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EXISTENCE OF THREE SOLUTIONS FOR IMPULSIVE FRACTIONAL

DIFFERENTIAL SYSTEMS THROUGH VARIATIONAL METHODS

S. HEIDARKHANI1, A. SALARI2, §

Abstract. This paper is devoted to the study of the multiplicity results of existence
of solutions for a class of impulsive fractional differential systems. Indeed, we will use
variational methods for smooth functionals, defined on the reflexive Banach spaces in
order to achieve the existence of at least three solutions for these systems. In particular,
in the scalar case, we will prove that the impulsive fractional differential problem has
three non-negative solutions. Finally, by presenting two examples, we will ensure the
applicability of our results.
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1. Introduction

In this paper we study the following perturbed impulsive fractional differential system tD
αi
T (ai(t)0D

αi
t ui(t)) = λFui(t, u) + µGui(t, u) + hi(ui), t ∈ (0, T ), t 6= tj ,

∆(tD
αi−1
T (c0D

αi
t ui))(tj) = Iij(ui(tj)), j = 1, 2, . . . ,m,

ui(0) = ui(T ) = 0
(PF,Gλ,µ )

for i = 1, . . . , n, where n ≥ 1, u = (u1, . . . , un), 0 < αi ≤ 1 for i = 1, . . . , n, λ > 0,
µ ≥ 0, T > 0, ai ∈ L∞([0, T ]), āi = ess inft∈[0,T ]ai(t) > 0 for i = 1, . . . , n, 0D

ς
t and tD

ς
T

denote the left and right Riemann-Liouville fractional derivatives of order ς, respectively,
F,G : [0, T ] × Rn → R are measurable with respect to t, for all u ∈ Rn, continuously
differentiable in u, for almost every t ∈ [0, T ] such that F (t, 0, . . . , 0) = G(t, 0, . . . , 0) = 0
for every t ∈ [0, T ] and satisfy in the following standard summability condition:

sup
|ξ|≤%1

(max{|F (., ξ)|, |G(., ξ)|, |Fξi(., ξ)|, |Gξi(., ξ)|, i = 1, . . . , n}) ∈ L1([0, T ]) (1)

for any %1 > 0 with ξ = (ξ1, . . . , ξn) and |ξ| =
√∑n

i=1 ξ
2
i , hi : R → R is a Lips-

chitz continuous function with the Lipschitz constant Li > 0, i.e.,|hi(ξ1) − hi(ξ2)| ≤
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Li|ξ1 − ξ2| for every ξ1, ξ2 ∈ R, satisfying hi(0) = 0 for i = 1, . . . , n, Iij ∈ C(R,R) for
i = 1, . . . , n, j = 1, . . . ,m, m ≥ 1, 0 = t0 < t1 < t2 < . . . < tm < tm+1 = T, the op-
erator ∆ is defined as ∆(tD

αi−1
T (c0D

αi
t u))(tj) = tD

αi−1
T (c0D

αi
t u)(t+j ) − tD

αi−1
T (c0D

αi
t u)(t−j )

where tD
αi−1
T (c0D

αi
t u)(t+j ) = limt→t+j tD

αi−1
T (c0D

αi
t u)(t) and so on tD

αi−1
T (c0D

αi
t u)(t−j ) =

limt→t−j tD
αi−1
T (c0D

αi
t u)(t) and c

0D
αi
t is the left Caputo fractional derivatives of order αi.

Here, Fui and Gui denote respectively the partial derivatives of F and G with respect to
ui for i = 1, . . . , n.

Fractional differential equations (FDEs) are generalization of ordinary differential equa-
tions and integration to arbitrary non-integer orders. FDEs both ordinary and partial ones
form a very important and significant part of mathematical analysis and its applications
to real-world problems, see for details [5, 6, 11, 14, 13] and references therein.

From [18, 19, 20], we know that the coupled system of differential equations of fractional
order is also important and several authors have done a lot of work in this topic. We also
refer to the paper [10] in which based on variational methods for smooth functionals defined
on reflexive Banach spaces the existence of one weak solution for a class of fractional
differential systems was investigated.

On the other hand, impulsive effects are common phenomena due to short-term pertur-
bations whose duration is negligible in comparison with the total duration of the original
process. Such perturbations can be reasonably well approximated as being instantaneous
changes of state, or in the form of impulses. The governing equations of such phenomena
may be modeled as impulsive differential equations (see [1, 3]). Due to the great devel-
opment in the theory of fractional calculus and impulsive differential equations as well as
having wide applications in several fields. See [2, 7, 9, 17] and the references therein for
detailed discussions.

Motivated by the above works, in this paper we look for the existence of at least three

weak solutions for the system (PF,Gλ,µ ) for appropriate values of the parameters λ and µ

belonging to real intervals. Our approach is variational methods and a three critical points
theorem due to Ricceri [15]. As an application of our result, we study the scaler case of
the system and we establish the existence of at least three weak solutions for the problem,
and assuming that the nonlinear terms are non-negative we show that the solutions are
non-negative. Some examples are presented to illustrate our main results.

2. Preliminaries

In this section, we will introduce some basic definitions, notations, lemmas and
propositions which are used throughout this paper.

Definition 2.1. Let 0 < αi ≤ 1 for i = 1, . . . , n. The fractional derivative space Eαi0

is defined by the closure C∞0 ([0, T ],R), that is Eαi0 = C∞0 ([0,T],R) with respect to the

weighted norm ‖ui‖αi =
( ∫ T

0 ai(t)|0Dαi
t ui(t)|2dt +

∫ T
0 |ui(t)|

2dt
) 1

2 for every ui ∈ Eαi0 and
for i = 1, . . . , n.

