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SOLVING LINEAR AND NONLINEAR KLEIN-GORDON EQUATIONS

BY NEW PERTURBATION ITERATION TRANSFORM METHOD

M. KHALID1, M. SULTANA1, F. ZAIDI1, A. UROOSA2 , §

Abstract. We present an effective algorithm to solve the Linear and Nonlinear Klein-
Gordon equation, which is based on the Perturbation Iteration Transform Method (PITM).
The Klein-Gordon equation is the name given to the equation of motion of a quantum
scalar or pseudo scalar field, a field whose quanta are spin-less particles. It describes the
quantum amplitude for finding a point particle in various places, the relativistic wave
function, but the particle propagates both forwards and backwards in time. The Pertur-
bation Iteration Transform Method (PITM) is a combined form of the Laplace Transform
Method and Perturbation Iteration Algorithm. The method provides the solution in the
form of a rapidly convergent series. Some numerical examples are used to illustrate the
preciseness and effectiveness of the proposed method. The results show that the PITM
is very efficient, simple and can be applied to other nonlinear problems.

Keywords: Perturbation Iteration Algorithm, Laplace Transform Method, Linear and
Nonlinear Klein-Gordon Equations.
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1. Introduction

Nonlinear phenomena, that is found in many areas of scientific research, such as solid
state physics, fluid dynamics, plasma physics, mathematical biology and chemical kine-
matics can be modeled by partial differential equations. The Klein-Gordon equation is an
important group of partial differential equations and is present in relativistic quantum me-
chanics and field theory, which is immensely important for the high energy physicist [1],
and is employed for the modeling of various phenomena, including the propagation of
dislocations in crystals and the behavior of elementary particles. On the other hand,
the one-dimensional Klein-Gordon equation is given through the partial differential equa-
tion [2].

In the present paper, we are concerned with the numerical approximation of the follow-
ing Nonlinear Klein-Gordon equation:

utt(x, t)− uxx(x, t) + au(x, t) = h(x, t) (1)

with initial conditions
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u(x, 0) = f(x); ut(x, 0) = g(x) (2)

Klein-Gordon equation and the various other forms of the Nonlinear Klein-Gordon equa-
tion are all studied extensively in an assortment of papers. The equation has drawn a great
deal of interest in studying Solation’s and Soliton Perturbation Theory [3–6]. Biswas et
al. studied the adiabatic dynamics of topological and non-topological solitons alike in
presence of perturbation terms [7–10]. For one to obtain the exact and numerical solu-
tions for Nonlinear Klein-Gordon Equations, a number of methods have been devised,
some of which are the Modified Decomposition Method [11], the Symplectic Finite Dif-
ference Approximations Method [12], the Variational Iteration Method [13,14], the Finite
Element Method [15], the Cubic B-Spline Collocation Method [16], the Finite Difference
Method [17], the Decomposition Method [18], Exp-Function Method [19, 20], the Homo-
topy Perturbation Method [21], the Tanh Method [22] and the Jacobi Elliptic Function
Method [23], the Soliton Solution [24–28], the Stationary Solutions [29], the Numerical
Scheme Based on the Collocation Method [2], and the Traveling Wave Solutions [30].

In this study, we propose a consistent algorithm based on the Perturbation Iteration
Method to resolve the Linear and Nonlinear Klein-Gordon Equations. It should be men-
tioned that this method is a resourceful combination of the Laplace Transformation and
New Perturbation Iteration Algorithm [31]. The Perturbation Iteration Transform Method
(PITM) yields the solution in a rapid convergent series which results in the solution being
in closed form. The prime benefit of the technique is that it grants its users with an
analytical approximation, in many cases even an exact solution, in a rapidly convergent
sequence with elegantly computed terms.

The paper is presented as follows. In section 2, we start off with some basic information
of Perturbation Iteration Algorithm. Section 3 consists of description of Perturbation
Iteration Transform Method. In section 4, we apply the Perturbation Iteration Transform
Method (PITM) to solve five test examples in order to show its ability and efficiency.
Section 5 is a conclusion of all of the above.

