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BLIND DECONVOLUTION USING SHEARLET -TV REGULARIZATION

Z. MOUSAVI1, R. MOKHTARI1, M. LAKESTANI2, §

Abstract. In this article we propose two minimization models for blind deconvolution.
In the first model, we use shearlet transform as a regularization term for recovering image.
Also total variation method is used as a regularization term for point spread function(PSF).
To speed up the process, Fast ADMM approach is exploited. In the second model, shearlet
transform is utilized as a regularization term for both image and PSF.

Keywords: shearlet, total variation, blind deconvolution, Fast ADMM, Image processing.

AMS Subject Classification: 94A08, 97N40, 68U10.

1. Introduction

The goal of image deblurring is to estimate an image with the high quality, which has
been degraded by camera motion, also the noise resulted from the imaging devices. When
the degradations can be modeled as a convolution operation, the act of restoring the original
image from the degraded blurred image, frequently called deconvolution [1]. We denote the
model of degradated image as

h⊗ f + n, (1)

where h is a convolution kernel or point spread function (PSF) of the imaging system, f is the
original image and n is Gaussian white noise . Recovering f and h using only the degraded
image g is called blind deconvolution [2]. Several methods presented the recovering of the
deblurred image and PSF in (1) simultaneously. Nakagi et al. [3] presented a VQ-based
blind image restoration algorithm. Panchapakesan et al. [4] introduced a blur identification
method from vector quantizer encoder distortion. The authors of [5, 6, 7] used inverse
filtering methods and Cannon used a Tikhonov regularization[9]. Liao et al. used a GCV
approach [13]. We refer to [2, 11-16, 21-25] and references therein, for more informations in
blind deconvolution.

Blind image deconvolution is an ill-posed problem [13], hence You and Kaveh designed in
[20] a regularizing approach to join blur identification and image restoration. They considered
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the following problem:

minf,h‖f ⊗ h− g‖22 + λ1‖Df‖22 + λ2‖Dh‖22, (2)

where D is the first-order differencing matrix, λ1 and λ2 are the two positive regulariza-
tion parameters which weigh their contribution. Also Chan and Wong [21] investigated the
following blind deconvolution problem:

minf,h‖f ⊗ h− g‖22 + λ1TV (f) + λ2TV (h). (3)

The definition of discrete TV norm will be given in section IV. Total variation regularization
model (3) has superior performance when applied to piecewise constant images but it becomes
less effective when images contain complex textures and edges.

The multiscale and multidirectional features of the shearlet transform provide a good
estimation ability for restoring images which are more complicated.

According to this point, in this article, we consider two blind deconvolution models. In the
first model, shearlet transform is employed as a regularization term for recovering f (original
image) and the total variation regularization is used for restoring h. In the second model
shearlet transform is used for concurrent restoring f and h (point spread function) from the
observation image g.

Alternating direction method of multipliers (ADMM) is a common tool for solving min-
imization problems. ADMM with a predictor-corrector-type acceleration stage results to
accelerated variant of ADMM to solve minimization problem. This method is called Fast
ADMM [27]. Here we solve minimization problems using the ADMM and Fast ADMM
methods.

The rest of the paper is structured as follows. In Section 2, the shearlet transform and
its implementation are described. We solve a deconvolution minimization problem using
Fast ADMM method in section 3. In section 4, we present two blind deconvolution models.
Experimental results are presented in section 5, and finally we conclude the paper in section
6.

2. Shearlet Transform

The shearlet transform is a directional representation system based on anisotropic dilation
which is able to describe geometry of multidimensional functions [28]. Let ψ ∈ L2(R2) and

Aa =

(
a 0
0
√
a

)
, Bs =

(
1 s
0 1

)
,

where Aa is an anisotropic dilation matrix and Bs is a shear matrix. The Continuous Shearlet
System SH(ψ) is defined by

SH(ψ) = {ψa,s,t(x) = a−3/4ψ(A−1
a B−1

s (x− t)) : a > 0, s ∈ R, t ∈ R2}. (4)

The continuous shearlet transform of a function f ∈ L2(R2) is given by

f ∈ L2(R2) −→ SHψ(f)(a, s, t) =< f,ψa,s,t > . (5)

However, disadvantage of defined shearlet system is bias toward certain axis. This prob-
lem is circumvented by definition cone-adapted discrete shearlet system. Furthermore, all
the bandwise discrete shearlet transforms can be computed effectively by employment the
discrete Fourier transform and the discrete inverse Fourier transform . Let SHi(f) represents
the discrete shearlet transform of f that is ith subband of the shearlet transform. Moreover,
suppose H1 is the fast Fourier transform or FFT of the discrete 2D scaling function, and
Hi (i ≥ 2) are those of the discrete shearlets [29].

