ON THE SOLUTION APPROACHES OF THE BAND COLLOCATION PROBLEM

H. KUTUCU ${ }^{1}$, A. GURSOY ${ }^{2}$, M. KURT ${ }^{3}$, U. NURIYEV ${ }^{4}$, \S

Abstract

This paper introduces the first genetic algorithm approach for solving the Band Collocation Problem (BCP) which is a combinatorial optimization problem that aims to reduce the hardware costs on fiber optic networks. This problem consists of finding an optimal permutation of rows of a given binary rectangular matrix representing a communication network so that the total cost of covering all 1's by Bands is minimum. We present computational results which indicate that we can obtain almost optimal solutions of moderately large size instances (up to 96 rows and 28 columns) of the BCP within a few seconds.

Keywords: Band Collocation Problem, Dense Wavelength Division Multiplexing, Metaheuristic Algorithms

AMS Subject Classification: 90C05, 90C09, 90B18, 93A30, 90C27, 90C59

1. Introduction

We consider a communication network in which a service provider or a source transmits data stream including m data packages to n sinks. Modern optic cable using Dense Wavelength Division Multiplexing (DWDM) technology can carry data stream coded in a given m different wavelengths [5, 17]. DWDM uses a multiplexer at the service provider to join the several signals (data) together, and a demultiplexer at the sink to split them apart. Add/Drop Multiplexers (ADM) installed at sinks facilitate flows on some wavelengths to exit the cable according to their paths.
In Figure 1, a service provider transmits a data stream at different wavelengths of light simultaneously. Sink stations have special cards to control these wavelengths. Sink s_{1} requests the data carried on wavelengths $\lambda_{1}, \lambda_{2}, \lambda_{4}$ and $\lambda_{5} ; \operatorname{sink} s_{2}$ requests the data carried on wavelengths $\lambda_{1}, \lambda_{3}, \lambda_{5}$ and λ_{6}; sink s_{3} requests the data carried on wavelengths

[^0]$\lambda_{1}, \lambda_{3}, \lambda_{5}$ and λ_{6}; sink s_{4} requests the data carried on wavelengths λ_{1} and λ_{5} and finally sink s_{5} requests the data carried on wavelengths λ_{1} and λ_{4}. This is described by a binary matrix $A=a_{i j}$: if data carried on wavelength $i=1, \ldots, m$ is requested by $\operatorname{sink} j=1, \ldots, n$ then $a_{i j}=1$ otherwise $a_{i j}=0$.

Figure 1. Cards in ADMs needed for each wavelength.
Let c_{0} be the cost of one card controlling only one wavelength. In this case, the total cost of the cards is $15 \times c_{0}$ since 15 cards are used in the above network.

In DWDM networks, there are some cards that are able to control a group of consecutive (adjacent) wavelengths as well as there are cards controlling only one single wavelength. We call this group Band. For instance, there are cards controlling two, four or eight wavelengths, that is, cards controlling Bands of length two, four or eight. The length of these Bands are generally power of two. We represent the length 2^{k} of cards as B_{k}-Band. Naturally, c_{k} denotes the cost of B_{k} - Band.

Network hardware vendors generally price the cards so that a card cannot be more expensive than two cards in a lower level. In this regard, the following condition always holds:

$$
\begin{equation*}
2 \times c_{k}>c_{k+1} \tag{1}
\end{equation*}
$$

We may handle the communication from the source to five sinks in Figure 2 using cards of different lengths instead of using 15 cards of length one. If we use four cards for B_{1}-Band and seven cards for B_{0}-Band shown in Figure 2, then the total cost would be $4 \times c_{1}+7 \times c_{0}$. By the condition (1), $4 \times c_{1}+7 \times c_{0}<15 \times c_{0}$.

Figure 2. The positions of B_{0}-Band and B_{1}-Band cards.
In DWDM networks, it is also possible to arrange the order of the wavelengths. Reordering the wavelengths may provide us to decrease the cost and the number of cards used
in the ADMs. If we reorder the wavelengths as in Figure 3, then two B_{2}-Bands and four B_{1}-Bands can be used to group of consecutive wavelengths. The cost of this configuration is $2 \times c_{2}+4 \times c_{1}$ which is less than $4 \times c_{1}+7 \times c_{0}$ by the condition (1).