2. Perturbation Iteration Algorithm (PIA)

Consider the following non-linear differential equation

A(u)− f(r) = 0; r ∈ Ω (3)

with boundary condition

B
(
u,
∂u

∂n

)
= 0; r ∈ Γ (4)

Where A, B, f(r) and Γ are general operator, a boundary operator, a known analytic
function and the boundary of the domain Ω, respectively. The operator A have both linear
and nonlinear terms in it.

L[u] +N [u]− f(r) = 0 (5)

Introducing ε with nonlinear term yield

L[u] + εN [u]− f(r) = 0 (6)

By applying Perturbation Iteration Algorithm, discussed in [31], we introduce pertur-
bation expansion with n correction terms in Eq.(6)

u = u◦ + εu1 + ε2u2 + ...+ εnun (7)
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where ε is the perturbation parameter. Substitute Eq.(7) in Eq.(6) and expanding
Taylor’s series with mth order yields

A(u◦) + εN(u◦) +
(
A

′
(u◦) + εN

′
(u◦)

)
(εu1 + ε2u2 + ...+ εnun)+(

A
′′
(u◦) + εN

′′
(u◦)

)
2!

(εu1 + ε2u2 + ...+ εnun)2 + ......+(
A(m)(u◦) + εN (m)(u◦)

)
m!

(εu1 + ε2u2 + ...+ εnun)m = f(r)

(8)

It is point to remember that since n terms in perturbation expansion and mth order
derivatives in the Taylor’s series, the Perturbation Iteration Algorithm developed will be
PIA(n,m); n should be always less than or equal to m, other unknown correction terms
in perturbation expansion can’t be determined. Eq.(8) should be grouped with respect to
the same order of ε, then comparing the coefficient of same power of ε gives the unknown
correction terms. Substituting back these correction terms in to Eq.(7) yield an algorithm
for solution of Eq.(3).

In the present paper the simplest Perturbation Iteration Algorithm PIA(1, 1) is used
by taking one correction term in the perturbation expansion and correction terms of only
first derivatives in the Taylor’s series expansion, that is, n = 1, m = 1. Consider the
second order general partial differential equation

F (ü, u̇, u
′′
, u

′
, u, ε) = 0 (9)

where u = u(x, t), u̇ = ∂u
∂t , ü = ∂2u

∂t2
, u

′
= ∂u

∂x , u
′′

= ∂2u
∂x2

and ε the artificially introduced
perturbation parameter. In this method only one correction term in the perturbation
expansion

un+1 = un + ε(uc)n (10)

Substituting Eq.(10) in Eq.(9), expanding in a Taylor’s series with first derivative only
yields

F (ü, u̇, u
′′
, u

′
, u, 0) + Fü(ü, u̇, u

′′
, u

′
, u, 0)ε(üc)n + Fu̇(ü, u̇, u

′′
, u

′
, u, 0)ε(u̇c)n+

Fu′′ (ü, u̇, u
′′
, u

′
, u, 0)ε(u

′′
c )n + Fu′ (ü, u̇, u

′′
, u

′
, u, 0)ε(u

′
c)n + Fu(ü, u̇, u

′′
, u

′
, u, 0)ε(uc)n+

Fε(ü, u̇, u
′′
, u

′
, u, 0)ε = 0

(11)

where u = u(x, t), Fü = ∂F
∂ü , Fu̇ = ∂F

∂u̇ , Fu′′ = ∂F
∂u′′

, Fu′ = ∂F
∂u′

, Fu = ∂F
∂u , Fε = ∂F

∂ε and ε the

all derivative are evaluated at ε = 0. Starting with the initial condition u◦ first (uc)◦ has
been calculated by the help of Eq.(7). Then we substitute (uc)◦ into Eq.(6) to find u1.
Iteration process is repeated using Eq.(6) and Eq.(7) until we obtain a satisfactory result.

