AN ALGORITHMIC APPROACH TO EQUITABLE EDGE CHROMATIC NUMBER OF GRAPHS

VENINSTINE VIVIK J. ${ }^{1}$, GIRIJA G. ${ }^{2}, \S$

Abstract

The equitable edge chromatic number is the minimum number of colors required to color the edges of graph G, for which G has a proper edge coloring and if the number of edges in any two color classes differ by at most one. In this paper, we obtain the equitable edge chromatic number of S_{n}, W_{n}, H_{n} and G_{n}.

Keywords: Equitable edge coloring, Wheel, Helm, Gear, Sunlet.
AMS Subject Classification: 05C15, 05C76

1. Introduction

Graphs considered in this paper are finite undirected graphs without loops. Let $G=$ (V, E) be a graph with vertex set $V(G)$ and edge set $E(G)$. We denote the maximum degree of G by $\Delta(G)$. An edge coloring of G is an assignment of colors to the edges of G, such that no two adjacent edges receives the same color. Given an edge-coloring of G with k colors $1,2, \ldots, k$ for all $v \in V(G)$, let $c_{i}(v)$ denote the number of edges incident with v colored i. The chromatic number of a graph G, denoted $\chi^{\prime}(G)$, is the minimum number of different colors required for a proper edge coloring of G. The graph G is k-edge-chromatic if $\chi^{\prime}(G)=k$.
The first paper on edge coloring was written by Tait in 1880 and he proved that, if the four color conjecture is true then the edges of every 3 -connected planar graph can be properly colored using only three colors. Several years later, in 1891 Petersen pointed out that there are 3 -connected cubic graphs which are not 3 -colorable. Since all edges incident to the same vertex must be assigned different colors, obviously $\chi^{\prime}(G) \geq \Delta(G)$. In 1916, König has proved that every bipartite graph can be edge colored with exactly $\Delta(G)$ colors, that is $\chi^{\prime}(G)=\Delta(G)$. In 1949 Shannon proved that every graph can be edge colored with at most $\frac{3 \Delta G}{2}$ colors, that is $\chi^{\prime}(G) \leq \frac{3 \Delta G}{2}$. In 1964, Vizing [7] proved that $\chi^{\prime}(G) \leq \Delta(G)+1$. In 1973, Meyer[5] presented the concept of equitable coloring and equitable chromatic number. The notion of equitable edge coloring was defined by Hilton and de Werra[3] in 1994.

[^0]In our day to day life many problems on optimization, network designing, scheduling problems, timetabling and so on are related to edge coloring. In general, such problems are NP-complete and it is NP-Hard to decide the bound for these graphs is Δ or $\Delta+1$. For example, consider the timetabling problem, the minimum number of rooms needed at any one time can be scheduled by equitable edge coloring. In this paper, we determine the equitable edge chromatic number for S_{n}, W_{n}, H_{n} and G_{n}.

2. Preliminaries

Definition 2.1. [4] For any integer $n \geq 4$, the wheel graph W_{n} is the n-vertex graph obtained by joining a vertex v_{0} to each of the $n-1$ vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of the cycle graph C_{n-1}.

Definition 2.2. The Helm graph H_{n} is the graph obtained from a Wheel graph W_{n} by adjoining a pendant edge to each vertex of the $n-1$ cycle in W_{n}.

Definition 2.3. The Gear graph G_{n} is the graph obtained from a Wheel graph W_{n} by adding a vertex to each edge of the $n-1$ cycle in W_{n}.

Definition 2.4. The n - sunlet graph on $2 n$ vertices is obtained by attaching n pendant edges to the cycle C_{n} and is denoted by S_{n}.

Definition 2.5. [6] For k-proper edge coloring f of graph G, if $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1, i, j=$ $0,1,2, \ldots, k-1$, where $E_{i}(G)$ is the set of edges of color i in G, then f is called a k equitable edge coloring of graph G, and

$$
\chi_{=}^{\prime}(G)=\min \{k: \text { there exists a } k \text {-equitable edge coloring of graph } G\}
$$

is called the equitable edge chromatic number of graph G.
Lemma 2.1. For any complete graph K_{p} with order p,

$$
\chi_{=}^{\prime}\left(K_{p}\right)= \begin{cases}p, & p \equiv 1(\bmod 2), \\ p-1, & p \equiv 0(\bmod 2),\end{cases}
$$

