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CONSTRUCTION OF SHIFT INVARIANT M-BAND TIGHT

FRAMELET PACKETS

FIRDOUS A. SHAH1, §

Abstract. Framelets and their promising features in applications have attracted a

great deal of interest and effort in recent years. In this paper, we outline a method

for constructing shift invariant M -band tight framelet packets by recursively decompos-

ing the multiresolution space VJ for a fixed scale J to level 0 with any combined mask

m = [m0,m1, . . . ,mL] satisfying some mild conditions.
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1. Introduction

The traditional wavelet frames provide poor frequency localization in many applications

as they are not suitable for signals whose domain frequency channels are focused only on

the middle frequency region. Therefore, in order to make more kinds of signals suited

for analyzing by wavelet frames, it is necessary to extend the concept of wavelet frames

to a library of wavelet frames, called framelet packets or wavelet frame packets. The

original idea of framelet packets was introduced by Coifman et al.[4] to provide more

efficient decomposition of signals containing both transient and stationary components.

Chui and Li [3] generalized the concept of orthogonal wavelet packets to the case of non-

orthogonal wavelet packets so that they can be applied to the spline wavelets and so on.

Shen [18] generalized the notion of univariate orthogonal wavelet packets to the case of

multivariate orthogonal wavelets such that they may be used in a wider field. Other

notable generalizations are the wavelet packets and p-framelet packets on the positive

half-line R+ [15, 16], the non-stationary wavelet packets [13], the vector-valued wavelet

packets [8], the M -band wavelet packets [10] and the tight framelet packets on Rd [12].

On the otherhand, the standard orthogonal wavelets are not also suitable for the

analysis of high-frequency signals with relatively narrow bandwidth. To overcome this

shortcoming, M -band orthonormal wavelets were created as a direct generalization of the

2-band wavelets [19]. The motivation for a larger M(M > 2) comes from the fact that,
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unlike the standard wavelet decomposition which results in a logarithmic frequency reso-

lution, the M -band decomposition generates a mixture of logarithmic and linear frequency

resolution and hence generates a more flexible tiling of the time-frequency plane than that

resulting from 2-band wavelet. The other significant difference between 2-band wavelets

and M -band wavelets in construction lies in the aspect that the wavelet vectors are not

uniquely determined by the scaling vector and the orthonormal bases do not consist of

dilated and shifted functions through a single wavelet, but consist of ones by using M − 1

wavelets (see [1,6,11]). It is this point that brings more freedoms for optimal wavelet bases.

Tight wavelet frames are different from the orthonormal wavelets because of redun-

dancy. By sacrificing orthonormality and allowing redundancy, the tight wavelet frames

become much easier to construct than the orthonormal wavelets. A catalyst for this devel-

opment is the unitary extension principle (UEP) introduced by Ron and Shen [14], which

provides a general construction of tight wavelet frames for L2(Rn) in the shift-invariant

setting, and included the pyramidal decomposition and reconstruction filter bank algo-

rithms. The resulting tight wavelet frames are based on a multiresolution analysis, and

the generators are often called mother framelets. The theory of tight wavelet frames has

been extensively studied and well developed over the recent years. To mention only a few

references on tight wavelet frames, the reader is referred to [2,5,7]. In the M -band set-

ting, Han and Cheng [9] have provided the general construction of M -band tight wavelet

frames on R by following the procedure of Daubechies et al.[5] via extension principles.

They have presented a systematic algorithm for constructing tight wavelet frames gener-

ated by a given refinable function with dilation factor M > 2. Recently, Shah and Debnath

[17] have introduced a general construction scheme for a class of stationary M -band tight

framelet packets in L2(R) via extension principles.

In continuation to the investigation initiated by Shah and Debnath in [17], we provide

an explicit description for the construction of a class of M−J -shift invariant M -band tight

framelet packets in L2(R) by recursively decomposing the multiresolution space VJ for a

fixed scale J to level 0 with any combined MRA mask m = [m0,m1, . . . ,mL] satisfying a

much weaker condition
∑L

`=0 |m`(ξ)|2 = 1 than the unitary extension principle requirement

M(ξ)M∗(ξ) = IM , where M(ξ) =
{
m`

(
ξ + 2πp

M

)}M−1

`,p=0
.