Remark 2.1. It is obvious that Eαi
0 is the space of functions ui ∈ L2([0,T],R) having

an αi-order Riemann-Loiuville fractional derivative 0D
αi
t ui ∈ L2([0,T],R) and ui(0) =

ui(T ) = 0 for i = 1, . . . , n. From [12, Propostion 3.1], we know for 0 < αi ≤ 1, the space
Eαi

0 is a reflexive and separable Banach space for i = 1, . . . , n.

Lemma 2.1 ([19]). Let 0 < αi ≤ 1 for i = 1, . . . , n. We can consider Eαi0 with respect to

the norm ‖ui‖αi =
( ∫ T

0 ai(t)|0Dαi
t ui(t)|2dt

) 1
2 for every ui ∈ Eαi0 and for i = 1, . . . , n, which
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is equivalent to the norm of definition 2.1. Then we have
∑n

i=1 ‖ui‖2L2 ≤ S
∑n

i=1 ‖ui‖2αi
and if αi >

1
2 , ∑n

i=1 ‖ui‖2∞ ≤M
∑n

i=1 ‖ui‖2αi (2)

with S = max{ T 2αi

Γ2(αi+1)āi
, i = 1, . . . , n} and M = max{ T 2αi−1

Γ2(αi)āi(2αi−1)
, i = 1, . . . , n}.

Now, we let E be the Cartesian product of n Sobolev spaces Eα1
0 , Eα2

0 ,. . . , and Eαn0 , i.e.,
E = Eα1

0 ×Eα2
0 ×· · ·×Eαn0 , which is uniformly convex and reflexive Banach space endowed

with the norm ‖(u1, . . . , un)‖ =
∑n

i=1 ‖ui‖αi . Obviously, E is compactly embedded in
(C0([0, T ]))n. Corresponding to the function hi, we introduce the function Hi : R −→ R
by Hi(x) =

∫ x
0 hi(ξ)dξ for all x ∈ R and i = 1, . . . , n.

Definition 2.2. We mean by a (weak) solution of the system (PF,Gλ,µ ), any function u =

(u1, . . . , un) ∈ E such that∑n
i=1

( ∫ T
0 ai(t)0D

αi
t ui(t)0D

αi
t vi(t)dt

)
−
∑n

i=1

∫ T
0 hi(ui(t))vi(t)dt

+
∑m

j=1

∑n
i=1 ai(tj)Iij(ui(tj))vi(tj)− λ

∑n
i=1

∫ T
0 Fui(t, u1(t), . . . , un(t))vi(t)dt

−µ
∑n

i=1

∫ T
0 Gui(t, u1(t), . . . , un(t))vi(t)dt = 0

for every v = (v1, . . . , vn) ∈ E.

We assume throughout and without further mention, that the following conditions hold:

(H1) 1
2 < αi ≤ 1 for i = 1, . . . , n;

(H2) Iij(0) = 0 and there exists a constant Lij > 0 such that

|Iij(s1)− Iij(s2)| ≤ Lij |s1 − s2| for any s1, s2 ∈ R i = 1, . . . , n, 1 ≤ j ≤ m;

(H3)
∑n

i=1
LiT

2αi

Γ2(αi+1)āi
+ MCm‖ã‖∞ < 1 where C = maxi∈{1,...,n},j∈{1,...,m} Lij and ã =

max{ai(t), t ∈ [0, T ], i = 1, . . . , n}.
Put σ = min{1− LiT

2αi

Γ2(αi+1)āi
, i = 1, . . . n} and ρ = max{1 + LiT

2αi

Γ2(αi+1)āi
, i = 1, . . . n}.

Our main tool is Theorem 2.1 which has been obtained by Ricceri([15, Theorem 2]). It
is as follows:

If X is a real Banach space, denoted by WX the class of all functionals Φ : X → R
possessing the following property: If {un} is a sequence in X converging weakly to u ∈ X
and lim infn→∞Φ(un) ≤ Φ(u), then {un} has a subsequence converging strongly to u.
For example, if X is uniformly convex and g : [0,+∞) → R is a continuous and strictly
increasing function, then, by a classical result, the functional u → g(‖u‖) belongs to the
class WX .

Theorem 2.1. Let X be a separable and reflexive real Banach space; let Φ : X → R
be a coercive, sequentially weakly lower semicontinuous C1 functional, belonging to WX ,
bounded on each bounded subset of X and whose derivative admits a continuous inverse
on X∗; J : X → R a C1 functional with compact derivative. Assume that Φ has a strict
local minimum u0 with Φ(u0) = J(u0) = 0. Finally, setting

ρ = max

{
0, lim sup
‖u‖→+∞

J(u)

Φ(u)
, lim sup
u→u0

J(u)

Φ(u)

}
,

σ = supu∈Φ−1(]0,+∞[)
J(u)
Φ(u) , assume that ρ < σ. Then for each compact interval [c, d] ⊂

( 1
σ ,

1
ρ) (with the conventions 1

0 = +∞, 1
+∞ = 0), there exists R > 0 with the following

property: for every λ ∈ [c, d] and every C1 functional Ψ : X → R with compact derivative,
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there exists γ > 0 such that, for each µ ∈ [0, γ], Φ′(u) = λJ ′(u) +µΨ′(u) has at least three
solutions in X whose norms are less than R.

