A NEW FACTOR THEOREM ON ABSOLUTE MATRIX SUMMABILITY METHODS

Ş. YILDIZ ${ }^{1}$, §

Abstract. The aim of this paper is to obtain a new theorem dealing with absolute matrix summability factors.

Keywords: Summability factors, absolute matrix summability, infinite series, Hölder inequality, Minkowski inequality

AMS Subject Classification: 26D15, 40D15, 40F05, 40G99

1. Introduction

Let $A=\left(a_{n v}\right)$ be a normal matrix and $\left(s_{n}\right)$ be the sequence of the nth partial sums of the series $\sum a_{n}$, then we define

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v} . \tag{1}
\end{equation*}
$$

Let $\left(\theta_{n}\right)$ be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty . \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s) . \tag{3}
\end{equation*}
$$

One can also see [1] for this method. If we take $\theta_{n}=n$, then the $\left|A, \theta_{n}\right|_{k}$ summability reduces to $|A|_{k}$ summability (see [3]).
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \quad \bar{\Delta} a_{n v}=a_{n v}-a_{n-1}, v \quad a_{-1,0}=0 \tag{4}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{\Delta} \bar{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

\]

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{7}
\end{equation*}
$$

We say that A is a normal matrix if A is lower triangular and $a_{n n} \neq 0$ for all n.

2. The Known Result

Sulaiman [4] has proved the following theorem for matrix summability methods.
Theorem 2.1 Let $\left(\lambda_{n}\right),\left(X_{n}\right)$ be two sequences such that $\sum_{n=1}^{\infty} n^{-1} \lambda_{n} X_{n}$ is convergent, and the conditions

$$
\begin{align*}
& n \Delta \lambda_{n}=O\left(\lambda_{n}\right), \quad n \rightarrow \infty \tag{8}\\
& \sum_{v=1}^{n} \lambda_{v}=O\left(n \lambda_{n}\right), \quad n \rightarrow \infty \tag{9}
\end{align*}
$$

are satisfied. Let A be a lower triangular with non-negative entries satisfying

$$
\begin{align*}
\bar{a}_{n 0} & =1, n=0,1, \ldots \tag{10}\\
a_{n-1, v} & \geq a_{n v}, \text { for } n \geq v+1 \tag{11}\\
n a_{n n} & =O(1), \quad 1=O\left(n a_{n n}\right) \tag{12}\\
& \sum_{v=1}^{n-1} a_{v v} \hat{a}_{n, v}=O\left(a_{n n}\right) . \tag{13}
\end{align*}
$$

If $t_{v}^{k}=O(1)(C, 1)$, where $t_{v}=\frac{1}{v+1} \sum_{r=1}^{v} r a_{r}$, then the series $\sum a_{n} \lambda_{n} X_{n}$ is summable $|A|_{k}$, $k \geq 1$.

3. The Main Result

The aim of this paper is to generalize Theorem 2.1 for $\left|A, \theta_{n}\right|_{k}$ summability method in the following form.
Theorem 3.1 Let A be a positive normal matrix satisfying the conditions (10)-(13) of Theorem 2.1. Let $\left(\theta_{n} a_{n n}\right)$ be a non-increasing sequence. If $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{align*}
\sum_{n=v+1}^{\infty}\left(\theta_{n} a_{n n}\right)^{k-1} \hat{a}_{n, v} & =O\left\{\left(\theta_{v} a_{v v}\right)^{k-1}\right\} \tag{14}\\
\sum_{n=v+1}^{\infty}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\bar{\Delta} a_{n v}\right| & =O\left\{\left(\theta_{v} a_{v v}\right)^{k-1} a_{v v}\right\} \tag{15}
\end{align*}
$$

and all the conditions of Theorem 2.1 are satisfied, then the series $\sum a_{n} \lambda_{n} X_{n}$ is summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$, where $\left(\lambda_{n}\right)$ and $\left(X_{n}\right)$ are as in Theorem 2.1.

We need the following lemmas for the proof of Theorem 3.1.
Lemma 3.1[4] If $\sum n^{-1} \lambda_{n}$ is convergent, then $\left(\lambda_{n}\right)$ is non-negative, non-decreasing, $\lambda_{n} \log n=O(1)$, and $n \Delta \lambda_{n}=O\left(1 /(\log n)^{2}\right)$.
Lemma 3.2[4] If $\sum n^{-1} \lambda_{n} X_{n}$ is convergent, and the conditions (8) and (9) of Theorem 2.1 are satisfied, then

$$
\begin{align*}
n \lambda_{n} \Delta X_{n} & =O(1), \tag{16}\\
\sum_{n=1}^{\infty} \lambda_{n} \Delta X_{n} & =O(1), \quad n \rightarrow \infty \tag{17}\\
\sum_{n=1}^{m} n \lambda_{n} \Delta^{2} X_{n} & =O(1), \quad m \rightarrow \infty \tag{18}
\end{align*}
$$