In this paper we employ band limited shearlets (with compact supports in the Fourier
domain) [30], which is effortless to derive the inversion as a tight frame.
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3. Deconvolution by Fast ADMM method

In this section, we formulate the deconvolution problem as follows:

minf
µ

2
‖f ⊗ h− g‖22 + λ

N∑
i=1

‖SHi(f)‖1, (6)

where SHi(f) is the ith subband of the shearlet transform of f . Introducing auxiliary
variables wi, (i = 1, ..., N), (6) is equivalent to

minf,wi

µ

2
‖f ⊗ h− g‖22 + λ

N∑
i=1

‖wi‖1, (7)

SHi(f) = wi i = 1, 2, ..., N. (8)

Introducing the dual variable P = {pi}Ni=1, and applying Fast ADMM for solving (7), we get
the following algorithm:
Algorithm 1: Fast ADMM for deconvolution
Input: convolution operator h, observed image g, β1 = 1, P = 0.
for k = 1, 2, 3, ... do
1. wki = arg minwi ‖wi‖1 + α1

2 ‖wi − SHi(f) + pki ‖22, i = 1, 2, ..., N,

2. f̄k = arg minf̄
µ

2
‖f̄ ⊗ h− g‖22 +

λα1

2

∑N
i=1 ‖SHi(f̄)− wki − pki ‖22,

3. p̄k+1
i = pki + γ(SHi(f̄

k)− wki ), i = 1, 2, . . . , N,

4. βk+1 =
(1 +

√
1 + 4(βk)2)

2
,

5. fk+1 = f̄k +
βk − 1

βk+1
(f̄k − f̄k−1),

6. pi
k+1 = p̄ki +

βk − 1

βk+1
(p̄k+1
i − p̄ki ), i = 1, 2, . . . , N,

7. λ = λ ∗ .98,
end
In step 1, the explicit formulas for wki is:

wi = shrink(SHi(f) + pi, 1/α1), i = 1, ..., N,

where shrink(a, b) = sgn(a). ∗max(|a| − b, 0).
In step 2, to solve the f̄ -subproblem, we have SHi(f̄) = Hi. ∗ fft2(f̄), therefore:

f̄ = ifft2(
µ ∗ conj(fft2(h)). ∗ fft2(g) + α1λ

∑N
i=1(Hi. ∗ fft2(wi − pi))∑N

i=1 α1λ(Hi. ∗Hi) + µ ∗ conj(fft2(h)). ∗ fft2(h)
),

where fft2 is 2-D Fourier transform and ifft2 is inverse 2-D Fourier transform.
Fast alternative direction method is used in process solving proposed model for restoring

original image in next section.

4. Proposed Algorithms

In this section, we present two models for blind deconvolution problem.
A. Blind deconvolution by SH-TV regularization

In the first form, we apply shearlet transform as a regularization term of an image and use
the total variation method as regularization term of PSF. This can be written as:

minf,h
µ

2
‖f ⊗ h− g‖22 + λ1‖h‖TV + λ2

N∑
i=1

‖SHi(f)‖1, (9)
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where SHi(f) is the ith subband of the shearlet transform of f . The TV-norm, ‖h‖TV , can
either be the anisotropic TV norm :

‖h‖TV =
∑
i

|(Dxh)i|+ |(Dyh)i|, (10)

or the isotropic TV norm :

‖h‖TV =
∑
i

√
(Dxh)2

i + (Dyh)2
i , (11)

where Dxh = vec(h(x + 1, y) − h(x, y)), Dyh = vec(h(x, y + 1) − h(x, y)). Here we apply
anisotropic TV norm. The isotropic TV, can be similarly derived.

