
TWMS J. App. Eng. Math. V.9, No.1, Special Issue, 2019, pp. 142-150

ON NEW CONFORMABLE FRACTIONAL INTEGRAL INEQUALITIES

FOR PRODUCT OF DIFFERENT KINDS OF CONVEXITY

AHMET OCAK AKDEMIR1, ERHAN SET2 AND ALPER EKINCI1, §

Abstract. Certain Hermite-Hadamard type inequalities involving various fractional in-
tegral operators for products of two functions have, recently, been presented. We aim
to establish several Hermite-Hadamard type inequalities for products of two convex and
s− convex functions via new conformable fractional integral operators.
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1. Introduction

Definition 1.1. A function f : I ⊆ R→ R is said to be convex if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].

The following inequality is well known in the literature as the Hermite-Hadamard integ-
ral inequality:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2

where f : I ⊂ R → R is a convex function on the interval I of real numbers and a, b ∈ I
with a < b.

An s-convex function was introduced in Breckners paper [3] and a number of properties
and connections with s-convexity in the first sense are discussed in paper [6]. For more
study, see ([2, 5]).
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Definition 1.2. A function f : [0,∞)→ R is said to be s-convex in the second sense if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

Let f ∈ L[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of order α ∈ R+ with

a ∈ R+
0 are defined, respectively, by

Jαa+f(x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f(t) dt (x > a) (1)

and

Jαb−f(x) =
1

Γ(α)

∫ b

x
(t− x)α−1 f(t) dt (x < b) (2)

where Γ is the familiar Gamma function (see, e.g., [15, Section 1.1]). It is noted that
J1
a+f(x) and J1

b−f(x) become the usual Riemann integrals. In the case of α = 1, the
fractional integral reduces to classical integral.

The Euler beta function B(α, β) is defined by (see, e.g., [15, Section 1.1][10, p18])

B(α, β) =


∫ 1

0
tα−1(1− t)β−1 dt (<(α) > 0; <(β) > 0)

Γ(α) Γ(β)

Γ(α+ β)

(
α, β ∈ C \ Z−

0

)
.

Some Hermite-Hadamard type inequalities for products of two different functions are
proposed by Chen and Wu in [4] as follows:

Theorem 1.1. Let f, g : [a, b] → R a, b ∈ [0,∞), a < b be functions such that and
g, fg ∈ L[a, b]. If f is convex and nonnegative and g is s-convex on [a, b] for some fixed
s ∈ [0, 1], then the following inequality for fractional integrals holds:

Γ(α)

(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

≤
(

1

α+ s+ 1
+B(α, s+ 2)

)
M(a, b)

+

(
B(α+ 1, s+ 1) +

1

(α+ s)(α+ s+ 1)

)
N(a, b),

where M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a).

Theorem 1.2. Let f, g : [a, b] → R, a, b ∈ [0,∞), a < b be functions such that f, g, fg ∈
L[a, b]. If f is s1-convex and g is s2-convex function on [a, b] for some fixed s1, s2 ∈ [0, 1],
then the following inequality for fractional integrals holds:

Γ(α)

(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

≤
(

1

α+ s1 + s2
+B(α, s1 + s2 + 1)

)
M(a, b)

+ (B(α+ s1, s2 + 1) +B(α+ s2, s1 + 1))N(a, b),

where M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a).
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Theorem 1.3. Let f, g : [a, b]→ R, a, b ∈ [0,∞), a < b be functions such that fg ∈ L[a, b].
If f is convex and nonnegative on [a, b]g is s2-convex function on [a, b] for some fixed
s ∈ [0, 1], then

2sf

(
a+ b

2

)
g

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

+
1

2
M(a, b)

(
B(α+ 1, s+ 1)

1

(α+ s)(α+ s+ 1)

)
+

1

2
N(a, b)

(
B(α, s+ 2) +

1

α+ s+ 1

)
,

where M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a).

Definition 1.3. [1] Let α ∈ (n, n + 1], n = 0, 1, 2, ... and set β = α − n. Then the left
conformable fractional integral of any order α > 0 is defined by

(Iaαf)(t) =
1

n!

∫ t

a
(t− x)n(x− a)β−1f(x)dx.

Analogously, the right conformable fractional integral of any order α > 0 is defined by

(bIαf)(t) =
1

n!

∫ b

t
(x− t)n(b− x)β−1f(x)dx.

Notice that if α = n+1 then β = α−n = n+1−n = 1 and hence (Iaαf)(t) = (Jan+1f)(t).
Some recent result and properties concerning the fractional integral operators can be found
([1, 11, 12, 13]).

