
TWMS J. App. Eng. Math. V.9, N.3, 2019, pp. 681-686

GLOBAL COLOR CLASS DOMINATION PARTITION OF A GRAPH

V. PRABA1,†, V. SWAMINATHAN2, §

Abstract. Color class domination partition was suggested by E. Sampathkumar and
it was studied in [1]. A proper color partition of a finite, simple graph G is called a
color class domination partition (or cd-partition) if every color class is dominated by
a vertex. This concept is different from dominator color partition introduced in [[2],
[3]] where every vertex dominates a color class. Suppose G has no full degree vertex
(that is, a vertex which is adjacent with every other vertex of the graph). Then a color
class may be independent from a vertex outside the class. This leads to Global Color
Class Domination Partition. A proper color partition of G is called a Global Color
Class Domination Partition if every color class is dominated by a vertex and each color
class is independent of a vertex outside the class. The minimum cardinality of a Global
Color Class Domination Partition is called the Global Color Class Domination Partition
Number of G and is denoted by χgcd(G). In this paper a study of this new parameter is
initiated and its relationships with other parameters are investigated.

Keywords: Color class domination partition, Global color class domination partition,
Dominator color class partition, Global color class domination number.
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1. Introduction

Let G be a finite, simple and undirected graph. A proper color partition of G is
a partition of V (G) into independent sets of G. Several types of proper color partitions
have been studied earlier. One of them is dominator coloring [[2], [3]]. In this coloring,
each vertex dominates a color class. The minimum cardinality of a dominator color class
partition is denoted by χd(G). A slight variation of this coloring is called a color class
domination partition. In this partition, each color class is dominated by a vertex. In
graphs without any full degree vertex, Global counter part of this concept can be defined.
In this paper this new concept is introduced and studied.
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2. Global color class domination partition

Definition 2.1. Let G be a finite, simple and undirected graph. Let Π = {V1, V2, . . . , Vk}
be a proper color partition of G. Π is called a global color class domination partition if for
every color class Vi, there exists a vertex ui which dominates Vi and there exists a vertex
wi /∈ Vi which is independent of Vi, 1 ≤ i ≤ k. The minimum cardinality of a Global color
class domination partition is called the Global color class domination number of G and is
denoted by χgcd(G).

If G does not have a full degree vertex, then Π = {{v1}, {v2}, . . . , {vn}} is a global color
class domination partition of G.

3. χgcd(G) for Standard Graphs

(1) χgcd(Kn) = n.
(2) χgcd(Dr,s) = 4, r, s ≥ 1.
(3) χgcd(Km,n) = 4, where m,n ≥ 2.

(4) χgcd(Pn) =

{
4 if n = 4, 5

χcd(Pn) if n ≥ 6

χgcd(P2) and χgcd(P3) do not exist.

(5) χgcd(Cn) =


4 if n = 4

5 if n = 5

χcd(Cn) if n ≥ 6

χgcd(C3) does not exist.
(6) χgcd(P ) = 5 where P is the Petersen graph.

v1

v2

v3v4

v5

v6

v7

v8v9

v10

Petersen Graph

Here {{v1, v3}, {v2, v4}, {v5, v6}, {v7, v8}, {v9, v10}} is a minimum global color class
domination partition of P .

4. Main Results

Theorem 4.1. max{χcd(G),
γg(G)

2 } ≤ χgcd(G)

Proof. Let Π be a minimum global color class domination partition of G. Then Π is a color
class domination partition of G. Therefore χcd(G) ≤ χgcd(G). Let Π = {V1, V2, . . . , Vk}
be a minimum global color partition of G. Then there exist x1, x2, . . . , xk such that xi
dominates Vi, (1 ≤ i ≤ k) and y1, y2, . . . , yk such that yi is independent of Vi, (1 ≤ i ≤ k).
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Let S = {x1, x2, . . . , xk, y1, y2, . . . , yk}. Then S is a global dominating set of G. Therefore

γg(G) ≤ |S| ≤ 2k.
γg(G)

2 ≤ k = χgcd(G). Therefore max{χcd(G),
γg(G)

2 } ≤ χgcd(G). �

Remark 4.1. Let G = P6. γg(G) = 2 . χgcd(G) = χcd(G) = dn+2
2 e = 4. Therefore

max{χcd(G),
γg(G)

2 } = max{2
2 , 4} = 4 = χgcd(G).

Theorem 4.2. n
min(∆(G),n−1−δ(G)) ≤ χgcd(G)

Proof. Let Π = {V1, V2, . . . , Vk} be a minimum global color partition of G. Since each Vi
is dominated by a vertex say xi. deg(xi) ≥ |Vi|, (1 ≤ i ≤ k). Therefore |Vi| ≤ ∆(G),
(1 ≤ i ≤ k). That is, max

1≤i≤k
(|Vi|) ≤ ∆(G). Since each Vi is independent of some yi,

(1 ≤ i ≤ k), each Vi is dominated by yi inG, (1 ≤ i ≤ k), therefore |Vi| ≤ degG(yi) ≤ ∆(G).