We refer the reader to the papers [4, 8, 16] in which Theorem 2.1 was successfully
employed to ensure the existence of at least three solutions for BVPs.

Now for every u ∈ E, we define

Φ(u) = 1
2

∑n
i=1 ‖ui‖2αi −

∑n
i=1

∫ T
0 Hi(ui(t))dt (3)

+
∑n

i=1

∑m
j=1 ai(tj)

∫ ui(tj)
0 Iij(s)ds.

Moreover, for every u ∈ E, we set

J(u) =
∫ T

0 F (t, u1(t) . . . , un(t))dt and Ψ(u) =
∫ T

0 G(t, u1(t) . . . , un(t))dt. (4)

Standard arguments show that Φ−µΨ−λJ is a Gâteaux differentiable functional whose
Gâteaux derivative at the point u ∈ E given by

(Φ′ − µΨ′ − λJ ′)(u)(v) =
∑n

i=1

( ∫ T
0 ai(t)0D

αi
t ui(t)0D

αi
t vi(t)dt

)
−
∑n

i=1

∫ T
0 hi(ui(t))vi(t)dt+

∑n
i=1

∑m
j=1 ai(tj)Iij(ui(tj))vi(tj)

−λ
∫ T

0

(∑n
i=1 Fui(t, u1(t), . . . , un(t))

)
vi(t)dt

−µ
(∑n

i=1Gui(t, u1(t), . . . , un(t))
)
vi(t)dt

for all u, v ∈ X. Hence, a critical point of the functional Φ − µΨ − λJ , gives us a weak

solution of (PF,Gλ,µ ).

We need the following proposition in the proof of our main result.

Proposition 2.1 ([9, Proposition 2.6]). Let J : X → X? be the operator for every u =
(u1, . . . , un), v = (v1, . . . , vn) ∈ X, defined by

J(u)(v) =
∑n

i=1

( ∫ T
0 ai(t)0D

αi
t ui(t)0D

αi
t vi(t)dt

)
+
∑n

i=1

∑m
j=1 ai(tj)Iij(ui(tj))vi(tj)−

∑n
i=1

∫ T
0 hi(ui(t))vi(t)dt.

Then, J admits a continuous inverse on X?.

3. Main results

In this section, we formulate our main results.
Let us denote by F the class of all functions F : [0, T ] × Rn → R measurable with

respect to t, for all ξ ∈ Rn, continuously differentiable in ξ, for almost every t ∈ [0, T ],
satisfying the standard summability condition (1). For each 0 < κ < 1

2 set

Pi(αi, κ) = 1
2κ2T 2

( ∫ T
0 ai(t)t

2(1−αi)dt+
∫ T
κT ai(t)(t− κT )2(1−αi)dt

+
∫ T

(1−κ)T ai(t)(t− (1− κ)T )2(1−αi)dt− 2
∫ T
κT ai(t)(t

2 − κTt)1−αidt

+2
∫ T

(1−κ)T ai(t)(t
2 − (1− κ)Tt)1−αidt

+2
∫ T

(1−κ)T ai(t)(t
2 − κTt+ κ(1− κ)T 2)1−αidt

)
for i = 1, . . . , n. Let

λ1 = inf
{∑n

i=1 ‖ui‖2αi−2J (u)

2
∫ T
0 F (t,u(t))dt

: u ∈ E,
∫ T

0 F (t, u(t))dt > 0
}
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with

J (u) =
∑n

i=1

∫ T
0 Hi(ui(t))dt−

∑n
i=1

∑m
j=1 ai(tj)

∫ ui(tj)
0 Iij(s)ds (5)

and λ2 = 1
max{0,λ0,λ∞} , where

λ0 = lim sup
|u|→0

( 2
∫ T

0 F (t, u(t))dt∑n
i=1 ‖ui‖2αi − 2J (u)

)
and

λ∞ = lim sup
‖u‖→+∞

( 2
∫ T

0 F (t, u(t))dt∑n
i=1 ‖ui‖2αi − 2J (u)

)
with J (u) given by (5) and u = (u1, . . . , un).

Theorem 3.1. Suppose that F ∈ F . Assume that

(A1) there exists a constant ε > 0 such that

max
{

lim supξ→(0,...,0)
maxt∈[0,T ] F (t,ξ)

|ξ|2 , lim sup|ξ|→∞
maxt∈[0,T ] F (t,ξ)

|ξ|2

}
< ε

where ξ = (ξ1, . . . , ξn) with |ξ| =
√∑n

i=1 ξ
2
i ;

(A2) there exists a function w ∈ E such that∑n
i=1 ‖wi‖2αi − 2

∑n
i=1

∫ T
0 Hi(wi(t))dt+ 2

∑n
i=1

∑m
j=1 ai(tj)

∫ wi(tj)
0 Iij(s)ds 6= 0

and ε <
( σ
M
−Cm‖ã‖∞)

∫ T
0 F (t,w(t))dt∑n

i=1 ‖wi‖2αi−2
∑n
i=1

∫ T
0 Hi(wi(t))dt+2

∑n
i=1

∑m
j=1 ai(tj)

∫ wi(tj)

0 Iij(s)ds
.

Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the following
property: for every λ ∈ [c, d] and every G ∈ F there exists γ > 0 such that, for each

µ ∈ [0, γ], the system (PF,Gλ,µ ) has at least three weak solutions whose norms in E are less

than R.