In [14], authors have proved the following inequalities for different kinds of convexity
via conformable fractional integrals:

Theorem 1.4. Let f, g : [a, b]→ R, be functions with 0 ≤ a < b and f, g, fg ∈ L1[a, b]. If
f is convex and nonnegative and g is s-convex on [a, b] for some fixed s ∈ [0, 1], then one
has the following inequality for conformable fractional integrals:

1

(b− a)α

[
Iaαf(b)g(b) +b Iαf(a)g(a)

]
≤ M(a, b)

n!
[B(n+ s+ 2, α− n) +B(n+ 1, α− n+ s+ 1)]

+
N(a, b)

n!
[B(n+ 2, α− n+ s) +B(s+ n+ 1, α− n+ 1)]

with α ∈ (n, n+ 1]. (M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a))

Theorem 1.5. Suppose that f, g : [a, b] → R be functions with 0 ≤ a < b and f, g, fg ∈
L1[a, b]. If f is s1-convex and g is s2-convex function on [a, b] for some fixed s1, s2 ∈ [0, 1],
then one has the following inequality for conformable fractional integrals:

1

(b− a)α

[
Iaαf(b)g(b) +b Iαf(a)g(a)

]
≤ 1

n!
M(a, b) [B(s1 + s2 + n+ 1, α− n) +B(n+ 1, s1 + s2 + α− n)]

+
1

n!
N(a, b) [B(n+ s1 + 1, α− n+ s2) +B(n+ s2 + 1, α− n+ s1)] .

where α ∈ (n, n+ 1] with M(a, b) and N(a, b) as in Theorem 1.4.
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Theorem 1.6. Let f, g : [a, b]→ R, be functions with 0 ≤ a < b and f, g, fg ∈ L1[a, b]. If
f is convex and g is s-convex on [a, b] for some fixed s ∈ [0, 1], then one has the following
inequality for conformable fractional integrals:

2sB(n+ 1, α− n)f

(
a+ b

2

)
g

(
a+ b

2

)
≤ Γ(n+ 1)

2(b− a)α

[
Iaαf(b)g(b) +b Iαf(a)g(a)

]
+

1

2
M(a, b) [B(n+ 2, α− n+ s) +B(s+ n+ 1, α− n+ 1)]

+
1

2
N(a, b) [B(n+ 1, α− n+ s+ 1) +B(n+ s+ 2, α− n)]

where α ∈ (n, n+ 1] and M(a, b) and N(a, b) as in Theorem 1.4.

Jarad et. al. [7] has defined a new fractional integral operator. Also, they gave some
properties and relations between the some other fractional integral operators, as Riemann-
Liouville fractional integral, Hadamard fractional integrals, generalized fractional integral
operators..., with this operator.

Let β ∈ C, Re(β) > 0, then the left and right sided fractional conformable integral
operators has defined respectively, as follows;

β
aJ

αf(x) =
1

Γ(β)

∫ x

a

(
(x− a)α − (t− a)α

α

)β−1 f(t)

(t− a)1−α
dt; (3)

βJαb f(x) =
1

Γ(β)

∫ b

x

(
(b− x)α − (b− t)α

α

)β−1 f(t)

(b− t)1−α
dt. (4)

The fractional integral in (3) coincides with the Riemann-Liouville fractional integral
(1) when a = 0 and α = 1. It also coincides with the Hadamard fractional integral [9] once
a = 0 and α → 0 with the Katugampola fractional integral [8], when a = 0. Similarly,

Notice that, (Qf)(t) = f(a + b − t) then we have β
aJαf(x) = Q(βJαb )f(x). Moreover (4)

coincides with the Riemann-Liouville fractional integral (2), when b = 0 and α = 1. It
also coincides with the Hadamard fractional integral [9] once b = 0 and α → 0 with the
Katugampola fractional integral [8], when b = 0.

In this paper, some new fractional Hermite-Hadamard type inequalities for products two
different kinds of convex functions are obtained but now for new conformable fractional
integral operators.

2. Main Results

Theorem 2.1. Let f, g : [a, b]→ R, be functions with 0 ≤ a < b and f, g, fg ∈ L1[a, b]. If
f is convex and nonnegative and g is s-convex on [a, b] for some fixed s ∈ [0, 1], then one
has the following inequality for new conformable fractional integrals:

αβ−1

(
1

b− a

)αβ
Γ(β)

[
β
aJ

αfg(b) +β Jαb fg(a)
]

(5)

≤
[
β1(s+ 2, α)− β1(s+ 2, αβ) +

1

α+ s+ 1
− 1

αβ + s+ 1

]
M(a, b)

+ [β1(2, α+ s)− β1(2, αβ + s) + β1(s+ 1, α+ 1)− β1(s+ 1, αβ + 1)]N(a, b)

where α, β > 0 and β1 is Euler Beta function.
(M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a))
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Proof. By using the definitions of f and g, we can write

f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b) (6)

and

g(ta+ (1− t)b) ≤ tsg(a) + (1− t)sg(b). (7)

By multiplying (6) and (7), we have

f(ta+ (1− t)b)g(ta+ (1− t)b)
≤ ts+1f(a)g(a) + (1− t)s+1f(b)g(b) (8)

+t(1− t)sf(a)g(b) + ts(1− t)f(b)g(a).