Lemma 2.2. [1] For any simple graph $G(V, E), \chi_{=}^{\prime}=(G) \geq \Delta(G)$.
Lemma 2.3. [1] For any simple graph G and $H, \chi_{=}^{\prime}(G)=\chi^{\prime}(G)$ and if $H \subseteq G$ then $\chi^{\prime}(H) \leq \chi^{\prime}(G)$, where $\chi^{\prime}(G)$ is the proper edge chromatic number of G.
Theorem 2.1. [7] Let G be a graph. Then $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
Lemma 2.4. [8] Let G be a graph and let $k \geq 2$. If $k \nmid d(v)$ for each $v \in V(G)$, then G has an equitable edge-coloring with k colors.

Lemma 2.5. [8] Let G be a graph and let $k \geq 2$. If the k-core of G is a set of isolated vertices, then G has an equitable edge-coloring with k colors.

For additional graph theory terminologies not defined in this paper can be found in $[1,2]$. In the following section, the equitable edge chromatic number of S_{n}, W_{n}, H_{n} and G_{n} are determined.

3. Main Results

Theorem 3.1. The equitable edge chromatic number of the Sunlet graph is $\chi_{=}^{\prime}\left(S_{n}\right)=3$, for $n \geq 3$.
Proof. Let S_{n} be the sunlet graph on $2 n$ vertices and $2 n$ edges.

$$
\begin{gathered}
\text { Let } V\left(S_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\} \bigcup\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \\
\text { and } E\left(S_{n}\right)=\left\{e_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{n}\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n\right\}
\end{gathered}
$$

where e_{i} is the edge $v_{i} v_{i+1}(1 \leq i \leq n-1), e_{n}$ is the edge $v_{n} v_{1}$ and e_{i}^{\prime} is the edge $v_{i} u_{i}$ $(1 \leq i \leq n)$.

We define an edge coloring f, such that $f: S \rightarrow C$, where $S=E\left(S_{n}\right)$ and $C=\{1,2,3\}$. In this edge coloration, $C\left(e_{i}\right)$ means the color of the $i^{t h}$ rim edge e_{i}. While coloring, when the value mod 3 is equal to 0 it should be replaced by 3 . The order of coloring is done by coloring the edges corresponding to the cycle first and later the pendant edges.

Case 1: $\quad n \equiv 0(\bmod 3)$ and $n \equiv 2(\bmod 3)$

$$
\left.\begin{array}{c}
f\left(e_{i}\right)=\left\{\begin{array}{l}
1, \text { if } i \equiv 1(\bmod 3) \\
2, \text { if } i \equiv 2(\bmod 3) \\
3, \text { if } i \equiv 0(\bmod 3)
\end{array} \text { for } 1 \leq i \leq n\right.
\end{array}\right\} \begin{aligned}
& 6-\left\{C\left(e_{i}^{\prime}\right)+C\left(e_{n}\right)\right\}, \quad \text { for } i=1 \\
& 6-\left\{C\left(e_{i-1}\right)+C\left(e_{i}\right)\right\}, \quad \text { for } 2 \leq i \leq n
\end{aligned}
$$

Case 2: $n \equiv 1(\bmod 3)$

$$
\left.\begin{array}{c}
f\left(e_{i}\right)=\left\{\begin{array}{l}
1, \text { if } i \equiv 1(\bmod 3) \\
2, \text { if } i \equiv 2(\bmod 3) \\
3, \text { if } i \equiv 0(\bmod 3)
\end{array} \quad \text { for } 1 \leq i \leq n-1\right.
\end{array}\right\}\left(e_{n}\right)=2 \begin{aligned}
& f\left(e_{i}^{\prime}\right)=\left\{\begin{array}{l}
6-\left\{C\left(e_{i}\right)+C\left(e_{n}\right)\right\}, \text { for } i=1 \\
6-\left\{C\left(e_{i-1}\right)+C\left(e_{i}\right)\right\}, \quad \text { for } 2 \leq i \leq n
\end{array}\right.
\end{aligned}
$$