Figure 3. New B_{k}-Bands after reordering wavelengths in Figure 1.

The Band Collocation Problem is defined formally as follows: Let $A=\left(a_{i j}\right)$ be a binary matrix of dimension $m \times n$ which represents a communication traffic where m is the number of wavelengths and n is the number of sinks. Let 2^{k} be the length of B_{k}-Band and c_{k} be the cost of B_{k}-Band, where $\left(k=0,1, \ldots,\left\lfloor\log _{2} m\right\rfloor\right)$. Each one in a column have to be included (or covered) in (or by) exactly one band. The BCP consists of finding an optimal permutation of rows of the matrix A that minimizes the total cost of B_{k}-Bands in all columns.

The BCP is indeed an extended version of the Bandpass Problem (BP) introduced and formulated mathematically by Babayev et al. in 2009 [1]. The BCP was first proposed and modeled combinatorially by Nuriyev et al. in 2015 [14]. Then, Nuriyev et al. gave a mathematical formulation of the BCP as a binary integer nonlinear programming model [13]. Recent changes in ADM technology made the BP ineffective. In the BP, the length of consecutive wavelengths which are controlled by special cards are defined as a fixed number B. However, the bandpasses may be in different sizes. Furthermore, in the BP, each wavelength existing in a bandpass B corresponding to a fixed B_{k}-Band has to carry a data for a sink. But, the technology allows an ADM to drop a wavelength even if it does not carry any information. In the BCP, a band may contain zero elements. Besides, the BP ignores costs of the programmable cards. For the state of the art techniques, the reader can refer to [14], [6] and [13].

The BP is studied by several researcher during the last decade. Li and Lin showed that the three-column BP is solvable in linear time [12].

Chen and Wang improved an approximation algorithm for the BP when $B=2$ using two maximum weight matchings [2]. Their algorithm achieves a performance ratio of $\frac{220}{117} \approx 1.8805$. Afterwards, Huang et al. proposed an improvement to partition a 4matching into a number of candidate sub-matchings, each of which can be used to extend the first maximum weight matching. This last improved approximation algorithm in the literature has a worst-case performance ratio of $\frac{128}{70-\sqrt{2}} \approx 1.8663$ [8].

Laguna et al. approached the BP with a scatter search procedure which is a populationbased meta-heuristic framework [11]. In [18], Tong et al. used the BP to prove that the general multiple RNA interaction prediction problem, either allowing or disallowing pseudo-knot-like interactions, is NP-hard.

The paper is organized as follows: In Section 2, we first analyze how to solve the BCP. We present a dynamic programming algorithm to find the cost of the current configuration of the wavelengths ordering. This will be used as the fitness function of genetic algorithm. In Section 3, we present some computational results for the problem and finally, give some concluding remarks in Section 4.

2. Solution Analysis of the BCP

Solving the BCP includes two stages. The first one is finding the minimum total cost to cover all 1's in all columns using bands in the current permutation of the matrix. Covering 1's in a column is independent from the other columns. Therefore, the numbers of $B_{k^{-}}$ bands used and their coordinates would be determined for each column separately. Let us consider the second column of the matrix representing a network traffic in Figure 4.

Figure 4. A binary matrix representing the network traffic.
In what follows, there are just three of the alternatives to cover 1's in this column:

- using four B_{0} item in Figure5(a),
- using two B_{0} and one B_{1} in Figure $5(\mathrm{~b})$,
- using one B_{0} and one B_{2} in Figure 5(c).

We note that a zero element can be included by any B_{k}-Band.

Figure 5. Some combinations of B_{k}-Bands used in column 2.
The costs of B_{k} bands used in (a), (b) and (c) are $4 \times c_{0}, 2 \times c_{0}+c_{1}$ and $c_{0}+c_{2}$ respectively. Naturally, we choose the one yielding the minimum cost.