This paper is organized as follows. Section 2 concerns some basic concepts about

M -band tight wavelet frames using extension principles. In Section 3, we prove a crucial

lemma called the splitting lemma which splits a given M -band tight wavelet frame into

M−J -shift invariant M -band tight framelet packets and by virtue of this lemma, we prove

our main results.

2. M-Band Tight Wavelet Frames

We begin this section by reviewing some major concepts concerning M -band wavelet

frames. In the rest of this paper,, we use N,N0,Z and R to denote the sets of all natural

numbers, non-negative integers, integers and real numbers, respectively.
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The Fourier transform of a function f ∈ L1(R) is defined as usual by:

f̂(ξ) =

∫
R
f(x) e−iξxdx, ξ ∈ R

and its inverse is

f(x) =
1

2π

∫
R
f̂(ξ) eiξxdξ, x ∈ R.

For given Ψ := {ψ1, . . . , ψL} ⊂ L2(R), define the M -band wavelet system

X(Ψ) :=
{
ψ`,j,k : j, k ∈ Z, 1 ≤ ` ≤ L

}
(2.1)

where ψ`,j,k = M j/2ψ`(M
j . − k). The wavelet system X(Ψ) is called a M -band wavelet

frame, or simply aM -band framelet system, if there exist positive numbers 0 < A ≤ B <∞
such that for all f ∈ L2(R)

A
∥∥f∥∥2

2
≤

L∑
`=1

∑
j∈Z

∑
k∈Z

∣∣〈f, ψ`,j,k〉∣∣2 ≤ B∥∥f∥∥2

2
. (2.2)

The largest A and the smallest B for which (2.2) holds are called wavelet frame bounds.

A wavelet frame is a tight wavelet frame if A and B are chosen so that A = B = 1 and

then generators ψ1, ψ2, . . . , ψL are often referred as M -band framelets. Moreover, if only

the upper bound holds in the above inequality, then X(Ψ) is said to be a Bessel sequence

with Bessel constant B.

Next we give a brief overview of MRA-based construction of wavelet frames associ-

ated with the dilation factor M > 2. As we know that the M -band tight framelets can be

constructed by the unitary extension principle (UEP) (see [5]), which uses the multireso-

lution analysis (MRA). The MRA often starts from a refinable function ϕ. A compactly

supported function ϕ is said to be M -refinable if it satisfies a refinement equation

ϕ(x) =
∑
k∈Z

h0[k]ϕ(Mx− k). (2.3)

for some h0 ∈ l2(Z). By taking Fourier transform at both sides of (2.3), we have

ϕ̂ (ξ) = m0

(
ξ

M

)
ϕ̂

(
ξ

M

)
, (2.4)

where

m0(ξ) =
1

M

∑
k∈Z

h0[k]eikξ,

is a 2π-periodic measurable function in L∞[−π, π] and is often called the refinement symbol

of ϕ. We further assume that:

lim
ξ→0

ϕ̂(ξ) = 1, ξ ∈ R, and
∑
k∈Z
|ϕ̂(ξ + 2kπ)|2 ∈ L∞[−π, π]. (2.5)

For a compactly supported refinable function ϕ ∈ L2(R), let V0 be the closed shift

invariant space generated by {ϕ(.− k) : k ∈ Z} and Vj =
{
ϕ(M j .) : ϕ ∈ V0

}
, j ∈ Z. It is
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known that when ϕ is compactly supported, then {Vj}j∈Z forms a multiresolution analysis

(see [5]). Recall that a multiresolution analysis is a family of closed subspaces {Vj}j∈Z
of L2(R) that satisfies: (i) Vj ⊂ Vj+1, j ∈ Z, (ii)

⋃
j∈ZVj is dense in L2(R) and (iii)⋂

j∈ZVj = {0} (see [6]).