We see that S_{n} is edge colorable with 3 colors. Let $E\left(S_{n}\right)=\left\{E_{1}, E_{2}, E_{3}\right\}$ such that the color classes of $E_{i}^{\prime} s$ are independent sets with no edges in common. For example consider the case $n \equiv 0(\bmod 3)$ (See Figure 1), in which $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right|=3$ and implies $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1$ for $i \neq j$. Hence it is equitably edge colorable with 3 colors. Therefore $\chi_{=}^{\prime}\left(S_{n}\right) \leq 3$. Since $\Delta=3$ and by lemma 2.2, it follows that $\chi_{=}^{\prime}\left(S_{n}\right) \geq \chi^{\prime}\left(S_{n}\right) \geq \Delta$. This implies $\chi_{=}^{\prime}\left(S_{n}\right) \geq 3$. Therefore $\chi_{=}^{\prime}\left(S_{n}\right)=3$. Similarly this is true for all other cases. Hence f is an equitable edge 3-coloring of S_{n}.

Algorithm : Equitable edge coloring of Sunlet graph
Input: n, the number of vertices of S_{n}
Output: Equitably edge colored S_{n}
Initialize S_{n} with $2 n$ vertices, the rim vertices by $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and pendant vertices by $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$.

Figure 1. Sunlet S_{6}.

Initialize the adjacent edges on the rim by $e_{1}, e_{2}, e_{3}, \ldots, e_{n}$ and pendant edges by $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{n}^{\prime}$.

Let $f: E(G) \rightarrow\{1,2,3\}$ be the coloring of the edges in S_{n}.
Apply the coloring rules of Theorem 3.1 for each of the following cases

```
if (n\equiv0(mod 3) or n\equiv2(mod 3))
for }i=1\mathrm{ to }
{
e
e}\mp@subsup{e}{i}{}=2;i\equiv2(\operatorname{mod}3)
e}\mp@subsup{e}{i}{}=3;i\equiv0(\operatorname{mod}3)
if (i=1)
e}\mp@subsup{i}{}{\prime}=6-[C(\mp@subsup{e}{i}{})+C(\mp@subsup{e}{n}{})]
```

else
$e_{i}^{\prime}=6-\left[C\left(e_{i-1}\right)+C\left(e_{n}\right)\right] ;$
\}
end for
if $(n \equiv 1(\bmod 3))$
for $i=1$ to n
\{
if $(i<n)$
$e_{i}=1 ; i \equiv 1(\bmod 3)$;
$e_{i}=2 ; i \equiv 2(\bmod 3)$;
$e_{i}=3 ; i \equiv 0(\bmod 3)$;
if ($i=n$)
$e_{n}=2$;
if $(i=1)$
$e_{i}^{\prime}=6-\left[C\left(e_{i}\right)+C\left(e_{n}\right)\right] ;$
else
$e_{i}^{\prime}=6-\left[C\left(e_{i-1}\right)+C\left(e_{n}\right)\right] ;$
\}
end for
return f;
Theorem 3.2. The equitable edge chromatic number of the Wheel graph is $\chi_{=}^{\prime}\left(W_{n}\right)=$ $n-1$, for $n \geq 4$.

Proof. The Wheel graph W_{n} consists of n vertices and $2(n-1)$ edges.

$$
\begin{gathered}
\text { Let } V\left(W_{n}\right)=\left\{v_{0}\right\} \bigcup\left\{v_{i}: 1 \leq i \leq n-1\right\} \text { and } \\
E\left(W_{n}\right)=\left\{e_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n-1\right\}
\end{gathered}
$$

where e_{i} is the edge $v_{0} v_{i}(1 \leq i \leq n-1)$ and e_{i}^{\prime} is the edge $v_{i} v_{i+1}(1 \leq i \leq n-1)$.
Now define an edge coloring f, such that $f: S \rightarrow C$, where $S=E\left(W_{n}\right)$ and $C=$ $\{1,2, \ldots, n-1\}$. The equitable edge coloring is obtained by coloring the edges as follows:

$$
\begin{aligned}
& f\left(e_{i}\right)=i, \text { for } 1 \leq i \leq n-1 \\
& f\left(e_{1}^{\prime}\right)=n-1 \\
& f\left(e_{i}^{\prime}\right)=i-1, \text { for } 2 \leq i \leq n-1
\end{aligned}
$$