Proof. Take X = E. Clearly, X is a separable and uniformly convex Banach space. Let
the functionals Φ, J and Ψ be as given in (3) and (4), respectively. The functional Φ is C1,
and due to Proposition 2.1 its derivative admits a continuous inverse on X∗. Moreover, by
the sequentially weakly lower semicontinuity of

∑n
i=1 ‖ui‖2αi and the continuity of Hi, i =

1, . . . , n and Iij , i = 1, . . . , n, j = 1, . . . ,m, Φ is sequentially weakly lower semicontinuous
in X. Since hi(0) = 0 one has |hi(xi)| ≤ Li|xi| for i = 1, . . . , n, from (3) and the condition
(H2) we see that

σ−MCm‖ã‖∞
2

∑n
i=1 ‖ui‖2αi ≤ Φ(u) ≤ ρ+MCm‖ã‖∞

2

∑n
i=1 ‖ui‖2αi (6)

and bearing the condition (H3) in mind, it follows lim‖u‖→+∞Φ(u) = +∞, namely Φ
is coercive. Moreover, let A be a bounded subset of X. That is, there exist constants
ci > 0, i = 1, . . . , n such that ‖ui‖αi ≤ ci for each u ∈ A. Then, by (6) we have |Φ(u)| ≤
ρ+MCm‖ã‖∞

∑n
i=1 c

2
i

2 . Hence Φ is bounded on each bounded subset of X. Furthermore,
Φ ∈ WX . Indeed, let {uk}∞k=1 = {(uk1, . . . , ukn)}∞k=1 ⊂ X, u = (u1, . . . , un) ⊂ X, uk ⇀
u and lim infk→∞Φ(uk) ≤ Φ(u). Since the functions Hi and Iij are continuous, one

has lim infn→∞
∑n

i=1

‖uki‖2αi
2 ≤

∑n
i=1

‖ui‖2αi
2 . Thus, {uk}∞k=1 has a subsequence converging

strongly to u. Therefore, Φ ∈ WX . The functionals J and Ψ are two C1 functionals with
compact derivatives. Moreover, Φ has a strict local minimum 0 with Φ(0) = J(0) = 0.
In view of (A1), there exist τ1, τ2 with 0 < τ1 < τ2 such that F (t, u) ≤ ε

∑n
i=1 |ui|2 for

every t ∈ [0, T ] and every u = (u1, . . . , un) with |u| ∈ [0, τ1) ∪ (τ2,+∞). By (1), F (t, u)
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is bounded on t ∈ [0, T ] and |u| ∈ [τ1, τ2]. Thus we can choose η > 0 and υ > 2 such
that F (t, u) ≤ ε

∑n
i=1 |ui|2 + η

∑n
i=1 |ui|υ for all (t, u) ∈ [0, T ] × Rn. So, by (2), we have

J(u) ≤Mε
∑n

i=1 ‖ui‖2αi + ηMυ/2
∑n

i=1 ‖ui‖υαi for all u ∈ X. Hence, we have

lim sup|u|→0
J(u)
Φ(u) ≤

2Mε
σ−MCm‖ã‖∞ . (7)

Moreover, by using the inequality F (t, u) ≤ ε
∑n

i=1 |ui|2, for each u ∈ X \ {0}, we obtain

J(u)

Φ(u)
=

∫
|u|≤τ2 F (t, u(t))dt

Φ(u)
+

∫
|u|>τ2 F (t, u(t))dt

Φ(u)

≤
2 supt∈[0,T ],|u|∈[0,τ2] F (t, u)∑n

i=1 ‖ui‖2αi
+

2Mε

σ −MCm‖ã‖∞
.

So, we get

lim sup‖u‖→∞
J(u)
Φ(u) ≤

2Mε
σ−MCm‖ã‖∞ . (8)

In view of (7) and (8), we have

ρ = max
{

0, lim sup‖u‖→+∞
J(u)
Φ(u) , lim supu→(0,...,0)

J(u)
Φ(u)

}
≤ 2Mε

σ−MCm‖ã‖∞ . (9)

Assumption (A2) in conjunction with (9) yields

σ = supu∈Φ−1(0,+∞)
J(u)
Φ(u) = supX\{0}

J(u)
Φ(u) ≥

∫ T
0 F (t,w(t))dt

Φ(w(t)) > 2Mε
σ−MCm‖ã‖∞ ≥ ρ.

Thus, all the hypotheses of Theorem 2.1 are satisfied. Clearly, λ1 = 1
σ and λ2 = 1

ρ . Then,

using Theorem 2.1, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the
following property: for every λ ∈ [c, d] and every G ∈ F there exists γ > 0 such that, for

each µ ∈ [0, γ], the system (PF,Gλ,µ ) has at least three weak solutions whose norms in X are

less than R. �

The another announced application of Theorem 2.1 reads as follows:

Theorem 3.2. Suppose that F ∈ F . Assume that

max
{

lim supξ→(0,...,0)
maxt∈[0,T ] F (t,ξ)

|ξ|2 , lim sup|ξ|→∞
maxt∈[0,T ] F (t,ξ)

|ξ|2

}
≤ 0 (10)

where ξ = (ξ1, . . . , ξn) with |ξ| =
√∑n

i=1 ξ
2
i , and

supu∈E
2
∫ T
0 F (t,u(t))dt∑n

i=1 ‖ui‖2αi−2
∑n
i=1

∫ T
0 Hi(ui(t))dt+2

∑n
i=1

∑m
j=1 ai(tj)

∫ ui(tj)

0 Iij(s)ds
> 0. (11)

Then for each compact interval [c, d] ⊂ (λ1,+∞) there exists R > 0 with the following
property: for every λ ∈ [c, d] and every G ∈ F there exists γ > 0 such that for each

µ ∈ [0, γ], the system (PF,Gλ,µ ) has at least three weak solutions whose norms in E are less

than R.