Without using a priori information, let initial f be the observed image and initial h be
the delta function in our numerical results. Iterative procedure for solving the problem (9)
is formulated in Algorithm 2 :
Algorithm 2
Input: an initial image f , an initial PSF h and an observed image g
for k = 1, 2, 3, ... do
1. Solve for hk :

hk = arg minh
µ

2
‖fk−1 ⊗ h− g‖22 + λ1‖h‖TV , (12)

2. Solve for fk :

fk = arg minf
µ

2
‖f ⊗ hk − g‖22 + λ2

N∑
i=1

‖SHi(f)‖1. (13)

end
a. h-Subproblem: The minimization problem (9) may not have a unique solution. For
obtaining an acceptable solution, natural and physical conditions on f and h can be imposed
as what follows [21],

h ≥ 0,
∑
i,j

hi,j = 1, f ≥ 0. (14)

Let D = (Dx, Dy), therefore ‖h‖TV = ‖Dh‖1 and hence the minimization problem (12)
can be rewritten as:

minh
µ

2
‖f ⊗ h− g‖22 + λ1‖Dh‖1, (15)

which is equivalent to:

minh,z
µ

2
‖f ⊗ h− g‖22 + λ1‖z‖1, (16)

s.t z = Dh. (17)

Introducing the dual variable y, the augmented Lagrangian can be written as

h = arg minz,h‖z‖1 +
µ

2λ1
‖f ⊗ h− g‖22+ < y, z −Dh > +ηr‖Dh− z‖22. (18)

For the estimating of PSF in (18), letting f̂ = F (f), the convolution operator can be written

as f ⊗ h = F ∗ΛFh , where Λ is a diagonal matrix with diagonal entries f̂ . Let M = F ∗ΛF ,
therefore :

h = arg minz,h‖z‖1 +
µ

2λ1
‖Mh− g‖22+ < y, z −Dh > +ηr‖Dh− z‖22. (19)

To apply alternating direction method, we have the following algorithm [31] :
Algorithm 3
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Figure 1. Original images : Cameraman, Peppers, Shepp-Logan, Satellite (from
left to right).

for k = 1, 2, 3, ... do

1. hk+1 = arg minh
µ

2λ1
‖Mh− g‖22− < y, z −Dh > +ηr‖z −Dh‖2,

2. zk+1 = arg minz‖z‖1− < y, z −Dhk+1 > +ηr‖z −Dhk+1‖2,
3. yk+1 = yk − ηr(zk+1 −Dhk+1),

4. ηr =

{
δηr, if ‖zk+1 −Dhk+1‖2 ≥ ξ‖zk −Dhk‖2
ηr, otherwise.

end
To solve step 1, by considering normal equations, we have:

(µM∗M + ηrD
∗D)h = µM∗g + ηrD

∗z −D∗y. (20)

Using the Fourier transform, Eq. (20) will have the following solution:

h = F ∗
[

F (µM∗g + ηrD
∗z −D∗y)

µ|FM |2 + ηr(|FDx|2 + |FDy|2)

]
. (21)

In step 2, the explicit formulas for z is:

z = shrink(Dh+
1

ηr
y, 1/ηr).

b. f-Subproblem: We use Fast alternative direction method for restoring original image
,f , similar to section 3.

B. blind deconvolution by SH-SH regularization
In the second model, shearlet transform is used as regularization term of an image and PSF
as:

minf,h
µ

2
‖f ⊗ h− g‖22 + τ1

N∑
i=1

‖SHi(h)‖1 + τ2

N∑
i=1

‖SHi(f)‖1. (22)

To solve this problem, we propose the following algorithm :
Algorithm 4.
Input: an initial image f , an initial blur h and an observed image g
1.for k = 1, 2, 3, ... do
2. Solve for hk:

hk = arg minh
µ

2
‖fk−1 ⊗ h− g‖22 + τ1

N∑
i=1

‖SHi(h)‖1, (23)