3. Perturbation Iteration Transform Method (PITM)

To illustrate the basic idea of this method, we consider a general nonlinear partial
differential equation with boundary conditions of the form:

Du(x, t) +Ru(x, t) +Nu(x, t) = g(x, t) (12)

with
u(x, 0) = h(x); ut(x, 0) = f(x) (13)
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Where D is the second order linear differential operator D = ∂2

∂t2
, R is the linear differential

operator of less order than D, N represents the general nonlinear differential operator and
g(x, t) is the source term. Taking the Laplace Transform (denote in this paper by L ) on
both sides of Eq.(12), we get

L[Du(x, t)] + L[Ru(x, t)] + L[Nu(x, t)] = L[g(x, t)] (14)

Using the differential property of the Laplace Transform, we have

L[Du(x, t)] =
h(x)

s
+
f(x)

s2
+

1

s2
L[g(x, t)]− 1

s2
L[Ru(x, t)]− 1

s2
L[Nu(x, t)] (15)

Operating with the Laplace Inverse Transform on both sides of Eq. (15) gives

u(x, t) = G(x, t)− L−1
[ 1

s2
L[Ru(x, t) +Nu(x, t)]

]
(16)

where G(x, t) represent the term arising from the source term and the prescribed initial
conditions. Now we apply the Perturbation Iteration Method. Take Eq.(16) and arranging
the equation and make the following form

u(x, t)−G(x, t) + L−1
[ 1

s2
L[Ru(x, t) +Nu(x, t)]

]
ε = 0 (17)

where ε is the perturbation parameter

u(x, t)−G(x, t) + uc(x, t)ε+ L−1
[ 1

s2
L[Ru(x, t) +Nu(x, t)]

]
ε = 0 (18)

and

uc(x, t) =
G(x, t)− u(x, t)

ε
− L−1

[ 1

s2
L[Ru(x, t) +Nu(x, t)]

]
(19)

which is the coupling of the Laplace Transform and the Perturbation Iteration Method.
Starting with an initial guess u◦. First (uc)◦ is calculated from Eq.(19) and then substi-
tuted in Eq.(10) for calculating u1. The iteration algorithm procedure is repeated using
Eq.(19) and Eq.(2) until a satisfactory result is obtained. This iteration algorithm may
produce similar results with the variation algorithm explained in [14].

u◦(x, t) =G(x, t)

u1(x, t) =− u◦(x, t) +G(x, t)− L−1
[ 1

s2
L[Ru◦(x, t) +Nu◦(x, t)]

]
u2(x, t) =− u1(x, t) +G(x, t)− L−1

[ 1

s2
L[Ru1(x, t) +Nu1(x, t)]

]
.

.

.

(20)

and so on. The approximate solution thus obtained by

u(x, t) = u◦(x, t) + u1(x, t) + u2(x, t) + .... (21)

4. Numerical Applications

In this section, we use Perturbation Iteration Transform Method (PITM) in solving the
Linear and Nonlinear Klein-Gordon Equations.
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4.1. Example 1. Consider the following Linear Klein-Gordon Equation

utt(x, t)− uxx(x, t) + u(x, t) = 0 (22)

with the boundary conditions

u(x, 0) = 0; ut(x, 0) = x (23)

Applying Laplace Transform on both sides of Eq.(22) subject to the boundary conditions
Eq.(23), we have

L[u(x, t)] =
x

s
+

1

s2
L[uxx(x, t)− u(x, t)] (24)

The Inverse of Laplace Transform implies that

u(x, t) = xt+ L−1
[ 1

s2
L[uxx(x, t)− u(x, t)]

]
(25)

Now, applying the Perturbation Iteration Method, we get

u(x, t)− xt− L−1
[ 1

s2
L[uxx(x, t)− u(x, t)]

]
ε = 0 (26)

u(x, t)− xt+ uc(x, t)ε− L−1
[ 1

s2
L[uxx(x, t)− u(x, t)]

]
ε = 0 (27)

uc(x, t) =
−u(x, t) + xt

ε
+ L−1

[ 1

s2
L[uxx(x, t)− u(x, t)]

]
(28)

we have

u◦(x, t) =xt

u1(x, t) =− 1

3!
xt3

u2(x, t) =
1

5!
xt5

u3(x, t) =− 1

7!
xt7

u4(x, t) =
1

9!
xt9

.