By a similar argument, we get

f((1− t)a+ tb)g((1− t)a+ tb)

≤ (1− t)s+1f(a)g(a) + ts+1f(b)g(b) (9)

+ts(1− t)f(a)g(b) + t(1− t)sf(b)g(a).

By adding (8) and (9), we obtain

f(ta+ (1− t)b)g(ta+ (1− t)b) + f((1− t)a+ tb)g((1− t)a+ tb)

≤
(
ts+1 + (1− t)s+1

)
[f(a)g(a) + f(b)g(b)]

+ (t(1− t)s + ts(1− t)) [f(a)g(b) + f(b)g(a)] . (10)

If we multiply both sides of (10) by
(
1−(1−t)α

α

)β−1
(1−t)α−1, then integrating with respect

to t over [0, 1], we obtain∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 [fg(ta+ (1− t)b) + fg((1− t)a+ tb)] dt

≤
∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1
[
ts+1 + (1− t)s+1

]
M(a, b)dt

+

∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 [t(1− t)s + ts(1− t)]N(a, b)dt.

By calculating the above integrals and simplifying, we get

αβ−1

(
1

b− a

)αβ
Γ(β)

[
β
aJ

αfg(b) +β Jαb fg(a)
]

≤
[
β1(s+ 2, α)− β1(s+ 2, αβ) +

1

α+ s+ 1
− 1

αβ + s+ 1

]
M(a, b)

+ [β1(2, α+ s)− β1(2, αβ + s) + β1(s+ 1, α+ 1)− β1(s+ 1, αβ + 1)]N(a, b)

which completes the proof. �

Corollary 2.1. If we choose s = 1 in the inequality (5), then Theorem 2.1 reduces to the
following inequality:

αβ−1

(
1

b− a

)αβ
Γ(β)

[
β
aJ

αfg(b) +β Jαb fg(a)
]

≤
[
β1(3, α)− β1(3, αβ) +

1

α+ 2
− 1

αβ + 2

]
M(a, b)

+ [β1(2, α+ 1)− β1(2, αβ + 1) + β1(2, α+ 1)− β1(2, αβ + 1)]N(a, b).
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Corollary 2.2. If we choose f(x) = 1, we obtain

αβ−1

(
1

b− a

)αβ
Γ(β)

[
β
aJ

αfg(b) +β Jαb fg(a)
]

≤
[
β1(3, α)− β1(3, αβ) +

1

α+ 2
− 1

αβ + 2

]
(g(a) + g(b))

+ [β1(2, α+ 1)− β1(2, αβ + 1) + β1(2, α+ 1)− β1(2, αβ + 1)] (g(a) + g(b)).

Theorem 2.2. Suppose that f, g : [a, b] → R be functions with 0 ≤ a < b and f, g, fg ∈
L1[a, b]. If f is s1-convex and g is s2-convex function on [a, b] for some fixed s1, s2 ∈ [0, 1],
then one has the following inequality for new conformable fractional integrals:

αβ−1

(
1

b− a

)αβ
Γ(β)

[
β
aJ

αfg(b) +β Jαb fg(a)
]

(11)

≤
[
β1(s1 + s2 + 1, α)− β1(s1 + s2 + 1, αβ) +

1

α+ s1 + s2
− 1

αβ + s1 + s2

]
M(a, b)

+ [β1(s1 + 1, α+ s2)− β1(s1 + 1, αβ + s2) + β1(s2 + 1, α+ s1)− β1(s2 + 1, αβ + s1)]N(a, b)

where α, β > 0 and β1 is Euler Beta function with M(a, b) and N(a, b) as in Theorem 2.1.

Proof. From the definition of s1-convexity, we can write

f(ta+ (1− t)b) ≤ ts1f(a) + (1− t)s1f(b) (12)

and
g(ta+ (1− t)b) ≤ ts2g(a) + (1− t)s2g(b). (13)

By multiplying both side of (12) and (13), we get

f(ta+ (1− t)b)g(ta+ (1− t)b)
≤ ts1+s2f(a)g(a) + (1− t)s1+s2f(b)g(b)

+ts1(1− t)s2f(a)g(b) + ts2(1− t)s1f(b)g(a). (14)

By a similar way, it is easy to write,

f((1− t)a+ tb)g((1− t)a+ tb)

≤ (1− t)s1+s2f(a)g(a) + ts1+s2f(b)g(b)