Let Ψ := {ψ1, . . . , ψL} ⊂ V1, then

ψ̂` (ξ) = m`

(
ξ

M

)
ϕ̂

(
ξ

M

)
, (2.6)

where

m`(ξ) =
1

M

∑
k∈Z

h`[k]eikξ, ` = 1, . . . , L

are the 2π-periodic measurable functions in L∞[−π, π] and are called the framelet symbols.

Han and Cheng [9] gave a complete characterization of the M -band tight wavelet

frames via the unitary extension principle. The following is the fundamental tool they

gave to construct M -band tight wavelet frames.

Theorem 2.1[9]. Suppose that the refinable function ϕ and the framelet symbolsm0,m1, . . . ,mL

satisfy (2.3)–(2.6). Define ψ1, ..., ψL by (2.6). LetM(ξ) =
{
m`

(
ξ + 2πp

M

)}M−1

`,p=0
such that

M(ξ)M∗(ξ) = IM , for a.e ξ ∈ σ(V0) :=
{
ξ ∈ [−π, π] :

∑
k∈Z |ϕ̂(ξ + 2kπ)|2 6= 0

}
, then

M -band wavelet system X(Ψ) forms a tight wavelet frame for L2(R) with frame bound 1.

Now, we introduce the notion of M -band quasi-affine system from level J . A M -band

quasi-affine system from level J is defined as:

Definition 2.2. Let Ψ = {ψ1, . . . , ψL} be a finite set of functions in L2(R). An M -band

quasi-affine system from level J is defined as

Xq,J(Ψ) =
{
ψq,J`,j,k : j, k ∈ Z, ` = 1, 2, . . . , L

}
where ψq,J`,j,k is defined by

ψq,J`,j,k =


M j/2ψ`(M

j .− k), j ≥ J

M j−J/2ψ`
(
M j(.−M−Jk)

)
, j < J

(2.7)

The concepts of affine and quasi-affine frames are closely related. The M -band quasi-affine

system is obtained by oversampling the M -band affine system starting from level J − 1

and downward to a M−J -shift invariant system. Hence, the whole quasi-affine system is

a M−J -shift invariant system. This was first observed by Ron and Shen in [14] under

some decay assumptions in order to convert a non-shift invariant affine system to a shift

invariant system.
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Theorem 2.3. The M -band affine system X(Ψ) given by (2.1) is a tight frame if and

only if M -band quasi-affine system Xq,J(Ψ) given by (2.7) is a tight frame (or tight M−J -

quasi-affine frame).

3. Shift-invariant M-Band Tight Framelet Packets

For each j ∈ Z, we define

Vj = span
{
ϕj,k : k ∈ Z

}
,

and

Wj,` = span
{
ψ`,j,k : k ∈ Z

}
, ` = 0, 1, . . . , L.

Then, in view of tight frame decomposition, we have

Vj = Vj−1 +

L∑
`=1

Wj−1,`. (3.1)

It is immediate from the above decomposition that these L + 1 spaces are in general not

orthogonal. Therefore, by the repeated applications of (3.1), we can further split the Vj
spaces as:

Vj = Vj−1 +

L∑
`=1

Wj−1,` = Vj−2 +

j−1∑
r=j−2

L∑
`=1

Wr,` = · · · = Vj0 +

j−1∑
r=j0

L∑
`=1

Wr,` =

j−1∑
r=−∞

L∑
`=1

Wr,`.

(3.2)

Next, we prove a splitting lemma which play a key role in the construction of shift

invariant M -band tight framelet packets. By this lemma, we can split a given M -band

tight wavelet frame into M−J -shift invariant M -band tight framelet packets.

Lemma 3.1. Let g ∈ L2(R), j ≤ J and
{
gq,Jj,k : k ∈ Z

}
be a Bessel’s sequence in L2(R)

with bound Bq i.e., ∑
k∈Z

∣∣∣〈f, gq,Jj,k 〉∣∣∣2 ≤ Bq∥∥f∥∥2

2
, for any f ∈ L2(R). (3.3)

Let m`, ` = 0, 1, . . . , L be the framelet symbols associated with the refinable function ϕ and

the tight framelets ψ`, ` = 1, . . . , L satisfying

L∑
`=0

∣∣m`(ξ)
∣∣2 = 1. (3.4)