When the number of rows and B_{k}-Bands increase, the number of combinations will increase exponentially. A brute-force technique is not reasonable. In [16], Nuriyeva improve a dynamic programming algorithm to find the coordinates of B_{k}-Bands and also the minimum cost to cover all 1's of the underlying matrix. We use this algorithm given in Section 2.1 for the first stage.

The second stage of solving the BCP is obtaining an optimal permutation of rows of the matrix that minimizes the total cost of B_{k}-Bands in all columns. We improve a genetic algorithm in Section 2.2 which uses the first stage as the fitness function.
2.1. The Subproblem of the BCP and Its Exact Solution. We consider each column of the traffic matrix as a sequence. The subproblem as the first stage for solving the BCP is defined as follows:

Let $Q[m]$ be a sequence with m elements such that $Q(i) \in\{0,1\}, i=1,2, \ldots, m$. Let B_{k}-Band be a cover with 2^{k} elements and c_{k} be the cost of B_{k}-Band, where $k=$ $0,1, \ldots,\left\lfloor\log _{2} m\right\rfloor$.

The cost function $f\left[B_{k}\left(Q(j), Q(j-1), \ldots, Q\left(j-2^{k}+1\right)\right)\right]$ to cover the elements of $B_{k}: Q(j), Q(j-1), \ldots, Q\left(j-2^{k}+1\right)$, where $j=1,2, \ldots, m$, is defined as follows:
$f\left[B_{k}\left(Q(j), \ldots, Q\left(j-2^{k}+1\right)\right)\right]= \begin{cases}0, & \text { if the elements covered by } B_{k} \text { are equal to } 0, \text { i.e. }, \\ & Q(j)=Q(j-1)=\ldots=Q\left(j-2^{k}+1\right)=0 \\ c_{k}, & \text { otherwise. }\end{cases}$
The aim is to cover all nonzero elements in $Q[m]$ with a minimum cost. Algorithm 1 finds the set of covered elements of B_{k}-Bands with a minimum cost. This dynamic programming algorithm runs in $O\left(m_{n l o g}^{2} m\right)$ time, where m is the number of rows and n is the number of columns [16].

```
Algorithm 1: Dynamic Algorithm finds the minimum cost for a given traffic
matrix.
    Data: A binary matrix \(A[m, n]\) and costs \(c_{k}\) of \(B_{k}\)-Bands for \(k=0,1, \ldots,\left\lfloor\log _{2} m\right\rfloor\)
    Result: The coordinates of \(B_{k}\)-Bands in each column and the total cost
        for column \(=1\) to \(n\) do
        for \(j=1\) to \(m\) do
            \(Q[j]=A[j\), column \(]\)
        end for
        \(R_{0}=0, E_{0}=\emptyset\)
        \(R_{1}=f\left[B_{0}(Q(1))\right]+R_{0}\)
        if \(Q(1)=0\) then
            \(E_{1}=\emptyset\)
        else
            \(E_{1}=\{1\}\)
        end if
        for \(j=2\) to \(m\) do
            \(k=\left\lfloor\log _{2} j\right\rfloor\)
            \(R_{j}=\min \left\{f\left[B_{0}(Q(j))\right]+R_{j-2^{0}}, f\left[B_{1}(Q(j), Q(j-1))\right]+R_{j-2^{1}}\right.\),
                \(\left.\ldots, f\left[B_{k}\left(Q(j), Q(j-1), \ldots, Q\left(j-2^{k}+1\right)\right)\right]+R_{j-2^{k}}\right\}\)
                \(E_{j}=\arg\) min \(_{\text {elements }} R_{j}\) \{the covered elements which gives the minimum value for \(\left.R_{j}\right\}\)
        end for
        Coordinates[column] \(=E_{m}\)
        Total_Cost \(=\) Total_Cost \(+R_{m}\)
    end for
```

2.2. Metaheuristic Solution Approaches of the BCP. Due to the complexity of combinatorial optimization problems, metaheuristic approaches have increased the interest of researchers in the last four decades. The leading metaheuristic techniques are Genetic Algorithm (GA), Simulated Annealing (SA), Particular Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Tabu Search (TS) proposed in [7, [10, [9, and [3, respectively. In this section, we present the first genetic algorithm to solve the BCP. In the genetic algorithm, a number of genes creates a chromosome (individual), and a number of chromosomes create the population pool. New individuals are produced by crossover and mutation operators. Then, the next generations are built using various
selection methods from the union of old and new individuals until a termination criterion is satisfied.