.

.

(29)

and so on. Therefore the solution u(x, t) is given by

u(x, t) = x
(
t− 1

3!
t3 +

1

5!
t5 − 1

7!
t7 +

1

9!
t9 − ....

)
(30)

In series form, we have u(x, t) = x sin t

4.2. Example 2. Consider the following Nonlinear Klein-Gordon Equation

utt(x, t)− uxx(x, t) + u(x, t) = 2 sinx (31)

with the boundary conditions

u(x, 0) = sinx; ut(x, 0) = 1 (32)
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Applying Laplace Transform on both sides of Eq.(31) subject to the boundary conditions
Eq.(32), we have

L[u(x, t)] =
2 sinx

s3
+

sinx

s
+

1

s2
L[uxx(x, t)− u(x, t)] (33)

The Inverse of Laplace Transform implies that

u(x, t) = t2 sinx+ sinx+ t+ L−1
[ 1

s2
L[uxx(x, t)− u(x, t)]

]
(34)

Now, applying the Perturbation Iteration Method, we get

u(x, t)− t2 sinx− sinx− t− L−1
[ 1

s2
L[uxx(x, t)− u(x, t)]

]
ε = 0 (35)

uc(x, t) =
−u(x, t) + sinx+ t+ t2 sinx

ε
+ L−1

[ 1

s2
L[uxx(x, t)− u(x, t)]

]
(36)

we have

u◦(x, t) =t+ sinx+ t2 sinx

u1(x, t) =− 1

3!
t3 − t2 sinx− 1

3!
t4 sinx

u2(x, t) =
1

5!
t5 +

1

3!
t4 sinx+

1

90
t6 sinx

u3(x, t) =− 1

7!
t7 − 1

90
t6 sinx− 1

2520
t8 sinx

u4(x, t) =
1

9!
t9 +

1

2520
t8 sinx+

1

113400
t10 sinx

.

.

.

(37)

and so on. Therefore the solution u(x, t) is given by

u(x, t) = sinx+
(
t− 1

3!
t3 +

1

5!
t5 − 1

7!
t7 +

1

9!
t9 − ....

)
(38)

In series form, we have u(x, t) = sinx+ sin t

4.3. Example 3. Consider the following Nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = x2t2 (39)

with the boundary conditions

u(x, 0) = 0; ut(x, 0) = x (40)

Applying Laplace Transform on both sides of Eq.(39) subject to the boundary conditions
Eq.(40), we have

L[u(x, t)] =
x

s2
+

2x2

s5
+

1

s2
L[uxx(x, t)− u2(x, t)] (41)

The Inverse of Laplace Transform implies that

u(x, t) = xt+
x2t4

12
+ L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
= 0 (42)
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Now, applying the Perturbation Iteration Method, we get

u(x, t)− xt− x2t4

12
ε− L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
ε = 0 (43)

uc(x, t) =
−u(x, t) + xt

ε
+
x2t4

12
+ L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
(44)

we have

u◦(x, t) =xt+
1

12
x2t4

u1(x, t) =
1

180
t6 − 1

12
x2t4 − 1

252
x3t7 − 1

12960
x4t10

u2(x, t) =− 1

180
t6 − 1

5896800
t14 − 11

22680
xt9 − 1

142560
x2t12 +

1

252
x3t7 +

1

4762800
x3t15+

1

6048
x4t10 +

1

356918400
x4t18 +

1

1010880
x5t13 − 1

15240960
x6t16 − 1

558472320
x7t19−

1

77598259200
x8t22

.

.

.