For ` = 0, 1, . . . , L, define

gq,J`,j−1,k(x) =
∑
n∈Z

m`(n) gq,Jj,k (x−M−jn), k ∈ Z (3.5)

Sq,J` = span
{
gq,J`,j−1,k : k ∈ Z

}
, (3.6)

and Sq,J = span
{
gq,Jj,k : k ∈ Z

}
. Then
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(i). For ` = 0, 1, . . . , L and k ∈ Z, we have∥∥∥gq,J`,j−1,k

∥∥∥
2
≤
∥∥∥gq,Jj,k ∥∥∥

2

and
L∑
`=0

∥∥∥gq,J`,j−1,k

∥∥∥
2

=
∥∥∥gq,Jj,k ∥∥∥

2
.

(ii). For any sequence d ∈ l2(Z), there exists L+ 1 sequences {d`}L`=0, defined by

d`(k) =
∑
n∈Z

mJ−j
` (n) d(n+ k), k ∈ Z (3.7)

such that ∑
k∈Z
|d(k)|2 =

L∑
`=0

∑
k∈Z
|d`(k)|2, (3.8)

and ∑
k∈Z

d(k) gq,Jj,k =
L∑
`=0

∑
k∈Z

d`(k) gq,J`,j−1,k. (3.9)

(iii). In particular for any f ∈ L2(R), let d(k) =
〈
f, gq,Jj,k

〉
, k ∈ Z, then d ∈ l2(Z) and

(3.7)− (3.9) gives

d`(k) =
〈
f, gq,J`,j−1,k

〉
, k ∈ Z, ` = 0, 1, . . . , L, (3.10)

∑
k∈Z

∣∣∣〈f, gq,Jj,k 〉∣∣∣2 =

L∑
`=0

∑
k∈Z

∣∣∣〈f, gq,J`,j−1,k

〉∣∣∣2 , (3.11)

and ∑
k∈Z

〈
f, gq,Jj,k

〉
gj,k =

L∑
`=0

∑
k∈Z

〈
f, gq,J`,j−1,k

〉
gq,J`,j−1,k (3.12)

respectively.

(iv). For ` = 0, 1, . . . , L, the system
{
gq,J`,j−1,k : k ∈ Z

}
is a Bessel’s sequence with the

space decomposition

Sq,J = Sq,J0 + Sq,J1 + · · ·+ Sq,JL . (3.13)

Proof. (i) Equation (3.5) can be recast in frequency domain as

ĝq,J`,j−1,k (ξ) = m`

(
M−jξ

)
ĝq,Jj,k (ξ) , ` = 0, 1, . . . , L. (3.14)

By invoking condition (3.4) and using Parseval’s formula, we obtain
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L∑
`=0

∥∥∥gq,J`,j−1,k

∥∥∥
2

=

L∑
`=0

1

2π

∫
R

∣∣∣m`

(
M−jξ

)
ĝq,Jj,k (ξ)

∣∣∣2 dξ
=

1

2π

∫
R

∣∣∣ĝq,Jj,k (ξ)
∣∣∣2 L∑
`=0

∣∣m`

(
M−jξ

)∣∣2 dξ
=

1

2π

∫
R

∣∣∣ĝq,Jj,k (ξ)
∣∣∣2 dξ

=
∥∥∥gq,Jj,k ∥∥∥

2
.

Hence, it follows that
∥∥gq,J`,j−1,k

∥∥
2
≤
∥∥gq,Jj,k ∥∥2

.

(ii) Taking Fourier transform on both sides of (3.7), we obtain

d̂`(ξ) = m`

(
MJ−jξ

)
d̂ (ξ) , ` = 0, 1, . . . , L. (3.15)

Again invoking condition (3.4) and using (3.15), we obtain

L∑
`=0

∣∣d̂`(ξ)∣∣2 =
L∑
`=0

∣∣m`

(
MJ−jξ

)∣∣2 ∣∣d̂ (ξ)
∣∣2 =

∣∣d̂ (ξ)
∣∣2 L∑
`=0

∣∣m`

(
MJ−jξ

)∣∣2 =
∣∣d̂ (ξ)

∣∣2.
Therefore, it follows that

L∑
`=0

∑
k∈Z

∣∣d`(k)
∣∣2 =

∑
k∈Z

∣∣d(k)
∣∣2,

and hence (3.8) is proved.

