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A NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS DEFINED BY

q-DERIVATIVE

E. TOKLU1, §

Abstract. In this investigation we introduce, by making use of q−derivative operator,
a new subclass which are an extension of some well-known subclasses of bi-univalent
functions. Also, we give the upper bounds for the coefficients |a2| and |a3| for the
functions belonging to this new subclass and its subclasses.
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1. Introduction and Prerequisites

Denote byA the class of all analytic functions f in the unit disc D = {z : z ∈ C and |z| < 1},
with the series expansion

f(z) = z +
∑
n≥2

anz
n (1)

and normalized by f(0) = f ′(0) − 1 = 0. Further, let S be the class of all functions in A
which are univalent in D. Because of the Koebe one-quarter theorem [6] it is well known
that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ D)

and

f(f−1(w)) = w, (|w| < r0(f); r0(f) ≥ 1/4)

where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + . . .. (2)

A function f ∈ A is said to be bi-univalent in D if both f(z) and f−1(z) are univalent
in D. We denote by Σ the class of all functions f(z) which are bi-univalent functions in
D. We say that f is starlike function in D, denoted by S ?, if the function f is univalent
in D and f(D) is a starlike domain with respect to origin. Also we say that f is convex

1 Department of Mathematics, Faculty of Education, Ağrı Ibrahim Çeçen University, Ağrı, Turkey.
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function in D, denoted by C , if f is univalent in D and f(D) is a convex domain. Ana-
lytical characterizations of starlikeness and convexity are, respectively, equivalent to the
conditions <(zf ′(z)/f(z)) > 0 and 1 + <(zf ′′(z)/f ′(z)) > 0.

A function f ∈ A is said to be subordinate to a function g ∈ A, written f(z) ≺ g(z),
provided there exists a function ω analaytic defined on D, with ω(0) = 0 and |ω(z)| < 1,
and such that f(z) = g(ω(z)). In view of subordination, the above mentioned conditions
are, respectively, equivalent to (zf ′(z)/f(z) ≺ (1 + z)/(1 − z) and 1 + zf ′′(z)/f ′(z) ≺
(1 + z)/(1 − z). It is well known that Ma and Minda [15] gave a unified presentation of
various subclasses of starlike and convex functions by replacing the subordinate function
(1+z)/(1−z) by a more general analytic function ψ with positive real part and normalized
by the conditions ψ(0) = 1, ψ′(0) > 0 and ψ maps D onto a region starlike with respect
to 1 and symmetric with respect to the real axis. They presented and investigated the
following general classes that contains several well-known classes under some special cases:

S ?(ψ) =

{
f ∈ A

∣∣∣∣zf ′(z)f(z)
≺ ψ(z)

}
and C (ψ) =

{
f ∈ A

∣∣∣∣1 +
zf ′′(z)

f ′(z)
≺ ψ(z)

}
.

It is worth mentioning that the functions which are in these classes are said to be Ma-
Minda starlike and Ma-Minda convex, respectively. Also we say that a function f ∈ A is
a Ma-Minda starlike and Ma-Minda convex order γ (γ ∈ C− {0}) :

S ?(γ, ψ) =

{
f ∈ A

∣∣∣∣1 +
1

γ

(
zf ′(z)

f(z)
− 1

)
≺ ψ(z)

}
and

C (γ, ψ) =

{
f ∈ A

∣∣∣∣1 +
1

γ

(
zf ′′(z)

f ′(z)

)
≺ ψ(z)

}
,

respectively.
It is well known that the class Σ of bi-univalent functions was defined and studied by

Lewin [14]. Since then, various subclasses the bi-univalent function class Σ were defined
and non-sharp estimates on the coefficients |a2| and |a3| for the functions belonging to
these subclasses were obtained in several recent investigations (see [2], [4], [5], [10], [16],
[17], [23]). A function f is bi-starlike and bi-convex of complex order γ (γ ∈ C − {0})
of Ma-Minda type if both f and f−1 are Ma-Minda starlike and Ma-Minda convex of
complex order γ. These classes are represented respectively by S ?