Proof. In view of (10), there exist an arbitrary ε > 0 and τ1, τ2 with 0 < τ1 < τ2 such that
F (t, u) ≤ ε

∑n
i=1 |ui|2 for every t ∈ [0, T ] and every u = (u1, . . . , un) with |u| ∈ [0, τ1) ∪

(τ2,+∞). By (1), F (t, u) is bounded on t ∈ [0, T ] and |u| ∈ [τ1, τ2]. Thus we can choose η >
0 and υ > 2 in a manner that F (t, u) ≤ ε

∑n
i=1 |ui|2+η

∑n
i=1 |ui|υ for all (t, u) ∈ [0, T ]×Rn.

So, by the same process in proof of Theorem 3.1 we have Relations (7) and (8). Since ε is

arbitrary, (7) and (8) gives max
{

0, lim sup‖u‖→+∞
J(u)
Φ(u) , lim supu→(0,...,0)

J(u)
Φ(u)

}
≤ 0. Then,

with the notation of Theorem 2.1, we have ρ = 0. By (11), we also have σ > 0. In this
case clearly λ1 = 1

σ and λ2 = +∞. Thus, by using Theorem 2.1 result is achieved. �
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Remark 3.1. In Assumption (A2) if we choose w(t) = (w1(t), . . . , wn(t)) with

wi(t) =


Γ(2−αi)δ

κT t, t ∈ [0, κT [,
Γ(2− αi)δ, t ∈ [κT, (1− κ)T ],
Γ(2−αi)δ

κT (T − t), t ∈](1− κ)T, T ],

(12)

where 0 < κ < 1
2 , for i = 1, . . . , n, then it becomes to the following form:

(A′2) there exists a positive constant κ with 0 < κ < 1
2 such that min{Pi(αi, κ), i =

1, . . . , n} 6= 0 and there exists a positive constant δ such that

ε <

∫ T
0 F (t, w(t))dt

2Mnδ2 min{Pi(αi, κ), i = 1, . . . , n}
.

Clearly ωi(0) = ωi(1) = 0 and ωi ∈ L2[0, T ] for i = 1, . . . , n. A direct calculation shows
that

0D
αi
t ωi(t) =

δ
κT t

1−αi , t ∈ [0, κT [,
δ
κT (t1−αi − (t− κT )1−αi), t ∈ [κT, (1− κ)T ],
δ
κT (t1−αi − (t− κT )1−αi − (t− (1− κ)T )1−αi), t ∈](1− κ)T, T ]

for 1 ≤ i = 1, . . . , n. Furthermore, ‖ωi‖2αi =
∫ T

0 a(t)|0Dαi
t ωi(t)|2dt = 2P (αi, κ)δ2. Thus,

w ∈ E and Φ(w) ≥ nδ2 (σ −MCm‖ã‖∞) min{Pi(αi, κ), i = 1, . . . , n}.

Now, we point out some results in which the function F has separated variables. To be
precise, consider the following system

tD
αi
T (ai(t)0D

αi
t ui(t)) = λθ(t)Fui(u1, . . . , un)

+µGui(t, u1, . . . , un) + hi(ui), t ∈ (0, T ), t 6= tj ,

∆(tD
αi−1
T (c0D

αi
t ui))(tj) = Iij(ui(tj)), j = 1, 2, . . . ,m,

ui(0) = ui(T ) = 0

(PF,G,θλ,µ )

where θ : [0, T ]→ R is a non-zero function such that θ ∈ L1([0, T ]) and F : Rn → R is a C1

function and G : [0, T ]× Rn → R is as introduced for the system (PF,Gλ,µ ) in Introduction.

Set F (t, x1, . . . , xn) = θ(t)F (x1, . . . , xn) for every (t, x1, . . . , xn) ∈ [0, T ] × Rn. The
following existence results are consequences of Theorem 3.1.

Theorem 3.3. Assume that

(A′1) there exists a constant ε > 0 such that

supt∈[0,T ] θ(t).max
{

lim supξ→(0,...,0)
F (ξ)
|ξ|2 , lim sup|ξ|→∞

F (ξ)
|ξ|2

}
< ε

where ξ = (ξ1, . . . , ξn) with |ξ| =
√∑n

i=1 ξ
2
i ;

(A′′2) there exist two positive constants δ and κ with 0 < κ < 1
2 such that min{Pi(αi, κ), i =

1, . . . , n} 6= 0 and ε <
∫ T
0 F (t,w(t))dt

2Mnδ2 min{Pi(αi,κ),i=1,...,n} where w = (w1, . . . , wn) and wi,

i = 1, . . . , n are given by (12).