Also, the Fourier transform of (3.9) yields

d̂
(
M−Jξ

)
ĝq,Jj,0 (ξ) =

L∑
`=0

d̂`
(
M−Jξ

)
ĝq,J`,j−1,0 (ξ) . (3.16)

Therefore, in order to show that (3.9) holds, it suffices to show that the above equality

holds i.e., L.H.S = R.H.S which can be verified by using (3.14) and (3.15), so we have

R.H.S =

L∑
`=0

d̂
(
M−Jξ

)
m̂`(M

−jξ) m̂`(M
−jξ) ĝq,Jj,0 (ξ)

= d̂
(
M−Jξ

)
ĝq,Jj,0 (ξ)

L∑
`=0

∣∣m̂`(M
−jξ)

∣∣2
= L.H.S,

and hence, we get the desired result (3.9).
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(iii). For j ≤ J ,
{
gq,Jj,k : k ∈ Z

}
is a Bessel’s sequence in L2(R), therefore it follows that

d ∈ l2(Z). Moreover, if we obtain (3.10), then (3.11) and (3.12) are direct consequences

of (3.8) and (3.9), respectively. Thus, it suffices to show that (3.10) is true and hence by

(3.7), we obtain

d`(k) =
∑
n∈Z

mJ−j
` (n)d(k + n), k ∈ Z

=
∑
n∈Z

mJ−j
` (n)

〈
f, gq,Jj,k+n

〉

=
∑
n∈Z

m`(n)
〈
f, gq,J

j,k+MJ−jn

〉

=

〈
f,
∑
n∈Z

m`(n) gq,J
j,k+MJ−jn

〉

=
〈
f, gq,J`,j−1,k

〉
, ` = 0, 1, . . . , L,

and hence part (iii) of the lemma is proved.

(iv). For any f ∈ L2(R), Eqs. (3.3) and (3.11) gives∑
k∈Z

∣∣∣〈f, gq,J`,j−1,k

〉∣∣∣2 ≤
L∑
`=0

∑
k∈Z

∣∣∣〈f, gq,J`,j−1,k

〉∣∣∣2

=
∑
k∈Z

∣∣∣〈f, gq,Jj,k 〉∣∣∣2
≤ Bq‖f‖2, ` = 0, 1, . . . , L.

Furthermore, from Eq. (3.5), we can get

gq,J`,j−1,k =
∑
n∈Z

m`(n) gq,J
j,k+MJ−jn

.

Consequently, Sq,J0 +Sq,J1 + · · ·+Sq,JL ⊆ Sq,J . On the other hand, by taking d to be finitely

support sequences in (3.9), we can obtain Sq,J ⊆ Sq,J0 + Sq,J1 + · · ·+ Sq,JL . Hence, Lemma

3.1 is proved completely.

Next, we shall show the construction of the basic shift invariant M -band framelet

packets for L2(R) by means of the unitary extension principle. To do this, let X(Ψ) be

the M -band tight wavelet frame for L2(R) constructed via UEP in an MRA {Vj : j ∈ Z}
generated by the refinable function ϕ. We construct the shift invariant M -band framelet

packets by recursively decomposing the MRA space VJ for a fixed scale J to level 0 with
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any combined MRA mask h = [h0, h1, . . . , hL] satisfying the condition (3.4) which is much

weaker than the UEP requirement M(ξ)M∗(ξ) = IM .

In the first step, we decompose VJ := span {ϕJ,k : k ∈ Z} associated with the com-

bined mask mJ = [mr : r ∈ Λ1] satisfying the condition (3.4), where Λ1 is a J-tuple index

set defined by

Λ1 =
{

(rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ J , rJ−1 = · · · = r1 = 0
}
,

in which J is a positive constant. By invoking Lemma 3.1, we can decompose VJ into

spaces W q,J
J−1,r , r ∈ Λ1, where

W q,J
J−1,r = span

{
ωq,Jr,J−1,k : k ∈ Z

}
,

ωq,Jr,J−1,k(x) =
∑
n∈Z

mr[n]ϕJ,k(x−M−Jn), k ∈ Z.

