmc(G) ≥ k. For any vertex v ∈ {w1, w2, . . . , wp−k+1},
it is clear that S ∪ {v} is a minimum connected detour monophonic set of G and so
dmc(G) = k.
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Case 2. d ≥ 3. First, let k = 3. Let Cd+2 : v1, v2, ..., vd+2, v1 be the cycle of order d + 2.
Add p−d−2 new vertices w1, w2, ..., wp−d−2 to C and join each vertex wi(1 ≤ i ≤ p−d−2)
to both v1 and v3, thereby producing the graph G of Figure 2.8. Then G has order p and
monophonic diameter d. It is clear that S = {v3, v4, v5} is a minimum connected detour
monophonic set of G and so dmc(G) = 3 = k.
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Figure 2.8: G

Now, let k ≥ 4. Let Pd+1 : v0, v1, ..., vd be a path of length d. Add p− d− 1 new vertices
w1, w2, ..., wp−k, u1, u2, ..., uk−d−1 to Pd+1 and join w1, w2, ..., wp−k to both v0 and v2 and
join u1, u2, ..., uk−d−1 to vd−1, thereby producing the graph G of Figure 2.9.
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Then G has order p and monophonic diameter d. Let S = {v2, v3, ..., vd−1, vd, u1, u2, ...,
uk−d−1} be the set of all cutvertices and endvertices of G. By Theorem 2.1 and Theorem
2.3, every connected detour monophonic set of G contains S. It is clear that S is not a
connected detour monophonic set of G. It is easily seen that S ∪ {v0, v1} is a minimum
connected detour monophonic set of G and so dmc(G) = k. �

In view of Theorem 2.6, we have the following realization theorem.

Theorem 2.15. If p, a and b are positive integers such that 3 ≤ a ≤ b ≤ p− 2, then there
exists a connected graph G of order p, dm(G) = a and dmc(G) = b.

Proof. We prove this theorem by considering two cases.
Case 1. 3 ≤ a = b ≤ p−2. Let Ka−2 be the complete graph with the vertex set {w1, w2, ...,
wa−2} and C4 : x, y, z, w, x be the cycle of order 4. Let H be the graph obtained from
Ka−2 and C4 by joining each wi(1 ≤ i ≤ a−2) to the vertices y and z in C4. Let G be the
graph obtained from H by adding p− a− 2 new vertices v1, v2, . . . , vp−a−2 to the graph H
and join each vi(1 ≤ i ≤ p− a− 2) to x and z. The graph G is shown in Figure 2.10.
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Figure 2.10: G

Let S = {w1, w2, . . . , wa−2} be the set of all extreme vertices of G. By Theorem 1.4, every
detour monophonic set contains S. It is clear that S is not a detour monophonic set of G.
Also S∪{v}, where v ∈ V (G)−S is not a detour monophonic set of G. Since S′ = S∪{x, y}
is a detour monophonic set and G[S′] is also connected, we have dm(G) = dmc(G) = a.
Case 2. 3 ≤ a < b ≤ p−2. Let Pb−a+2 : u1, u2, ..., ub−a+2 be a path of length b−a+1. Add
p− b+ a− 2 new vertices w1, w2, ..., wp−b, v1, v2, ..., va−2 to Pb−a+2 and join each wi (1 ≤
i ≤ p− b) to both u1 and u3 and join each vj(1 ≤ j ≤ a− 2) to ub−a+1, thereby producing
the graph G of Figure 2.11. Then G has order p and S = {ub−a+2, v1, v2, ..., va−2} is
the set of all endvertices of G. It is clear that S is not a detour monophonic set of
G. Let S′ = S ∪ {u1}. It is easy to verify that S′ is a detour monophonic set of G
and so dm(G) = a. Let T = {u3, u4, ..., ub−a+1} be the set of all cutvertices of G. By
Theorem 2.1 and Theorem 2.3, every connected detour monophonic set of G contains
S ∪ T . Let M = S ∪ T . It is clear that M is not a connected detour monophonic set
of G. Also, M ∪ {x} where x ∈ V (G) −M is not a connected detour monophonic set of
G. Let M ′ = M ∪ {u1, u2}. It is easily verified that M ′ is a minimum connected detour
monophonic set of G and so dmc(G) = b. �
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Theorem 2.16. There does not exist a connected graph G of order p ≥ 2 with dm(G) =
p− 1 and dmc(G) = p− 1.

Proof. Since dm(G) = p − 1, then, by Theorem 1.6, G = K1 + ∪mjKj , where mj ≥ 2.
Since every vertex of G is either a cutvertex or an extreme vertex of G, by Theorem 2.9,
dmc(G) = p, which is a contradiction. Therefore, there does not exist a connected graph
G with dm(G) = dmc(G) = p− 1. �

In view of Theorem 2.7, we have the following realization theorem.

Theorem 2.17. For every pair a, b of positive integers with 3 ≤ a ≤ b, there is a connected
graph G such that mc(G) = a and dmc(G) = b.

Proof. Case 1. 3 ≤ a = b. Let G be any tree of order a. Then by Theorem 1.3, mc(G) = a
and Corollary 2.4, dmc(G) = b.
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Case 2. 3 ≤ a < b. Let Pi : xi, yi, zi(1 ≤ i ≤ 3) be 3 copies of a path of length 2. Let G be
the graph obtained by adding b new vertices x, z, v1, v2, ..., va−3, w1, w2, ..., wb−a+1 and (i)
joining each of the vertices x1, x2, x3, v1, v2, ...va−3, w1, w2, ..., wb−a+1 to x and (ii) joining
each of the vertices z1, z2, z3, w1, w2, ..., wb−a+1 to z. The graph G is shown in Figure 2.12.
Now, {v1, v2, . . . , va−3} is the set of all endvertices of G and x is the only cutvertex of G.
Let S = {v1, v2, . . . , va−3, x}. Clearly, by Theorem 1.1, Theorem 1.2, Theorem 2.1 and
Theorem 2.3, every connected monophonic set and every connected detour monophonic
set of G contains S. It is clear that S is not a monophonic set of G. Let S′ = S∪{z}. It is
easily verified that S′ is a monophonic set of G, which is not connected. Let S′′ = S′∪{wi}
for some 1 ≤ i ≤ b− a+ 1. It is clear that S′′ is a minimum connected monophonic set of
G and so mc(G) = a.

It is easily verified that M = S∪{z, w1, w2, . . . , wb−a+1} is a minimum connected detour
monophonic set of G and so dmc(G) = b. �
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