Σ(γ, ψ) and CΣ(γ, ψ).
Recently, q−derivative has played a crucial role in the theory of univalent functions

especially in estimating the sharp inequalities bound for various subclasses of univalent
functions (see [1], [3], [8], [9], [19]). In [12, 13] for 0 < q < 1, the q-difference operator
denoted as Dqf is defined by the equation

(Dqf)(z) =
f(z)− f(qz)

(1− q)z
, z 6= 0, (Dqf)(0) = f ′(0). (3)

It is obvious that, when q → 1−, the difference operator Dqf converges to the ordinary

differential operator Df = df/dz = f
′
. Further, It is clear that if f(z) is of the form 1, a

simple computation yields

Dqf(z) = 1 +
∑
n≥2

1− qn

1− q
anz

n−1, (z ∈ D). (4)

Previously, Ismail et al. [11] defined and investigated some important properties of func-
tions f belonging to the class PS?q. Recently, Sahoo and Sharma [21] (see also [18])
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introduced and studied the class PKq of q-close-to-convex functions. In 1989, Srivas-
tava [22] proposed the study of the class, PCq of q-convex function in D. Recently, Seoudy
and Aouf [20] defined the subclasses S ?

q (α) and Cq(α) of the class A for 0 ≤ α < 1 by

S ?
q (α) =

{
f ∈ A

∣∣∣∣<(zDq(f(z))

f(z)

)
> α, z ∈ D

}
Cq(α) =

{
f ∈ A

∣∣∣∣<(1 +
zqDq(Dq(f(z)))

Dq(f(z))

)
> α, z ∈ D

}
. (5)

It is clear that, when q → 1−, these classes S ?
q (α) and Cq(α) coincide with the classes

S ?(α) and C (α) of starlike and convex functions of order α (0 ≤ α < 1), respectively.
Motivated by all of the above-mentioned works, we present and investigate a new sub-

class of bi-univalent functions by making use of q−derivative operator.

Definition 1.1. Let be 0 ≤ λ ≤ 1, γ ∈ C− {0} and 0 < q < 1. A function f(z) given by
(1) is said to be in the class HΣ,q(λ, γ, ψ) if the following subordinations are satisfied

1 +
1

γ

(
zDqf(z) + λz2qDq (Dqf(z))

λzDqf(z) + (1− λ)f(z)
− 1

)
≺ ψ(z) (6)

and

1 +
1

γ

(
wDqg(w) + λw2qDq (Dqg(w))

λwDqg(w) + (1− λ)g(w)
− 1

)
≺ ψ(w), (7)

where g(w) := f−1(w).

A function belonging to the class Hq,Σ(λ, γ, ψ) is named as both q−bi−λ−convex func-
tion and q−bi−λ−starlike function of complex order γ of Ma-Minda type. This class
presented in this work is inspired by the corresponding class studied in [7].

It is worth noticing that, for some values of the parameters, this class give a unified
presentation of some remarkable subclasses, which the first four of these subclasses are
new.

Remark 1.1. The followings are fulfilled:
(i) Hq,Σ(0, γ, ψ) ≡ S ?

q,Σ(γ, ψ).

(ii) Hq,Σ(1, γ, ψ) ≡ Cq,Σ(γ, ψ).

(iii.) Hq,Σ(0, (1− α)e−iλ cosλ, 1+z
1−z ) ≡ S ?

q,Σ[λ, α], (|λ| < π/2, 0 ≤ α < 1).

(iv.) Hq,Σ(1, (1− α)e−iλ cosλ, 1+z
1−z ) ≡ Cq,Σ[λ, α], (|λ| < π/2, 0 ≤ α < 1).

(v.) HΣ(0, γ, ψ) ≡ S ?
Σ(γ, ψ).

For q → 1−, we arrive at the some well-known subclasses:
(vi.) HΣ(1, γ, ψ) ≡ CΣ(γ, ψ).
(vii.) HΣ(0, (1− α)e−iλ cosλ, 1+z

1−z ) ≡ S ?
Σ[λ, α], (|λ| < π/2, 0 ≤ α < 1).

(viii.) HΣ(1, (1− α)e−iλ cosλ, 1+z
1−z ) ≡ CΣ[λ, α], (|λ| < π/2, 0 ≤ α < 1).