Then, for any f ∈ L2(R), we have

∑
k∈Z

∣∣〈f, ϕJ,k〉∣∣2 =
∑
r∈Λ1

∑
k∈Z

∣∣∣〈f, ωq,Jr,J−1,k

〉∣∣∣2 .
At the second level of decomposition, by Lemma 3.1, each space W q,J

J−1,r , r ∈ Λ1 is decom-

posed with a combined UEP mask mJ−1,r = [mr′ : r′ ∈ Λr
2] satisfying the condition (3.4),

where Λr
2 is a subset of Λ2 defined by

Λr
2 =

{
r′ ∈ Λ2 : r′(1) = r(1)

}
and Λ2 is a J-tuple index set defined by

Λ2 =
{

(rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ J , 0 ≤ rJ−1 ≤ J (rJ ), rJ−2 = · · · = r1 = 0
}
,

in which J (rJ ) is a positive constant for each (rJ) into spaces W q,J
J−2,r′ , r′ ∈ Λr

2, where

W q,J
J−2,r′ = span

{
ωq,Jr′,J−2,k : k ∈ Z

}
,

ωq,Jr′,J−2,k(x) =
∑
n∈Z

mr′ [n]ωq,Jr,J−1,k(x−M
−J+1n), k ∈ Z.

Thus, for any f ∈ L2(R), we have

∑
k∈Z

∣∣∣〈f, ωq,Jr,J−1,k

〉∣∣∣2 =
∑
r′∈Λr

2

∑
k∈Z

∣∣∣〈f, ωq,Jr′,J−2,k

〉∣∣∣2 .
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Generally, at the p-th level (2 ≤ p ≤ J) of decomposition, by Lemma 3.1, each space

W q,J
J−p+1,r , r ∈ Λp−1 is decomposed with a combined UEP mask mJ−p+1,r = [mr′ : r′ ∈ Λr

p]

satisfying the condition (3.4), where Λr
p is a subset of Λp defined by

Λr
p =

{
r′ ∈ Λp : r′(n) = r(n), for 1 ≤ n ≤ p− 1

}
(3.17)

and Λp is a J-tuple index set defined by

Λp =
{

(rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ J , 0 ≤ rJ−s ≤ J (rJ ,rJ−1,...,rJ−s+1),

1 ≤ s ≤ p, rJ−p = · · · = r1 = 0
}
,

in which J (rJ ,rJ−1,...,rJ−s+1) is a positive constant for each (rJ , rJ−1, . . . , rJ−s+1) into spaces

W q,J
J−p,r′ , r′ ∈ Λr

2, where

W q,J
J−p,r′ = span

{
ωq,Jr′,J−p,k : k ∈ Z

}
,

ωq,Jr′,J−p,k(x) =
∑
n∈Z

mr′ [n]ωq,Jr,J−p+1,k(x−M
−J+p−1n), k ∈ Z.

Therefore for any f ∈ L2(R), we have∑
k∈Z

∣∣∣〈f, ωq,Jr,J−p+1,k

〉∣∣∣2 =
∑
r′∈Λr

p

∑
k∈Z

∣∣∣〈f, ωq,Jr′,J−p,k

〉∣∣∣2 .
In particular, at the J-th level of decomposition, by Lemma 3.1, each space W q,J

1,r , r ∈ ΛJ−1

is decomposed with a combined UEP mask m1,r = [mr′ : r′ ∈ Λr
J ] satisfying the condition

(3.4), where Λr
J is a subset of ΛJ defined by

Λr
J =

{
r′ ∈ ΛJ : r′(n) = r(n), for 1 ≤ n ≤ J − 1

}
and ΛJ is a J-tuple index set defined by

ΛJ =
{

(rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ J , 0 ≤ rJ−s ≤ J (rJ ,rJ−1,...,rJ−s+1), 1 ≤ s ≤ J
}
,

(3.18)

in which J (rJ ,rJ−1,...,rJ−s+1) is a positive constant for each (rJ , rJ−1, . . . , rJ−s+1) into spaces

W q,J
0,r′ , r′ ∈ Λr

J , where

W q,J
0,r′ = span

{
ωq,Jr′,0,k : k ∈ Z

}
,

ωq,Jr′,0,k(x) =
∑
n∈Z

mr′ [n]ωq,Jr,1,k

(
x−M−1n

)
, k ∈ Z.