Clearly W_{n} is edge colorable with $n-1$ colors. Let $E\left(W_{n}\right)=\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ such that the color classes of E_{i} 's are independent sets with no edges in common. For example consider the case $n=5$ (See Figure 2), which implies $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right|=\left|E_{4}\right|=2$ and also satisfies $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1$ for $i \neq j$. So it is equitably edge colorable with $n-1$ colors. Hence $\chi_{=}^{\prime}\left(W_{n}\right) \leq n-1$. Since $\Delta=n-1$ and by lemma 2.2, it follows that $\chi_{=}^{\prime}\left(W_{n}\right) \geq \chi^{\prime}\left(W_{n}\right) \geq \Delta$. This implies $\chi_{=}^{\prime}\left(W_{n}\right) \geq n-1$. Therefore $\chi_{=}^{\prime}\left(W_{n}\right)=n-1$. Similarly this is true for all other values of $n \geq 4$. Hence $\chi_{=}^{\prime}\left(W_{n}\right)=\Delta=n-1$.

Algorithm : Equitable edge coloring of Wheel graph
Input: n, the number of vertices of W_{n}
Output: Equitably edge colored W_{n}

Figure 2. Wheel W_{5}.
Initialize W_{n} with n vertices, the center vertices by v_{0} and rim vertices by v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}.

Initialize the adjacent edges on the center by $e_{1}, e_{2}, e_{3}, \ldots, e_{n-1}$ and adjacent edges on the rim by $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{n-1}^{\prime}$.

Let $f: E(G) \rightarrow\{1,2, \ldots, n-1\}$ be the coloring of the edges in W_{n}.
Apply the coloring rules of Theorem 3.2

```
for \(i=1\) to \(n-1\)
\{
\(e_{i}=i\);
if \((i=1)\)
\(e_{1}^{\prime}=n-1 ;\)
else
\(e_{i}^{\prime}=i-1 ;\)
\}
end for
return \(f\);
```

Theorem 3.3. The equitable edge chromatic number of the Helm graph is $\chi_{=}^{\prime}\left(H_{n}\right)=n-1$, for $n \geq 4$.
Proof. The Helm graph H_{n} consists of $2 n-1$ vertices and $3(n-1)$ edges.

$$
\text { Let } V\left(H_{n}\right)=\left\{v_{0}\right\} \bigcup\left\{v_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{u_{i}: 1 \leq i \leq n-1\right\}
$$

and

$$
E\left(H_{n}\right)=\left\{e_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n-2\right\} \bigcup\left\{e_{n-1}^{\prime}\right\} \bigcup\left\{e_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\}
$$

where e_{i} is the edge $v_{0} v_{i}(1 \leq i \leq n-1), e_{i}^{\prime}$ is the edge $v_{0} v_{i+1}(1 \leq i \leq n-2), e_{n-1}^{\prime}$ is the edge $v_{n-1} v_{1}$ and $e_{i}^{\prime \prime}$ is the edge $v_{i} u_{i}(1 \leq i \leq n-1)$.

Define a function $f: S \rightarrow C$ where $S=E\left(H_{n}\right)$ and $C=\{1,2, \ldots, n-1\}$. The coloring pattern is as follows:

$$
\begin{aligned}
& f\left(e_{i}\right)=i, \text { for } 1 \leq i \leq n-1 \\
& f\left(e_{i}^{\prime}\right)=\left\{\begin{array}{l}
n-1, \text { for } i=1 \\
i-1, \text { for } 2 \leq i \leq n-1
\end{array}\right. \\
& f\left(e_{i}^{\prime \prime}\right)=\left\{\begin{array}{l}
i+1, \text { for } 1 \leq i \leq n-2 \\
1, \text { for } i=n-1
\end{array}\right.
\end{aligned}
$$

With this pattern we can edge color H_{n} with $n-1$ colors. Let $E\left(H_{n}\right)=\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ such that the color classes of E_{i} 's are independent sets with no edges in common. For example consider the case $n=7$ (See Figure 3), in which $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right|=\left|E_{4}\right|=$ $\left|E_{5}\right|=\left|E_{6}\right|=3$ and also satisfies $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1$ for $i \neq j$. So it is equitably edge colorable with $n-1$ colors. Hence $\chi_{=}^{\prime}\left(H_{n}\right) \leq n-1$. Since $\Delta=n-1$ and by lemma 2.2, $\chi_{=}^{\prime}\left(H_{n}\right) \geq \chi^{\prime}\left(H_{n}\right) \geq \Delta$. This implies $\chi_{=}^{\prime}\left(H_{n}\right) \geq n-1$. Therefore $\chi_{=}^{\prime}\left(H_{n}\right)=n-1$. Similarly this is true for all other values of $n \geq 4$. Hence $\chi_{=}^{\prime}\left(H_{n}\right)=\Delta=n-1$.