Then, for each compact interval [c, d] ⊂ (λ3, λ4) where λ3 and λ4 are the same as λ1 and

λ2, but
∫ T

0 F (t, u(t))dt replaced by
∫ T

0 θ(t)F (u(t))dt, respectively, there exists R > 0 with
the following property: for every λ ∈ [c, d] and every G ∈ F there exists γ > 0 such that

for each µ ∈ [0, γ], the system (PF,G,θλ,µ ) has at least three weak solutions whose norms in

E are less than R.
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Theorem 3.4. Assume that there exist two positive constants δ and κ with 0 < κ < 1
2

such that

min{Pi(αi, κ), i = 1, . . . , n} > 0 and
∫ T

0 θ(t)F (w(t))dt > 0 (13)

where w = (w1, . . . , wn) and wi, i = 1, . . . , n are given by (12). Moreover, suppose that

lim supξ→(0,...,0)
F (ξ)
|ξ|2 = lim sup|ξ|→∞

F (ξ)
|ξ|2 = 0, (14)

where ξ = (ξ1, . . . , ξn) with |ξ| =
√∑n

i=1 ξ
2
i . Then, for each compact interval [c, d] ⊂

(λ3,+∞) where λ3 is the same as λ1 but
∫ T

0 F (t, u(t))dt replaced by
∫ T

0 θ(t)F (u(t))dt,
there exists R > 0 with the following property: for every λ ∈ [c, d] and every G ∈ F there

exists γ > 0 such that for each µ ∈ [0, γ], the system (PF,G,θλ,µ ) has at least three weak

solutions whose norms in E are less than R.

Proof. We easily observe that from (14) the assumption (A′1) is satisfied for every ε > 0.
Moreover, using (13), by choosing ε > 0 small enough one can drive the assumption (A′′2).
Hence, the conclusion follows from Theorem 3.3. �

Now, we exhibit an example in which the hypotheses of Theorem 3.4 are satisfied.

Example 3.1. Let α1 = 0.75, α2 = 0.8, T = 1, m = n = 2, θ(t) = et for all t ∈ [0, 1],
ai(t) = 1 for all t ∈ [0, 1] and i = 1, 2,

F (x1, x2) =

{
(x2

1 + x2
2) sin(

πx2
1+πx2

2
2 ), if x2

1 + x2
2 < 1,

1, if x2
1 + x2

2 ≥ 1,

h1(x1) = 1
10 ln( 1

coshx1
) and h2(x2) = 1

100 arctanx2 for all x1, x2 ∈ R. Thus L1 = 1
10 ,

L2 = 1
100 . Now by choosing δ = 1 and κ = 1

3 , we have w(t) = (w1(t), w2(t)) with

w1(t) =


3Γ(1.25)t, t ∈ [0, 1

3 [,
Γ(1.25), t ∈ [1

3 ,
2
3 ],

3Γ(1.25)(1− t), t ∈]2
3 , 1],

w2(t) =


3Γ(1.2)t, t ∈ [0, 1

3 [,
Γ(1.2), t ∈ [1

3 ,
2
3 ],

3Γ(1.2)(1− t), t ∈]2
3 , 1],

then we have P1(α1, κ) > 0, P2(α2, κ) > 0,
∫ 1

0 θ(t)F (w(t))dt > 0,

lim(ξ1,ξ2)→(0,0)
F (ξ1,ξ2)
ξ2
1+ξ2

2
= 0 and lim|ξ|→∞

F (ξ1,ξ2)
ξ2
1+ξ2

2
= 0

where ξ = (ξ1, ξ2) with |ξ| =
√
ξ2

1 + ξ2
2. It is clear that by choosing m = 2, t1 = 1

3 , t2 = 2
3 ,

I11(s) = 1
100s, I12(s) = 1

100 sin s, I21(s) = 1
10 arctan s and I22(s) = 1

20 ln(1 + s2) for all

s ∈ R, (H2) and (H3) are satisfied with L11 = L12 = 1
10 and L21 = L22 = 1

100 . Hence,
by applying Theorem 3.4 for each compact interval [c, d] ⊂ (0,+∞), there exists R > 0
with the following property: for every λ ∈ [c, d] and every G ∈ F there exists γ > 0 such

that, for each µ ∈ [0, γ], the system (PF,G,θλ,µ ), in this case, has at least three weak solutions

whose norms in the space E0.75
0 × E0.8

0 are less than R.

Remark 3.2. It is obvious that impulsive problems are more general than non-impulsive
ones. Moreover, impulsive effects are common phenomena due to the short-term perturba-
tions the duration of which is negligible in comparison with the total duration of the original
process. On the other hand, by putting Iij = 0 for all i = 1, . . . , n and j = 1, . . . ,m all over

of this article, we can have similar results in this regard for the system (PF,Gλ,µ ) without

impulsive terms. Readers can see another multiplicity result for the system (PF,Gλ,µ ) without

impulsive terms in [19] in the case n = 2.
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4. Scalar Case

As an application of the results from Section 3, we consider the problem tD
α
T (a(t)0D

α
t u(t)) = λf(t, u) + µg(t, u) + h(u), t ∈ (0, T ), t 6= tj ,

∆(tD
α−1
T (c0D

α
t u))(tj) = Ij(u(tj)), j = 1, 2, . . . ,m,

u(0) = u(T ) = 0
(P f,gλ,µ)

where 1
2 < α ≤ 1, λ > 0, µ ≥ 0, T > 0, a0 = ess inft∈[0,T ]a(t) > 0, 0D

α
t and tD

α
T

denote the left and right Riemann-Liouville fractional derivatives of order α, respectively,
f, g : [0, T ] × R → R are two L1-Carathéodory functions, h : R → [0,+∞) is a Lipschitz
continuous function with the Lipschitz constant L > 0, i.e., |h(ξ1) − h(ξ2)| ≤ L|ξ1 − ξ2|
for every ξ1, ξ2 ∈ R, satisfying h(0) = 0, Ij ∈ C(R, R) for j = 1, 2, ...,m, such that
Ij(0) = 0 and there exists a constant Lj > 0 such that |Ij(s1) − Ij(s2)| ≤ Lj |s1 − s2| for
any s1, s2 ∈ R for j = 1, . . . ,m, m ≥ 1, 0 = t0 < t1 < t2 < . . . < tm < tm+1 = T .