Therefore for any f ∈ L2(R), we have∑
k∈Z

∣∣∣〈f, ωq,Jr,1,k

〉∣∣∣2 =
∑
r′∈Λr

J

∑
k∈Z

∣∣∣〈f, ωq,Jr′,0,k

〉∣∣∣2 .
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Combining all the inner product equations in the above construction, we get

∑
k∈Z
|〈f, ϕJ,k〉|2 =

∑
r∈ΛJ

∑
k∈Z

∣∣∣〈f, ωq,Jr,0,k

〉∣∣∣2 , for any f ∈ L2(R). (3.19)

In other words, we obtain another representation of VJ as

VJ := span
{
ωq,Jr,0,k : r ∈ ΛJ , k ∈ Z

}
.

Theorem 3.2. For a given M -band tight wavelet frame X(Ψ), the system

Fq,J =
{
ωq,Jr,0,k : r ∈ ΛJ , k ∈ Z

}
∪
{
ψ`,j,k : ` = 1, . . . , L, j ≥ J, k ∈ Z

}
is a M−J -shift invariant M -band tight framelet packet for L2(R).

Proof. Using (3.19) and the fact that X(Ψ) is a tight wavelet frame for L2(R), we have

∥∥f∥∥2

2
=

∑
k∈Z

∣∣〈f, ϕJ,k〉∣∣2 +
L∑
`=1

∑
j≥J

∑
k∈Z

∣∣〈f, ψ`,j,k〉∣∣2 , for any f ∈ L2(R)

=
∑
r∈ΛJ

∑
k∈Z

∣∣∣〈f, ωq,Jr,0,k

〉∣∣∣2 +

L∑
`=1

∑
j≥J

∑
k∈Z

∣∣〈f, ψ`,j,k〉∣∣2 .
This completes the proof of Theorem 3.2.

As in the stationary case constructed above, we can obtain a library of tight M -band

framelet packets of L2(R) by partitioning ΛJ into disjoint subsets of the form

Ij,r =
{

(rJ , . . . , rj+1, r
′
j , . . . , r

′
1) ∈ ΛJ : r = (rJ , . . . , rj+1, 0, . . . , 0) ∈ ΛJ−j

}
,

i.e.,

ΓJ =
{
Ij,r :

⋃
Ij,r = ΛJ

}
. (3.20)

Theorem 3.3. Let ΓJ be a disjoint partition ΛJ , where ΛJ and ΓJ are defined in (3.18)

and (3.20), respectively. Then the system

Fq,JΓJ
=
{
ωq,Jr,j,k : Ij,r ∈ ΓJ , k ∈ Z

}⋃{
ψ`,j,k : ` = 1, . . . , L, j ≥ J, k ∈ Z

}
also generates a tight frame for L2(R).
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Proof. Since ΓJ is a disjoint partition of ΛJ , for any f ∈ L2(R), we have

∑
Ij,r∈ΓJ

∑
k∈Z

∣∣∣〈f, ωq,Jr,j,k

〉∣∣∣2 =
∑

Ij,r∈ΓJ

∑
r′∈Ij,r

∑
k∈Z

∣∣∣〈f, ωq,Jr′,0,k

〉∣∣∣2

=
∑
r∈ΛJ

∑
k∈Z

∣∣∣〈f, ωq,Jr,0,k

〉∣∣∣2 .
By applying Theorem 3.2, Theorem 3.3 is proved.

By Theorem 3.3, we can obtain various M−J -shift invariant M -band tight framelet

packets Fq,JΓJ
from various disjoint partitions of ΛJ . All such tight framelet packets Fq,JΓJ

will be called M−J -shift invariant non-stationary M -band tight framelet packets.
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