The following lemma is very useful in building our main results.
Let P denote the class of analytic functions p in D such that p(0) = 0 and <(p(z)) >

0, z ∈ D. It is well known that this class is usually called the Caratheodory class.

Lemma 1.1. If the function p ∈P is given by the following series:

p(z) = 1 + p1z + p2z
2 + . . . ,

then the sharp estimate given as

|pn| ≤ 2 (n = 1, 2, . . . ).
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2. Coefficient Estimates

We are now in a position to establish our main result. In this section we deal with some
interesting coefficient estimates for the above-mentioned class and its some subclasses.
Actually, It is convenient to mention that this paper involves an extension of the results
given by [7].

Theorem 2.1. Let be 0 ≤ λ ≤ 1, γ ∈ C− {0} and 0 < q < 1. If a function f(z) given in
(1) is of the class HΣ,q(λ, γ, ψ), then

|a2| ≤
|γ|B1

√
2B1√∣∣∣∣γ(q2 + 1 + λ(2q4 + 3q3 − q2 + q − 1)− λ2q(q2 + 1)

)
B2

1 + 2
(
q(1 + qλ)

)2
(B1 −B2)

∣∣∣∣
and

|a3| ≤
|γ| (τ(q;λ) + υ(q;λ))(B1 + |B2 −B1|)

q(1 + q)(1 + q(1 + q)λ)(τ(q;λ)− υ(q;λ))

where τ(q;λ) = q
(
2(1+q)(1+q(1+q)λ)−(1+qλ)2

)
and υ(q;λ) = (1+qλ)(q(1+q)+λ−1).

Proof. Let f ∈HΣ,q(λ, γ, ψ). Then we have

1 +
1

γ

(
zDqf(z) + λz2qDq (Dqf(z))

λzDqf(z) + (1− λ)f(z)
− 1

)
= ψ(u(z)) (8)

and

1 +
1

γ

(
wDqg(w) + λw2qDq (Dqg(w))

λwDqg(w) + (1− λ)g(w)
− 1

)
= ψ(v(w)), (9)

where the function ψ is an analytic function with positive real part in the unit disc D,
with ψ(0) = 1 and ψ′(0) > 0, and ψ(D) is symmetric with respect to the real axis. It is
well known that such a function has a series expansion of the form

ψ(z) = 1 +B1z +B2z
2 + . . . , (B1 > 0). (10)

Also, p1, p2 ∈P defined by

p1(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + . . .

and

p2(w) =
1 + v(w)

1− v(w)
= 1 + d1w + d2w

2 + . . . .

From these equalities, we get

u(z) =
p1(z)− 1

p1(z) + 1
=

1

2

[
c1z +

(
c2 −

c2
1

2

)
z2 +

(
c3 − c1c2 +

c3
1

4

)
z3 + . . .

]
(11)

and

v(w) =
p2(w)− 1

p2(w) + 1
=

1

2

[
c1w +

(
c2 −

c2
1

2

)
w2 +

(
c3 − c1c2 +

c3
1

4

)
w3 + . . .

]
. (12)

Using (11) and (12) together with (10), It is obvious that

ψ(u(z)) = 1 +
B1c1

2
z +

[
1

2

(
c2 −

c2
1

2

)
B1 +

1

4
c2

1B2

]
z2 + . . . (13)

and

ψ(v(w)) = 1 +
B1d1

2
w +

[
1

2

(
d2 −

d2
1

2

)
B1 +

1

4
d2

1B2

]
w2 + . . .. (14)
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Next, by considering (8), (13) and 9 and (14), after some basic calculations, we arrive at

1

2
B1c1 =

1

γ
(q(1 + qλ)) a2, (15)

1

2

(
c2 −

c21
2

)
B1 +

1

4
c21B2 =

1

γ

{
q(q + 1)(1 + q(q + 1)λ)a3 − (1 + qλ)(q(q + 1) + λ− 1)a22

}
(16)

and
1

2
B1d1 = −1

γ
(q(1 + qλ)) a2, (17)

1

2

(
d2 −

d21
2

)
B1 +

1

4
d21B2 =

1

γ

{(
2q(q + 1)(1 + q(q + 1)λ)− q(1 + qλ)2

)
a22 − q(q + 1)(1 + q(q + 1)λ)a3

}
.