(45)

and so on. Therefore the solution u(x, t) in series form is given by u(x, t) = xt

4.4. Example 4. Consider the following Nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = 2x2 − 2t2 + x4t4 (46)

with the boundary conditions

u(x, 0) = 0; ut(x, 0) = 0 (47)

Applying Laplace Transform on both sides of Eq.(46) subject to the boundary conditions
Eq.(47), we have

L[u(x, t)] = − 4

s5
+

24x4

s7
+

2x2

s3
− 1

s2
L[uxx(x, t)− u2(x, t)] (48)

The Inverse of Laplace Transform implies that

u(x, t) = x2t2 − 1

6
t4 +

1

30
x4t6 − L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
(49)

Now, applying the Perturbation Iteration Method, we get

u(x, t)− x2t2ε+
1

6
t4ε− 1

30
x4t6ε+ L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
ε = 0 (50)

uc(x, t) =
−u(x, t)

ε
+ x2t2 − 1

6
t4 +

1

30
x4t6 − L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
(51)
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we have

u◦(x, t) =x2t2 − 1

6
t4 +

1

30
x4t6

u1(x, t) =− 1

6
t4 +

1

3240
t10 − 11

840
x2t8 +

1

30
x4t6 − 1

11880
x4t12 +

1

1350
x6t10 +

1

163800
x8t14

.

.

.

(52)

and so on. Therefore the solution u(x, t) in series form is given by u(x, t) = x2t2

4.5. Example 5. Consider the following Nonlinear Klein-Gordon equation

utt(x, t)− uxx(x, t) + u2(x, t) = 6xt(x2 − t2) + x6t6 (53)

with the boundary conditions

u(x, 0) = 0; ut(x, 0) = 0 (54)

Applying Laplace Transform on both sides of Eq.(53) subject to the boundary conditions
Eq.(54), we have

L[u(x, t)] = −36x

s6
+

6x3

s4
+

720x6

s9
+

1

s2
L[uxx(x, t)− u2(x, t)] (55)

The Inverse of Laplace Transform implies that

u(x, t) = − 3

10
xt5 +

3

2
x3t3 +

1

56
x6t8 + L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
(56)

Now, applying the Perturbation Iteration Method, we get

u(x, t) +
3

10
xt5ε− 3

2
x3t3ε− 1

56
x6t8ε− L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
ε = 0 (57)

uc(x, t) =
−u(x, t)

ε
− 3

10
xt5 +

3

2
x3t3 +

1

56
x6t8 + L−1

[ 1

s2
L[uxx(x, t)− u2(x, t)]

]
(58)

we have

u◦(x, t) =− 3

10
xt5 +

3

2
x3t3 +

1

56
x6t8

u1(x, t) =
9

20
xt5 − 3

4400
x2t12 +

67

4200
x4t10 − 9

224
x6t8 +

1

19600
x7t15 − 1

2912
x9t13 − 1

959616
x12t18

.

.

.

(59)

and so on. Therefore the solution u(x, t) in series form is given by u(x, t) = x3t3



M. KHALID, M. SULTANA, F. ZAIDI, A. UROOSA: SOLVING LINEAR AND NONLINEAR ... 123

5. Concluding Remarks

The recently derived Perturbation Iteration Transform Method is applied to Linear and
Nonlinear Klein-Gordon Equations for the first time. The theory is first developed and
then applied to five different problems. On the basis of this study, one may reach the
conclusion that PITM is a powerful and capable process that helps profoundly in finding
exact and approximate solutions for linear and nonlinear differential equations. It is
important to note that the method is capable of reducing the volume of the computational
work as compared to the classical methods while maintaining the high accuracy of the
numerical result; the size reduction amounts to an improvement of the performance of the
approach. That the Perturbation Iteration Transform Method solves Linear and Nonlinear
problems without needing Adomian Polynomials is a clear advantage of this technique over
the Decomposition Method. Conclusively, the PITM could be considered as a welcome
refinement in existing numerical techniques and may open doors to wider applications.
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