In our GA, individuals (solutions) are represented as permutations of rows (integers) of the traffic matrix A. The general scheme of the GA is presented in pseudocode in Algorithm 2. The fitting value of an individual is the minimum band cost calculated in line 3 by Algorithm 1. Two parents are chosen using Binary Tournament Selection in line 6 at each generation. The crossover and mutation operators are applied to the individuals in lines 8 and 9 , respectively, with specified probabilities. Finally, the offspring is/are inserted into the population (line 11) only if its/their fitness value is smaller than that of any parent in the current population (elitist replacement). The algorithm stops when a priori predetermined maximum number of generations is reached.

```
Algorithm 2: Pseudocode of the genetic algorithm for the BCP.
    Data: A binary matrix \(A[m, n\rfloor\), costs \(c_{k}\) of \(B_{k}\)-Bands for \(k=0,1, \ldots,\left\lfloor\log _{2} m\right\rfloor\) and
        genetic algorithm parameters.
    Result: An optimal permutation of rows of the matrix that minimizes the total
                cost of \(B_{k}\)-Bands.
    Set iteration number \(t=1\);
    Initialize the population \(P\) randomly;
    Evaluate the population according to fitness value \(f(P)\);
    Sort the population in increasing order of fitnes;
    while termination condition is not met do
        \(t=t+1\);
        Select parents from the current population by binary tournament selection;
        Crossover the selected chromosomes according to cr ;
        Mutate the selected chromosomes according to \(m r\);
        Evaluate new individuals;
        Insert offspring into the population by the Elitism strategy;
    end while
    Return the row order having the best fitness value;
```

We use two crossover operators Partialy-mapped crossover (PMX) and Order crossover (OX) 4]. In examples of Figure 6 and Figure 7, all parents and offspring have 9-gene length. The examples in Figure 6 show how PMX and OX construct two offspring from two parents (chromosomes). In this figure, $P i$ and $O i(i=1,2)$ are called parents and offspring, respectively. The mutation consists in applying three different mutation methods that are Insertion, Swap and Inverse [4]. They are illustrated in Figure 7.

3. Computational Experiments

Our genetic algorithm has been implemented in $\mathrm{C}++$ and tested on $\mathrm{i} 7-5600 \mathrm{U}$ machine with a 2.60 GHz processor and 8GB RAM with a test suite composed by instances of the BCPLib [15]. 72 problem instances with known optimal solutions are chosen. We performed 10 independent runs to get reliable statistical results. We listed in Table 1 the parameters used in Algorithm 2 in all our tests. We implemented the genetic algorithm according to six combinations of two crossover and three mutation operators discussed before.

We presented the results of 72 problem instances in this paper. Besides, due to the limited space, we showed the computational results with just the inverse mutation and OX,

Figure 6. An example of two crossover operators.
Insertion

Before | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

After	1	2	5	3	4	6	7	8

Swap										
Before	1	2	3	4	5	6	-7		8	9
After	1	5	3	4	2	6	\|7		8	9

Before	1	2	3	4	5	6	7	8	9

Figure 7. An example of three mutation operators.

PMX crossover methods. The results of the other mutation operators (insertion and swap) can be accessed at http://fen.ege.edu.tr/~arifgursoy/bps/BCP_Large_Tables.pdf. In Table 2, m is the number of rows, n is the number of columns, d is the density of non-zero elements of the matrix in $\%, O p t$ is the optimal value of the problem instance (matrix), Best is the best value obtained over 10 runs, $A v g$ is the average value obtained over 10 runs, Gap is the relative error (in \%) between the optimal value and the best value, Time is the average CPU time in seconds.