(18)
From Eq. (15) and Eq. (17), we get

c1 = −d1. (19)

Also, considering (16), (17), (18) and (19)

a22 =
γ2B3

1(c2 + d2)

2γ

(
q2 + 1 + λ(2q4 + 3q3 − q2 + q − 1)− λ2q(q2 + 1)

)
B2

1 + 4
(
q(1 + qλ)

)2
(B1 −B2)

(20)

which, in light of Lemma 1.1, we obtain

|a2|2 ≤
2 |γ|2B3

1∣∣∣∣γ(q2 + 1 + λ(2q4 + 3q3 − q2 + q − 1)− λ2q(q2 + 1)

)
B2

1 + 2
(
q(1 + qλ)

)2
(B1 −B2)

∣∣∣∣ .
Since B1 > 0, the last inequality is the desired estimate on |a2| stated in Theorem 2.1.

Next, we are going to obtain the upper bound on |a3| . From (16), (17), (18) and (19)
we have[

q(1 + q)(1 + q(1 + q)λ)

(
q
(
2(1 + q)(1 + q(1 + q)λ)− (1 + qλ)2

)
− (1 + qλ)

(
q(1 + q) + λ− 1

)
)

)]
a3

=
γB1

2

[
q(2(1 + q)(1 + qλ(1 + q))− (1 + qλ)2)c2 + (1 + qλ)(q(1 + q) + λ− 1)d2

]
+

γd21
4

[
(1 + qλ)

(
q(1 + q) + λ− 1

)
+ q
(
2(1 + q)(1 + q(1 + q)λ)− (1 + qλ)2

)]
(B2 −B1).

In view of Lemma 1.1, and for 0 < q < 1, 0 ≤ λ ≤ 1 taking into account fact that
(τ(q;λ)− υ(q;λ)) > 0, we get

|a3| ≤
|γ| ((τ(q;λ) + υ(q, λ))(B1 + |B2 −B1|)

q(1 + q)(1 + q(1 + q)λ)((τ(q;λ)− υ(q, λ))

where τ(q;λ) = q
(
2(1+q)(1+q(1+q)λ)−(1+qλ)2

)
and υ(q;λ) = (1+qλ)(q(1+q)+λ−1).

Thus, we obtain the bound on |a3| stated in Theorem 2.1. �

Now we would like to draw attention to some remarkable results obtained for some
values of λ, γ and ψ in Theorem 2.1.

Corollary 2.1. Let the function f given by (1) be in the class S ?
q,Σ(γ, ψ). Then

|a2| ≤
|γ|B1

√
2B1√∣∣γ(q2 + 1)B2

1 + 2q2(B1 −B2)
∣∣

and

|a3| ≤
|γ| (3q2 + 2q − 1)(B1 + |B2 −B1|)

q(1 + q)(1 + q2)
.
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Corollary 2.2. Let the function f given by (1) be in the class Cq,Σ(γ, ψ). Then

|a2| ≤
|γ|B1

√
2B1√

q
∣∣γ(2q3 + 2q2 − q + 1)B2

1 + 2(1 + q)2(B1 −B2)
∣∣

and

|a3| ≤
|γ| ((B1 + |B2 −B1|)

q3(1 + q)
.

Corollary 2.3. If the function f given by (1) is of the class S ?
q,Σ[λ, α] of q−bi−λ−spirallike

univalent functions of order α. Then

|a2| ≤
2
√

(1− α) cosλ√
1 + q2

and

|a3| ≤
2(3q2 + 2q − 1)(1− α) cosλ

q(1 + q)(1 + q2)
.

Corollary 2.4. If the function f given by (1) is q−bi−λ−Robertson of order α, that is,
f ∈ Cq,Σ[λ, α], then

|a2| ≤
2
√

(1− α) cosλ√
q(2q3 + 2q2 − q + 1)

and

|a3| ≤
2(1− α) cosλ

q3(1 + q)
.
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[2] Aktaş İ., Orhan H., (2015), Distortion bounds for a new subclass of analytic functions and their partial
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