Algorithm : Equitable edge coloring of Helm graph
Input: n, the number of vertices of H_{n}
Output: Equitably edge colored H_{n}
Initialize H_{n} with $2 n-1$ vertices, the center vertices by v_{0}, the rim vertices by v_{1}, v_{2}, v_{3}, \ldots, v_{n-1} and the pendant vertices by $u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}$.

Initialize the $3(n-1)$ edges, the adjacent edges on the center by $e_{1}, e_{2}, e_{3}, \ldots, e_{n-1}$, the adjacent edges on the rim by $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{n-1}^{\prime}$ and the pendant edges by $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, \ldots, e_{n-1}^{\prime \prime}$.

Let $f: E(G) \rightarrow\{1,2, \ldots, n-1\}$ be the edge coloring of H_{n}.
Apply the coloring rules of Theorem 3.3

```
for \(i=1\) to \(n-1\)
\{
\(e_{i}=i\);
if \((i=1)\)
\(e_{1}^{\prime}=n-1\);
else
\(e_{i}^{\prime}=i-1\);
if \((i=n-1)\)
\(e_{n-1}^{\prime \prime}=1\);
else
\(e_{i}^{\prime \prime}=i+1 ;\)
\}
end for
return \(f\);
```


Figure 3. Helm H_{7}.

Theorem 3.4. The equitable edge chromatic number of the Gear graph is $\chi_{=}^{\prime}\left(G_{n}\right)=n-1$, for $n \geq 4$.

Proof. The Gear graph G_{n} consists of $2 n-1$ vertices and $3(n-1)$ edges.

$$
\begin{gathered}
\text { Let } V\left(G_{n}\right)=\left\{v_{0}\right\} \bigcup\left\{v_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{i}^{\prime}: 1 \leq i \leq n-1\right\} \text { and } \\
E\left(G_{n}\right)=\left\{e_{i}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n-1\right\} \bigcup\left\{e_{i}^{\prime \prime}: 1 \leq i \leq n-2\right\} \bigcup\left\{e_{n-1}^{\prime \prime}\right\}
\end{gathered}
$$

where e_{i} is the edge $v_{0} v_{i}(1 \leq i \leq n-1), e_{i}^{\prime}$ is the edge $v_{i} v_{i}^{\prime}(1 \leq i \leq n-1), e_{i}^{\prime \prime}$ is the edge $v_{i}^{\prime} v_{i+1}(1 \leq i \leq n-2)$ and e_{n-1}^{\prime} is the edge $v_{n-1}^{\prime} v_{1}$.

Define a function $f: S \rightarrow C$, where $S=E\left(G_{n}\right)$ and $C=\{1,2, \ldots, n-1\}$. The coloring pattern is as follows:
$f\left(e_{i}\right)=i$, for $1 \leq i \leq n-1$
$f\left(e_{i}^{\prime}\right)=i+1$, for $1 \leq i \leq n-1$
$f\left(e_{i}^{\prime \prime}\right)=i, 1 \leq i \leq n-1$
The graph G_{n} is edge colored with $n-1$ colors by sustituting different values for n, it is inferred that no adjacent edges receives the same color. Let $E\left(G_{n}\right)=\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ such that the color classes of E_{i} 's are independent sets and they have no edges in common.

For example consider the case $n=7$ (See Figure 4), which has $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right|=\left|E_{4}\right|=$ $\left|E_{5}\right|=\left|E_{6}\right|=3$ and satisfies the condition $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1$ for $i \neq j$. Hence it is equitably edge colorable with $n-1$ colors. Therefore $\chi^{\prime}=\left(G_{n}\right) \leq n-1$. Since $\Delta=n-1$ and by lemma $2.2, \chi_{=}^{\prime}\left(G_{n}\right) \geq \chi^{\prime}\left(G_{n}\right) \geq \Delta$. This implies $\chi_{=}^{\prime}\left(G_{n}\right) \geq n-1$. Therefore $\chi_{=}^{\prime}\left(G_{n}\right)=n-1$.