Lemma 3.3[4] Under the conditions (10) and (11) of Theorem 2.1, we have

$$
\begin{align*}
\sum_{v=0}^{n-1}\left|\bar{\Delta} a_{n v}\right| & \leq a_{n, n} \tag{19}\\
\hat{a}_{n, v+1} & \geq 0 \tag{20}\\
\sum_{n=v+1}^{m+1} \hat{a}_{n, v+1} & =O(1) \tag{21}
\end{align*}
$$

Proof of Theorem 3.1

Let $\left(V_{n}\right)$ denotes the A-transform of the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n} X_{n}$. We write $\varphi_{n}=\lambda_{n} X_{n}$, so we have

$$
\bar{\Delta} V_{n}=\sum_{v=1}^{n} \hat{a}_{n, v} a_{v} \varphi_{v}=\sum_{v=1}^{n} v^{-1} \hat{a}_{n, v} v a_{v} \varphi_{v}
$$

Applying Abel's transformation to this sum, we have that

$$
\begin{aligned}
\bar{\Delta} V_{n} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n, v} \varphi_{v} v^{-1}\right) \sum_{r=1}^{v} r a_{r}+a_{n n} \varphi_{n} n^{-1} \sum_{v=1}^{n} v a_{v} \\
& =\sum_{v=1}^{n-1}(v+1) t_{v}\left(v^{-1}(v+1)^{-1} \hat{a}_{n, v} \varphi_{v}+(v+1)^{-1} \bar{\Delta} a_{n v} \varphi_{v}+(v+1)^{-1} \hat{a}_{n, v+1} \Delta \varphi_{v}\right)+\frac{n+1}{n} a_{n n} \varphi_{n} t_{n} \\
& =\sum_{v=1}^{n-1} v^{-1} t_{v} \hat{a}_{n, v} \varphi_{v}+\sum_{v=1}^{n-1} t_{v} \bar{\Delta} a_{n v} \varphi_{v}+\sum_{v=1}^{n-1} t_{v} \hat{a}_{n, v+1} \Delta \varphi_{v}+\frac{n+1}{n} a_{n n} \varphi_{n} t_{n} \\
& =V_{n, 1}+V_{n, 2}+V_{n, 3}+V_{n, 4}
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|V_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{22}
\end{equation*}
$$

First, by applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 1}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} v^{-1} \hat{a}_{n, v} t_{v} \varphi_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1} \sum_{v=1}^{n-1} v^{-k} t_{v}^{k} a_{v v}^{1-k} \hat{a}_{n, v} \varphi_{v}^{k}\left(\sum_{v=1}^{n-1} a_{v v} \hat{a}_{n, v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1} \sum_{v=1}^{n-1} t_{v}^{k} a_{v v} \varphi_{v}^{k} \hat{a}_{n, v}=O(1) \sum_{v=1}^{m} a_{v v} t_{v}^{k} \varphi_{v}^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1} \hat{a}_{n, v} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} a_{v v} t_{v}^{k} \varphi_{v}^{k}=O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} \varphi_{v}^{k-1} \varphi_{v} t_{v}^{k} v^{-1}
\end{aligned}
$$

using $n X_{n} \Delta \lambda_{n}=O\left(\lambda_{n} X_{n}\right)=O(1)$ from Lemma 3.2 and writing $\varphi_{n}=\lambda_{n} X_{n}$ we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 1}\right|^{k}=O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} \varphi_{v} t_{v}^{k} v^{-1}=O(1)\left(\theta_{1} a_{11}\right)^{k-1} \sum_{v=1}^{m} \varphi_{v} t_{v}^{k} v^{-1} \\
& =O(1) \sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} t_{r}^{k}\right) \Delta\left(v^{-1} \varphi_{v}\right)+\left(\sum_{v=1}^{m} t_{v}^{k}\right) m^{-1} \varphi_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left(v^{-2} \varphi_{v}+(v+1)^{-1} \Delta \varphi_{v}\right)+O(1) \varphi_{m} \\
& =O(1) \sum_{v=1}^{m-1} v^{-1} \varphi_{v}+O(1) \sum_{v=1}^{m-1} \Delta \varphi_{v}+O(1) \varphi_{m} \\
& =O(1) \sum_{v=1}^{m-1} \frac{\lambda_{v} X_{v}}{v}+O(1) \lambda_{m} X_{m}=O(1), \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Now, using Hölder's inequality, and by the hypotheses of Theorem 3.1 and Lemma 3.3. we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 2}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} \bar{\Delta} a_{n v} t_{v} \varphi_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1} \sum_{v=1}^{n-1} t_{v}^{k}\left|\bar{\Delta} a_{n v}\right| \varphi_{v}^{k}\left(\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1} \sum_{v=1}^{n-1} t_{v}^{k} \varphi_{v}^{k}\left|\bar{\Delta} a_{n v}\right|=O(1) \sum_{v=1}^{m} t_{v}^{k} \varphi_{v}^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\bar{\Delta} a_{n v}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} a_{v v} t_{v}^{k} \varphi_{v}^{k}=\sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} v^{-1} t_{v}^{k} \varphi_{v}=O(1), \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