The computational results which are presented in Table 3 show that the solutions obtained using PMX crossover are better than using OX crossover for the inverse mutation operator. We compare three mutation operators using PMX operator in Table 3. The inverse mutation operator outperforms insertion and swap operators. The genetic algorithm with the inverse operator and PMX crossover has solved to optimality 30 instances out of 72 and CPU time varies from 1 second to 61 seconds.

Table 1. Parameters used in the GA.

Population size	200 Individuals
Selection of parents	Binary Tournament Selection
Crossover	PMX, OX
Mutation	Insertion, Swap, Inverse
Probability of crossover $(c r)$	0.9
Probability of mutation $(m r)$	0.3
Termination condition	25000 Generations

Table 2. Computational results with inverse mutation and OX, PMX crossover methods.

					OX				PMX			
Instance	m	n	d	Opt	Best	Ave	gap	Time	Best	Ave	Gap	Time
OT1-M1-R10	12	6	35	22950	22950	22969	0.00	1.00	22950	22988	0.00	1.00
OT1-M1-R30	12	6	35	19150	19150	19150	0.00	0.99	19150	19150	0.00	1.00
OT3-M1-R10	12	6	75	47160	47160	47160	0.00	1.00	47160	47160	0.00	1.02
OT3-M1-R30	12	6	75	35520	35520	35520	0.00	1.05	35520	35520	0.00	1.01
OT4-M1-R10	16	8	35	41380	41380	41380	0.00	1.98	41380	41390	0.00	1.95
OT4-M1-R30	16	8	35	34620	34620	34620	0.00	2.16	34620	34650	0.00	2.03
OT6-M1-R10	16	8	75	84340	84340	84340	0.00	2.05	84340	84340	0.00	2.07
OT6-M1-R30	16	8	75	60660	60660	60660	0.00	2.05	60660	60660	0.00	1.96
OT7-M1-R10	24	10	35	73870	73870	74174	0.00	4.41	73870	74019	0.00	4.36
OT7-M1-R30	24	10	35	55950	55950	56050	0.00	4.32	55950	56297	0.00	4.37
OT9-M1-R10	24	10	75	148310	148310	148652	0.00	4.33	148310	148310	0.00	4.55
OT9-M1-R30	24	10	75	100490	100490	100830	0.00	4.31	100490	100590	0.00	4.44
OT10-M1-R10	32	12	35	118540	118540	118569	0.00	7.52	118540	118651	0.00	7.57
OT10-M1-R30	32	12	35	91820	91820	91905	0.00	7.52	91820	91986	0.00	8.52
OT12-M1-R10	32	12	75	242530	242530	242530	0.00	7.53	242530	242530	0.00	8.98
OT12-M1-R30	32	12	75	163690	163690	164100	0.00	7.94	163690	163861	0.00	8.43
OT13-M1-R10	40	14	35	173850	174050	174651	0.12	12.28	173850	174665	0.00	12.81
OT13-M1-R30	40	14	35	118580	118580	120778	0.00	12.22	118580	120592	0.00	13.56
OT15-M1-R10	40	14	75	344030	344030	344711	0.00	12.56	344030	344753	0.00	13.31
OT15-M1-R30	40	14	75	202600	202600	204800	0.00	12.68	202600	203370	0.00	12.52
OT16-M1-R10	48	16	35	224640	224640	227038	0.00	18.04	224640	228216	0.00	18.11
OT16-M1-R30	48	16	35	151520	151520	154788	0.00	18.41	152520	154870	0.66	17.77
OT18-M1-R10	48	16	75	453270	453270	454190	0.00	17.57	453270	454159	0.00	16.87
OT18-M1-R30	48	16	75	279310	280310	284051	0.36	18.19	279310	280765	0.00	14.34
OT19-M1-R10	56	18	35	293570	293670	295388	0.03	23.04	293570	295283	0.00	19.45
OT19-M1-R30	56	18	35	201780	201780	203901	0.00	19.47	202380	203451	0.30	19.39