From now, by x we mean a real number.
Put F (t, x) =

∫ x
0 f(t, ξ)dξ G(t, x) =

∫ x
0 g(t, ξ)dξ for every (t, x) ∈ [0, T ] × R and

H(x) =
∫ x

0 h(ξ)dξ for every x ∈ R. Set σ̄ = 1 − LT 2α

Γ2(α+1)a0
, ρ̄ = 1 + LT 2α

Γ2(α+1)a0
, M̄ =

T 2α−1

a0(2α−1)Γ2(α)
and

P (α, κ) = 1
2κ2T 2

( ∫ T
0 a(t)t2(1−α)dt+

∫ T
κT a(t)(t− κT )2(1−α)dt

+
∫ T

(1−κ)T a(t)(t− (1− κ)T )2(1−α)dt− 2
∫ T
κT a(t)(t2 − κTt)1−αdt

−2
∫ T

(1−κ)T a(t)(t2 − (1− κ)Tt)1−αdt

+2
∫ T

(1−κ)T a(t)(t2 − κTt+ κ(1− κ)T 2)1−αdt
)

where 0 < κ < 1
2 . We assume in the rest of the paper and without further mention, that

the following conditions hold:

(H4) 1
2 < α ≤ 1;

(H5) K̄ = LT 2α

(Γ(α+1))2a0
+ M̄C̄m‖a‖∞ < 1 where C̄ = maxj∈{1,...,m} Lj .

The following results are consequences of Theorems 3.1 and 3.2, respectively.

Theorem 4.1. Assume that

(B1) there exists a constant ε > 0 such that

max
{

lim supξ→0
maxt∈[0,T ] F (t,ξ)

|ξ|2 , lim sup|ξ|→∞
maxt∈[0,T ] F (t,ξ)

|ξ|2

}
< ε;

(B2) there exists a function w ∈ Eα0 such that

‖w‖2α − 2
∫ T

0 Hi(wi(t))dt+ 2
∑m

j=1 a(tj)
∫ w(tj)

0 Ij(s)ds 6= 0

and ε <
( σ̄
M̄
−C̄m‖a‖∞)

∫ T
0 F (t,w(t))dt

‖w‖2α−2J1(w)
where

J1(w) =
∫ T

0 H(w(t))dt−
∑m

j=1 a(tj)
∫ w(tj)

0 Ij(s)ds. (15)

Then, for each compact interval [c, d] ⊂ (λ̄1, λ̄2) where

λ̄1 = inf
{
‖u‖2α−2J1(u)

2
∫ T
0 F (t,u(t))dt

: u ∈ Eα0 ,
∫ T

0 F (t, u(t))dt > 0
}

and

λ̄2 = max
{

0, lim sup|u|→0

∫ T
0 F (t,u(t))dt

1
2
‖u‖2α−J1(u)

, lim sup‖u‖→+∞

∫ T
0 F (t,u(t))dt

1
2
‖u‖2α−J1(u)

}
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where J1(u) is given by (15), there exists R > 0 with the following property: for every
λ ∈ [c, d] and every L1-Carathéodory function g : [0, T ]× R → R, there exists γ > 0 such

that for each µ ∈ [0, γ], the problem (P f,gλ,µ) has at least three weak solutions whose norms

in Eα0 are less than R.

Theorem 4.2. Assume that

max
{

lim supξ→0
supt∈[0,T ] F (t,ξ)

|ξ|2 , lim sup|ξ|→+∞
supt∈[0,T ] F (t,ξ)

|ξ|2

}
≤ 0

and supu∈Eα0

2
∫ T
0 F (t,u(t))dt

‖u‖2α−2J1(u)
> 0 where J1(u) is given by (15). Then for each compact

interval [c, d] ⊂ (λ1,+∞) there exists R > 0 with the following property: for every λ ∈ [c, d]
and every L1-Carathéodory function g : [0, T ] × R → R, there exists γ > 0 such that for

each µ ∈ [0, γ], the problem (P f,gλ,µ) has at least three weak solutions whose norms in Eα0
are less than R.

Remark 4.1. If f, g : [0, T ] × R → R are non-negative functions, the weak solutions
ensured by Theorems 4.1 and 4.2 are non-negative. Indeed, suppose that u0 ∈ Eα0 is a non-

trivial weak solution of the problem (P f,gλ,µ), then u0 is positive. Arguing by a contradiction,

assume that the set N =
{
t ∈]0, T ] : u0(t) < 0

}
is non-empty and of positive measure.

Put v̄(t) = min{0, u0(t)} for all t ∈ [0, T ]. Clearly, v̄ ∈ Eα0 and one has∫ T
0 a(t)0D

α
t u0(t)0D

α
t v̄(t)dt−

∫ T
0 h(u0(t))v̄(t)dt+

∑m
j=1 a(tj)Ij(u0(tj))v̄(tj)

−λ
∫ T

0 f(t, u0(t))v̄(t)dt− µ
∫ T

0 g(t, u0(t))v̄(t)dt = 0.