+(1− t)s1ts2f(a)g(b) + ts1(1− t)s2f(b)g(a). (15)

By adding (14) and (15), we have

f(ta+ (1− t)b)g(ta+ (1− t)b) + f((1− t)a+ tb)g((1− t)a+ tb)

≤
(
ts1+s2 + (1− t)s1+s2

)
[f(a)g(a) + f(b)g(b)]

+ (ts1(1− t)s2 + ts2(1− t)s1) [f(a)g(b) + f(b)g(a)] . (16)

If we multiply both sides of (16) by
(
1−(1−t)α

α

)β−1
(1 − t)α−1, then by integrating with

respect to t over [0, 1], we deduce∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 [fg(ta+ (1− t)b) + fg((1− t)a+ tb)] dt

≤
∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1
[
ts1+s2 + (1− t)s1+s2

]
M(a, b)dt

+

∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 [ts1(1− t)s2 + ts2(1− t)s1 ]N(a, b)dt.
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By calculating the above integrals and simplifying, we get

αβ−1

(
1

b− a

)αβ
Γ(β)

[
β
aJ

αfg(b) +β Jαb fg(a)
]

≤
[
β1(s1 + s2 + 1, α)− β1(s1 + s2 + 1, αβ) +

1

α+ s1 + s2
− 1

αβ + s1 + s2

]
M(a, b)

+ [β1(s1 + 1, α+ s2)− β1(s1 + 1, αβ + s2) + β1(s2 + 1, α+ s1)− β1(s2 + 1, αβ + s1)]N(a, b),

where we use the fact that (1−(1−t)α)β−1 ≤ 1−(1−t)αβ−α. This completes the proof. �

Remark 2.1. If we choose s1 = s2 = 1 in the inequality (11), then Theorem 2.2 reduces
to the Corollary 2.1.

Theorem 2.3. Let f, g : [a, b]→ R, be functions with 0 ≤ a < b and f, g, fg ∈ L1[a, b]. If
f is convex and g is s-convex on [a, b] for some fixed s ∈ [0, 1], then one has the following
inequality for new conformable fractional integrals:

2s+1

βαβ
fg

(
a+ b

2

)
≤ 2s+1

(b− a)αβ
Γ(β)

[
β
aJ

αfg(b) +β Jαb fg(a)
]

≤ [β1(2, s+ 1)− β1(2, αβ − α+ s+ 1) + β1(s+ 1, 2)− β1(s+ 1, αβ − α+ 2)]M(a, b)

+ [β1(s+ 2, s+ 2)− β1(s+ 2, αβ − α+ s+ 2)]N(a, b)

where α, β > 0 and β1 is Euler Beta function with M(a, b) and N(a, b) as in Theorem 2.1.

Proof. By using the definitions, we have

f

(
a+ b

2

)
g

(
a+ b

2

)
≤ f

(
ta+ (1− t)b

2
+

(1− t)a+ tb

2

)
g

(
ta+ (1− t)b

2
+

(1− t)a+ tb

2

)
≤ 1

2s+1
[f(ta+ (1− t)b)g(ta+ (1− t)b) + f((1− t)a+ tb) + g((1− t)a+ tb)]

+
1

2s+1

[
(t(1− t)s + (1− t)ts)M(a, b) +

(
(1− t)s+1ts+1

)
N(a, b)

]
. (17)

By multiplying both sides of (17) by
(
1−(1−t)α

α

)β−1
(1 − t)α−1, then integrating with

respect to t over [0, 1], we obtain∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1fg

(
a+ b

2

)
dt

≤
∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1

[
fg

(
ta+ (1− t)b

2
+

(1− t)a+ tb

2

)]
dt

≤ 1

2s+1

∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 [fg(ta+ (1− t)b) + fg((1− t)a+ tb)]

+
1

2s+1

∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 [t(1− t)s + ts(1− t)]M(a, b)dt

+
1

2s+1

∫ 1

0

(
1− (1− t)α

α

)β−1

(1− t)α−1
[
ts+1 + (1− t)s+1

]
N(a, b)dt.
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By computing the above integrals, we get

2s+1

βαβ
fg

(
a+ b

2

)
≤ 2s+1

(b− a)αβ
Γ(β)

[
β
aJ

αfg(b) +β Jαb fg(a)
]

≤ [β1(2, s+ 1)− β1(2, αβ − α+ s+ 1) + β1(s+ 1, 2)− β1(s+ 1, αβ − α+ 2)]M(a, b)

+ [β1(s+ 2, s+ 2)− β1(s+ 2, αβ − α+ s+ 2)]N(a, b)

where we use the fact that (1−(1−t)α)β−1 ≤ 1−(1−t)αβ−α, we get the desired result. �
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