3. Solve for fk:

fk = arg minf
µ

2
‖f ⊗ hk − g‖22 + τ2

N∑
i=1

‖SHi(f)‖1, (24)

end
In order to obtain the solution in steps 2 and 3, we used ADMM method. In next section,
we will show the performance of the proposed blind deconvolution algorithms.
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Figure 2. row 1: Images degraded by a Gaussian PSF with variance 5, BSNR=30,
row 2: Restored images by SH-SH BD, row 3: Restored images by SH-TV BD, row
4: Restored images by Non-blind deconvolution Fast ADDM.
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Figure 3. row 1: Original image and original PSF, row 2: Image degraded by a
Gaussian(7,5), BSNR=30, row 3: Restored image and PSF by SH-TV BD method,
row 4: Restored image and PSF by SH-SH BD method.
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5. Numerical Results

Here, we use the presented methods (Shearlet-Total variation blind deconvolution (SH-TV
BD) and Shearlet-Shearlet blind deconvolution (SH-SH BD)) for restoring degraded image
and PSF for some images with different kinds of PSFs and noise levels. We use peak signal to
noise ratio (PSNR) and improvement in signal-to-noise ratio (ISNR) to measure the quality
of the restored images. Also blurred signal-to-noise ratio (BSNR) is used to measure the
noise contained in observed image, which are defined as follows:

PSNR = 20log10

255

‖f − u‖2
, ISNR = 20log10

‖f − g‖2
‖f − u‖2

, BSNR = 20log10

‖g‖2
‖n‖2

,

where f, g, u and n, are the original image, observed image, recovered image and the noise
vector respectively. In all tests, we use the observed image as an initial image and the delta
function as an initial PSF. Table 1 displays the results for Peppers, Cameraman, Shepp-

Table 1. Comparison result in PSNR, blurred image by Gaussian(7,5),
BSNR=30 dB.

blured Sh-TV BD SH-SH BD non-blind [32]
Peppers 24.73 23.36 27.42

Cameraman 24.10 22.11 26.74
Shepp-Logan 29.71 24.79 34.37

Satellite 30.28 27.23 31.02

Logan and Satellite images presented in Figure 1. Images degraded by Gaussian PSFs
with variance 5 of size 7 and Gaussian noise with BSNR=30dB. For all images in SH-TV
blind deconvolution, parameter λ1 is varying from 106 to 108 and λ2 = 0.2. Table 1 shows
that the results of the presented blind deconvolution methods (specially SH-TV method), is
comparable to that of the nonblind deconvolution one. Figure 2 shows the obtained results
using shearlets-total variation blind deconvolution, shearlet-shearlet blind deconvolution and
Fast ADMM deconvolution where PSF is known, for Peppers and Cameraman images.

We also compare the Shearlet-Total variation blind deconvolution method with the blind
deconvolution algorithms in [21, 22]. Obtained results are in Tables 2 and 3. In [21] authors
used total variation function as the image and the point spread function priors. In [22]
authors used the total variation function as the image prior and a simultaneous autoregressive
(SAR) model as the PSF prior. In these tests, the Cameraman and Shep-Logan images,
degraded by Gaussian PSFs with variance 5 of size 10 and Gaussian noises with BSNR=40dB
and 20dB. The parameter λ1 is varying from 106 to 108 and λ2 = 0.2. It can be observed
that for the Gaussian PSF, the SH-TV blind deconvolution method outperforms the other
three methods. Figure 3, shows the results of presented methods on Satellite image degraded
by kernel gaussian(7,5) and BSNR=30.

Table 2. Comparison in ISNR on Gaussian PSF with variance 5.

Cameraman SH-TV BD TV1[22] TV2[22] Method[21]
BSNR=40 1.58 1.66 2.49 1.32
BSNR=20 1.48 1.43 -42.54 1.17
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Table 3. Comparison in ISNR on Gaussian PSF with variance 5 .

Shep-Logan SH-TV BD TV1[22] TV2[22]
BSNR=40 4.18 2.05 3.79
BSNR=20 4.09 2.09 -26.00

6. Conclusions

In this paper we presented two blind deconvolution methods: SH-TV method and SH-SH
method. By using of shearlet transform, we are able to restoring more details of images with
complex tissues. Obtained results show the efficiency of the presented methods for image
recovering in minimization problems. Also our results for blind deconvolution, is comparable
to those of the nonblind deconvolution.
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