as in the case of $V_{n, 1}$. Furthermore, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 3}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1} t_{v} \Delta \varphi_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1} \sum_{v=1}^{n-1} t_{v}^{k} a_{v v}^{1-k} \hat{a}_{n, v+1}\left(\Delta \varphi_{v}\right)^{k}\left(\sum_{v=1}^{n-1} a_{v v} \hat{a}_{n, v+1}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1} \sum_{v=1}^{n-1} t_{v}^{k} a_{v v}^{1-k} \hat{a}_{n, v+1}\left(\Delta \varphi_{v}\right)^{k} \\
& =O(1) \sum_{v=1}^{m} t_{v}^{k} a_{v v}^{1-k}\left(\Delta \varphi_{v}\right)^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1} \hat{a}_{n, v+1} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} a_{v v}^{1-k} t_{v}^{k}\left(\Delta \varphi_{v}\right)^{k}=O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} v^{k-1} t_{v}^{k}\left(\Delta \varphi_{v}\right)^{k-1} \Delta \varphi_{v} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} t_{v}^{k} \Delta \varphi_{v}\left(v \Delta \varphi_{v}\right)^{k-1},
\end{aligned}
$$

by using $n \Delta\left(\lambda_{n} X_{n}\right)=O(1)$ from Lemma 3.1 we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 3}\right|^{k}=O(1)\left(\theta_{1} a_{11}\right)^{k-1} \sum_{v=1}^{m} t_{v}^{k} \Delta \varphi_{v} \\
& =O(1) \sum_{v=1}^{m} t_{v}^{k}\left(\Delta \lambda_{v} X_{v}+\lambda_{v+1} \Delta X_{v}\right)=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { (see [4] for detail). }
\end{aligned}
$$

Finally, as in the case of $V_{n, 1}$, we have that

$$
\begin{aligned}
& \sum_{n=1}^{m} \theta_{n}^{k-1}\left|V_{n, 4}\right|^{k}=\sum_{n=1}^{m} \theta_{n}^{k-1}\left|\frac{n+1}{n} a_{n n} t_{n} \varphi_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\theta_{n} a_{n n}\right)^{k-1} a_{n n} t_{n}^{k} \varphi_{n}^{k}=O(1) \sum_{n=1}^{m}\left(\theta_{n} a_{n n}\right)^{k-1} n^{-1} t_{n}^{k} \varphi_{n}=O(1) \quad \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

by the hypotheses of Theorem 3.1 and Lemma 3.3. This completes the proof of Theorem 3.1 .

In the special case, if we take $\theta_{n}=n$ and A as a lower triangular matrix in Theorem 3.1, then we obtain Theorem 2.1.

Acknowledgment

The author would like to express her sincerest thanks to the referee for his/her suggestions for improvement of this paper.

References

[1] Özarslan, H. S., Kandefer, T., (2009), On the relative strength of two absolute summability methods, J. Comput. Anal. Appl. 11, 576-583.
[2] Sarıgöl, M. A., (2010), On the local property of factored Fourier series, Appl. Math. Comput., 216, 3386-3390.
[3] Tanovič-Miller, N., (1979), On strong summability, Glas. Mat. Ser III, 14 (34), 87-97.
[4] Sulaiman, W. T., (2013), Some new factor theorem for absolute summability, Demonstr. Math., XLVI (1), 149-156.

Şebnem Yıldız is currently working as an Associate Professor at the Department of Mathematics, Faculty of Arts and Sciences at Ahi Evran University, Turkey. She received her B.Sc., M.Sc., and Ph.D. degrees at Yıldız Technical University. Her area of interests include Summability theory, Infinite series and Fourier series.

[^0]: ${ }^{1}$ Department of Mathematics, Ahi Evran University, Kırşehir, Turkey. e-mail: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com. ORCID: https://orcid.org/0000-0003-3763-0308.
 § Manuscript received: March 02, 2017; accepted: May 05, 2017.
 TWMS Journal of Applied and Engineering Mathematics, Vol.9, No. 2 © Işık University, Department of Mathematics, 2019; all rights reserved.