Figure 4. Gear G_{7}.
Algorithm : Equitable edge coloring of Gear graph
Input: n, the number of vertices of G_{n}
Output: Equitably edge colored G_{n}
Initialize G_{n} with $2 n-1$ vertices, the center vertices by v_{0}, the rim vertices by v_{1}, v_{2}, v_{3}, \ldots, v_{n-1} and $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n-1}^{\prime}$.

Initialize the $3(n-1)$ edges, the adjacent edges on the center by $e_{1}, e_{2}, e_{3} \ldots, e_{n-1}$, the adjacent edges on the rim by $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{n-1}^{\prime}$ and $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, \ldots, e_{n-1}^{\prime \prime}$.

Let $f: E(G) \rightarrow\{1,2, \ldots, n-1\}$ be the edge coloring of G_{n}.
Apply the coloring rules of Theorem 3.4

```
for }i=1\mathrm{ to }n-
{
e}=i
e}\mp@subsup{e}{i}{\prime}=i+1
e}\mp@subsup{e}{i}{\prime\prime}=i
}
```

end for
return f;

4. Conclusion

In this paper, the equitable edge chromatic number of Sunlet S_{n}, Wheel W_{n}, Helm H_{n} and Gear graph G_{n} are obtained. The proofs establish an optimal solution to the equitable edge coloration of these graph families and are supported by algorithms. The field of equitable edge coloring of graphs is wide open. It would be further interesting to determine the bounds of equitably edge coloring of other families of graphs.

References

[1] J. A. Bondy, U. S. R. Murty, (1976), Graph Theory with Applications, New York; The Macmillan Press Ltd.
[2] Frank Harary, (1969), Graph Theory, Narosa Publishing home.
[3] A.J.W.Hilton, D.de Werra, A sufficient condition for equitable edge-colorings of simple graphs, (1994), Discrete Mathematics, V.128, 179-201.
[4] K. Kaliraj, J. Vernold Vivin, M.M.Ali Akbar, Equitable Coloring on Mycielskian Of Wheels And Bigraphs, (2013), Applied Mathematics E-Notes, V.13, 174-182.
[5] W. Meyer, Equitable Coloring, (1973), Amer. Math. Monthly, V.80, 920-922.
[6] J.Veninstine Vivik and G.Girija, Equitable edge coloring of some graphs, (2015), Utilitas Mathematica, V.96, 27-32.
[7] V.G. Vizing, Critical graphs with given chromatic class, (1965), Metody Diskret. Analiz, V.5, 9-17.
[8] Xia Zhang and Guizhen Liu, Equitable edge-colorings of simple graphs, (2010), Journal of Graph Theory, V.66, 175-197.

Veninstine Vivik J. is working as an Assistant Professor in the Department of Mathematics, Karunya University, India. He has 10 years of teaching experience. He obtained his masters degree in 2004 and M. Phil in Mathematics in the year 2007, from Government Arts College, Coimbatore, India. He is doing his Doctoral Degree under Bharathiar University, India in the field of Graph Theory and particularly in equitability of graph colorings. His recent works are in the field of equitable edge and equitable total coloring of different graphs.

Girija G. is working as an Assistant Professor in the PG \& Research Department of Mathematics, Government Arts College, Coimbatore, India. She obtained her masters degree in 1981 from Calicut University, India. She received her M. Phil degree (On Orthodox Semigroups) in 1992 and Ph.D (Discrete Analysis) in 2008 from Bharathiar University, India. She has 35 years of teaching experience and has guided more than 18 students in the Masters of Philosophy degree in Mathematics. She has also published 11 papers in National and International Journals/Proceedings.

[^0]: ${ }^{1}$ Department of Mathematics, Karunya University, Coimbatore - 641 114, Tamil Nadu, India. e-mail: vivikjose@gmail.com; ORCID: https://orcid.org/0000-0003-3192-003X.
 ${ }^{2}$ Department of Mathematics, Government Arts College, Coimbatore - 641 018, Tamil Nadu, India. e-mail: prof_giri@yahoo.co.in; ORCID: https://orcid.org/0000-0003-0812-8378.
 § Manuscript received: February 22, 2017; accepted: April 12, 2017. TWMS Journal of Applied and Engineering Mathematics, Vol.9, No. 2 © Işık University, Department of Mathematics, 2019; all rights reserved.