Thus, from our sign assumptions on the data we have

0 ≤ (1− K̄)
∫
A a(t)|0Dα

t u0(t)|2dt ≤
∫
A a(t)|0Dα

t u0(t)|2dt−
∫
A h(u0(t))u0(t)dt

+
∑m

j=1 a(tj)Ij(u0(tj))u0(tj) ≤ 0.

Hence, by (H6), u0 = 0 in N and this contradicts with this fact that u0 is a non-trivial weak
solution. Hence, the set N is empty, and u0 is positive. In addition, if either f(t, 0) 6= 0
for all t ∈ [0, T ] or g(t, 0) 6= 0 for all t ∈ [0, T ] or both are true, the solutions are positive.

Now we consider the following problem tD
α
T (a(t)0D

α
t u(t)) = λθ(t)f(u) + µg(t, u) + h(u), t ∈ (0, T ), t 6= tj ,

∆(tD
α−1
T (c0D

α
t u))(tj) = Ij(u(tj)), j = 1, 2, . . . ,m,

u(0) = u(T ) = 0
(16)

for i = 1, . . . , n, where θ : [0, T ] → R is a non-negative and non-zero function such that
θ ∈ L1([0, T ]), f : R → R is a non-negative continuous function and g : [0, T ]× R → R is
a non-negative L1-Carathéodory function.

Put F (x) =
∫ x

0 f(ξ)dξ for all x ∈ R. Taking Remark 4.1 in to account, the following
theorems are immediate consequences of Theorems 3.3 and 3.4, respectively.

Theorem 4.3. Assume that there exists a constant ε > 0 such that

supt∈[0,T ] θ(t).
{

lim supξ→0
F (ξ)
|ξ|2 , lim sup|ξ|→∞

F (ξ)
|ξ|2

}
< ε

and there exist two positive constants δ and κ with 0 < κ < 1
2 such that δ such that

P (α, κ) 6= 0 and 2M̄nδ2P (α, κ)ε <
∫ T

0 θ(t)F (w̄(t))dt where

w̄(t) =


Γ(2−α)δ
κT t, t ∈ [0, κT [,

Γ(2− α)δ, t ∈ [κT, (1− κ)T ],
Γ(2−α)η
κT (T − t), t ∈](1− κ)T, T ].

(17)
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Then, for each compact interval [c, d] ⊂ (λ̄3, λ̄4) where λ̄3 and λ̄4 are the same as λ̄1

and λ̄2, but
∫ T

0 F (t, u(t))dt replaced by
∫ T

0 θ(t)F (u(t))dt, respectively, there exists R > 0

with the following property: for every λ ∈ [c, d] and every non-negative L1-Carathéodory
function g : [0, T ] × R → R, there exists γ > 0 such that for each µ ∈ [0, γ], the problem
(16) has at least three non-negative weak solutions whose norms in Eα0 are less than R.

Theorem 4.4. Assume that there exist two positive constants δ and κ with 0 < κ < 1
2 such

that P (α, κ) > 0 and
∫ T

0 F (w̄(t))dt > 0 where w̄ is given by (17). Moreover, suppose that

lim supξ→0
f(ξ)
|ξ| = lim sup|ξ|→∞

f(ξ)
|ξ| = 0. Then, for each compact interval [c, d] ⊂ (λ̄3,+∞)

where λ̄3 is the same as λ̄1, but
∫ T

0 F (t, u(t))dt replaced by
∫ T

0 F (u(t))dt, there exists
R > 0 with the following property: for every λ ∈ [c, d] and every non-negative continuous
function g : R→ R, there exists γ > 0 such that for each µ ∈ [0, γ], the problem tD

α
T (a(t)0D

α
t u(t)) = λf(u) + µg(u) + h(u), t ∈ (0, T ), t 6= tj ,

∆(tD
α−1
T (c0D

α
t u))(tj) = Ij(u(tj)), j = 1, 2, . . . ,m,

u(0) = u(T ) = 0
(18)

has at least three non-negative weak solutions whose norms in Eα0 are less than R.

Finally, we present the following example to illustrate Theorem 4.4.

Example 4.1. Let α = 0.75, T = 1, a(t) = 1 + 2
1+t2

for all t ∈ [0, 1],

f(x) =

{
x2 sin2 x, if x < 0,
sin2 x, if x ≥ 0

and h(x) = 1
200 arctan(ex) for all x ∈ R. Thus a0 = 1 and L = 1

100 . By choosing δ = 1
Γ(1.25)

and κ = 1
3 , we have w̄(t) ≥ 0 for all t ∈ [0, 1], P (α, κ) > 0,∫ 1

0 F (w̄(t))dt =
∫ 1

0 F (w̄(t))dt =
∫ 1

0

∫ w̄(t)
0 sin2 x dxdt = 1

12(4− sin 2 + cos 2) > 0

and limξ→0
f(ξ)
|ξ| = limξ→∞

f(ξ)
|ξ| = 0. It is clear that by choosing m = 1, t1 = 1

2 and

I1(s) = 1
10 ln( 1

cosh s) for all s ∈ R, the assumptions (H5) and (H6) are satisfied with

L1 = 1
10 . Hence, by applying Theorem 4.4 for each compact interval [c, d] ⊂ (0,+∞),

there exists R > 0 with the following property: for every λ ∈ [c, d] and every non-negative
continuous function g : R → R, there exists γ > 0 such that, for each µ ∈ [0, γ], the
problem (18) in this case has at least three non-negative weak solutions in E0.75

0 .
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