δ(G) ≤ n−∆(G)−1. ∆(G) ≤ n− δ(G)−1. Therefore |Vi| ≤ min{∆(G),≤ n− δ(G)−1},
(1 ≤ i ≤ k). n = |V1|+ |V2|+ . . .+ |Vn| ≤ min{|V1|}+min{|V2|}+ . . .+min{|Vk|}. n = k
min{∆(G), n− δ(G)− 1}. n

min{∆(G),n−1−δ(G)} ≤ k = χgcd(G). �

Remark 4.2. The above bound is sharp. For: Let G = P6. χgcd(G) = 4, ∆(G) = 2,

δ(G) = 1. Therefore min{∆(P6), n−1−δ(P6)}, n
min∆(P6),n−1−δ(P6) = 6

2 = 3. |V (P6)|
min{∆(P6),n−1−δ(P6)} =

χgcd(P6).

Observation 4.1. Let G =C20. χgcd(C20) = χcd(C20) = 20
2 = 10. χ(C20) = 2 and

γg(C20) = 7. Therefore χ(G) + γg(G) = 2 + 7 = 9 < χgcd(G) where G = C20.
Let G = C6. χgcd(C6) = 3. χ(C6) = 2 and γg(C6) = 2. Therefore χ(G) + γg(G) = 2 + 2 =
4 ≥ χgcd(G) where G = C6.
Let G = P4. χgcd(P4) = 4. χ(P4) = 2 and γg(P4) = 2. Therefore χ(G) + γg(G) =
2 + 2 = 4 = χgcd(G) where G = P4. Therefore there is no relationship between χgcd(G)
and χ(G) + γg(G).

Observation 4.2. Let G be the disjoint union of connected graphs G1, G2, . . . , Gk. Then
χgcd(G) = χgcd(G1) + χgcd(G2) + . . .+ χgcd(Gk).

Theorem 4.3. Let G have isolates. Then χgcd(G) = χcd(G).

Proof. Let u1, u2, . . . , uk be the isolates of G. Let Π be a minimum color class domination
partition of G. Since ui, (1 ≤ i ≤ k), are isolates, {u1}, {u2}, . . . , {uk} all belong to Π.
Therefore Π is also a global color class domination partition of G. Therefore χgcd(G) ≤
|Π| = χcd(G). But χcd(G) ≤ χgcd(G). Hence χgcd(G) = χcd(G). �

Theorem 4.4. Let G be a bipartite graph without isolates and the cardinalities of the
bipartite sets of G are ≥ 2. Then γ(G) = γg(G) = χcd(G) = χgcd(G) if N(ui) 6= Y for
any ui in X and N(vi) = X for some vi in Y .
If N(ui) = Y for any ui in X and N(vi) = X for some vi in Y , then γ(G) = γg(G) =
χcd(G) = 2 and χgcd(G) = 4.
If N(ui) 6= Y for any ui in X and N(vi) = X for some vi in Y , then γ(G) = γg(G) =
χcd(G) = k + 1 and χgcd(G) = k + 2.

Proof. Let G be a bipartite graph without isolates and let X, Y be the bipartite sets of
G. Let |X| ≥ 2, |Y | ≥ 2. Since G is bipartite without isolates, G = Kr ∪Ks. Any subset
of V (G) containing a vertex from X and a vertex from Y is a dominating set of G. Any
dominating set of G contains at least one vertex from X and at least one vertex from Y .
Therefore any dominating set of G is also a dominating set of G. Therefore γ(G) = γg(G).
Let {u1, u2, . . . , ur} be a γ-set of G. Let u1, u2, . . . , uk ∈ X and uk+1, uk+2, . . . , ur ∈ Y .
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Consider Vi = N(ui)−
⋃i−1
j=1N(uj). If ui ∈ X,then Vi ⊂ Y . If ui ∈ Y , then Vi ⊂ X. Let ui1

and ui2 ∈ X. Without loss of generality i1 < i2. Then Vi2∩Vi1 = φ. If ui1 ∈ X and ui2 ∈ Y ,
then Vi2 ∩ Vi1 = φ. Therefore V1, V2, . . . , Vr are mutually disjoint. If ui ∈ X, Vi ⊂ Y , then
Vi is independent. Therefore Π = {V1, V2, . . . , Vr} is a partition of G into independent
sets. Vi is dominated by ui, (1 ≤ i ≤ k). If N(ui) = Y , then V2, V3, . . . , Vk are empty.
If N(uk+1) = X, then Vk+2, Vk+3, . . . , Vr are empty. Therefore {u1, uk+1} is a minimum
dominating as well as global dominating set of G, that is, γ(G) = γg(G) = 2. Let Π =
{V1−{uk}, V2−{ur}, {uk}, {ur}} is a minimum global color class domination partition of
G. Therefore χgcd(G) = 4. Π1 = {V1, Vk+1} is a minimum color class domination partition
of G. Therefore χcd(G) = 2. Suppose N(u1) $ X.But N(uk+1) = X. Therefore V1 $ Y .
Suppose V2 = N(u2)−N(u1) = φ. Then N(u2) ⊂ N(u1). Therefore D = {u1, u3, . . . , ur}
is a dominating set of G. There γ(G) < r , a contradiction. Therefore V2 6= φ. A
similar argument shows that V3, V4, . . . , Vk are empty. Since Vk+1 = X, Vk+2, . . . , Vr = φ,
therefore Π = {V1, . . . , Vk, Vk+1 − {uk}, {uk}} is a minimum global color class domination
partition. Therefore χcd(G) = k + 2. Since Vk+1 = X, D = {u1, u2, . . . , uk, uk+1} is
a minimum global color class domination partition. Therefore χgcd(G) = k + 2. Since
Vk+1 = X, D = {u1, u2, . . . , uk, uk+1} is a minimum dominating set of G. |D| = k+1 < r.
Therefore γ(G) = k + 1, γg(G) = k + 1, χcd(G) = k + 1, χgcd(G) = k + 2.
Suppose N(u1) $ Y , N(uk+1) $ X. Then V2, . . . , Vk, Vk+2, . . . , Vr are non-empty.Π =
{V2, . . . , Vk, Vk+2, . . . , Vr} is a minimum global color class domination partition of G. It
is also a minimum color class domination partition of G. Therefore γ(G) = γg(G) =
χcd(G) = χgcd(G) = r. �

Proposition 4.1. χgcd(G) = 2 iff G = K2.

Proof. Suppose χgcd(G) = 2. Let Π = {V1, V2} be a χgcd-partition of G. V1 is dominated
by a vertex of V2 or V1 is a singleton. Since there exists a vertex in V1 which is not adjacent
with any vertex of V2, V1 is a singleton. Similarly V2 is a singleton. Let V1 = {u}, V2 = {v}.
If u and v are adjacent, then G = K2 and hence G has a full degree vertex, a contradiction.
Therefore u and v are not adjacent. Therefore G = K2.

The converse is obvious. �

Theorem 4.5. 2 ≤ χgcd(G) ≤ n

Theorem 4.6. Let G be disconnected. Then χgcd(G) = n iff G = Kr1 ∪Kr2 . . . ∪Krk .

Proof. Let χgcd(G) = n. By hypothesis, G is disconnected. Let G1, G2, . . . , Gk be the
components of G. Suppose Gi has two independent points u, v such that they are adjacent
with a common vertex. Then {u, v} is an element of a χgcd-partition. Therefore χgcd(G) ≤
n, a contradiction. Hence either Gi is complete or any two independent vertices of Gi has
no common adjacent vertex. In the latter case, there exists a path of length at least three
between u and v. Let u = u1, u2, . . . , ur = v be a shortest path between u and v of length
at least three. Then u and u3 are independent and have a common vertex, a contradiction.
Therefore Gi is complete. Therefore G = Kr1 ∪Kr2 . . . ∪Krk .
The converse is obvious. �

Corollary 4.1. If each Kri is a singleton, then G = Kn.

Remark 4.3. Let G be a connected graph without full degree vertex. Suppose |V (G)| = 3.
Then there exists no graph without full degree vertex. Let |V (G)| = 4. Then P4 and C4 are
the only connected graphs without full degree vertex such that χgcd(G) = 4. Let |V (G)| = 5.
Let Gi, 1 ≤ i ≤ 4 be the graphs given below:
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G1 G2 G3 G4

Then these are the four graphs without full degree vertex on five vertices such that χgcd(G) =
5.

Definition 4.1. Let G be a connected graph. Define Ni(G) as follows: A vertex set of
Ni(G) is same as V (G). Two vertices in Ni(G) are adjacent if they are independent and
they have a common adjacent vertex.

Example 4.1. Let G = C4 and Ni(G) be the graphs given below:

v1 v2

v3v4

v1 v2

v3v4

G Ni(G)

Theorem 4.7. Let G be a connected graph without a full degree vertex. Then χgcd(G) = n
iff for any edge uv in Ni(G), {u, v} is a maximal independent set in G.

Proof. Suppose for any edge xy in Ni(G), {x, y} is a maximal independent set in G. Since
G is connected and G has no full degree vertex, there exist two independent vertices which
have a common adjacent vertex. (For : if u and v are independent and d(u, v) = 2, then
u and v have a common vertex . Suppose d(u, v) ≥ 3. Let u = u1, u2, . . . uk = v be a
shortest path between u and v. Clearly k ≥ 4. Then u, u3 are independent and have a
common vertex u2). Hence Ni(G) has at least one edge. Let uv be an edge of Ni(G).
Then {u, v} is a maximal independent set of G. Therefore there exists no vertex w in G
such that w is non-adjacent with u and v. Therefore χgcd(G) = n. Conversely, let G be
connected without full degree vertex and χgcd(G) = n. Let xy be an edge in Ni(G). Then
x and y have a common adjacent vertex in G. Since χgcd(G) = n, x and y do not have a
common non-adjacent vertex. Hence {x, y} is a maximal independent set in G. �

Example 4.2. Let G = C4 and Ni(G) be the graphs given below:

v1 v2

v3v4

v1 v2

v3v4

G Ni(G)

Also {v1, v3} is a maximal independent set in G as well as {v2, v4}. Therefore χgcd(G) = 4.
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