OT21-M1-R10	56	18	75	603720	604020	605281	0.05	19.51	603920	605347	0.03	19.48
OT21-M1-R30	56	18	75	378360	378960	385100	0.16	20.00	378960	381822	0.16	19.54
OT22-M1-R10	64	20	35	377700	378550	380096	0.23	26.55	378560	379333	0.23	25.39
OT22-M1-R30	64	20	35	263850	265760	267010	0.72	26.49	265460	267546	0.61	25.42
OT24-M1-R10	64	20	75	756400	758400	764872	0.26	26.63	758400	769791	0.26	25.49
OT24-M1-R30	64	20	75	457400	489600	489600	7.04	26.63	489600	489600	7.04	25.66
OT25-M1-R10	72	22	35	464300	466860	469943	0.55	34.38	467710	470047	0.73	32.88
OT25-M1-R30	72	22	35	316630	316730	319823	0.03	34.38	316720	322238	0.03	32.92
OT27-M1-R10	72	22	75	953260	953760	957295	0.05	34.43	954040	955311	0.08	33.04
OT27-M1-R30	72	22	75	538560	538560	540660	0.00	34.48	538560	539260	0.00	33.25
OT28-M1-R10	80	24	35	564240	567850	570848	0.64	43.11	569150	571622	0.87	41.24
OT28-M1-R30	80	24	35	345600	345600	357523	0.00	43.09	346600	353812	0.29	41.22
OT30-M1-R10	80	24	75	1130160	1131160	1136370	0.09	43.22	1130160	1134258	0.00	41.45
OT30-M1-R30	80	24	75	587520	588520	602741	0.17	43.28	589520	592160	0.34	41.60
OT31-M1-R10	88	26	35	644280	669560	674677	3.92	52.72	665290	678238	3.26	50.61
OT31-M1-R30	88	26	35	374400	391900	405774	4.67	52.89	384400	403840	2.67	50.60
OT33-M1-R10	88	26	75	1272940	1283860	1302577	0.86	52.88	1273140	1279511	0.02	50.80
OT33-M1-R30	88	26	75	680280	697170	722271	2.48	53.29	682680	693641	0.35	50.95
OT34-M1-R10	96	28	35	736240	764690	777006	3.86	63.42	755150	771282	2.57	60.79
OT34-M1-R30	96	28	35	442400	466100	482306	5.36	63.38	465590	479853	5.24	60.67
OT36-M1-R10	96	28	75	1514880	1528600	1535075	0.91	63.68	1521750	1525689	0.45	61.04
OT36-M1-R30	96	28	75	828120	868790	899516	4.91	63.94	846230	860593	2.19	61.31
OT37-M1-R10	56	12	35	196560	196760	198081	0.10	13.64	197410	198731	0.43	12.98
OT37-M1-R30	56	12	35	136340	136530	138596	0.14	13.63	136340	138873	0.00	12.98
OT39-M1-R10	56	12	75	402480	402680	403769	0.05	13.63	402580	403094	0.02	13.06
OT39-M1-R30	56	12	75	252240	252240	258419	0.00	13.64	252540	253836	0.12	13.10
OT40-M1-R10	64	12	35	227600	227900	228926	0.13	16.05	227700	228777	0.04	15.33
OT40-M1-R30	64	12	35	158370	158670	160881	0.19	16.10	159270	162308	0.57	15.33
OT42-M1-R10	64	12	75	453840	455840	458921	0.44	16.03	454840	460168	0.22	15.40
OT42-M1-R30	64	12	75	274440	293760	293760	7.04	16.11	293760	293760	7.04	15.47
OT43-M1-R10	72	12	35	252600	253510	254870	0.36	18.94	253250	255286	0.26	18.09
OT43-M1-R30	72	12	35	172700	172740	174488	0.02	18.93	173750	175644	0.61	18.06
OT45-M1-R10	72	12	75	519960	520060	521617	0.02	18.99	520260	522150	0.06	18.15
OT45-M1-R30	72	12	75	293760	293760	294560	0.00	19.02	293760	294560	0.00	18.25
OT46-M1-R10	80	12	35	279630	281390	283370	0.63	21.82	281290	283382	0.59	20.87
OT46-M1-R30	80	12	35	181830	184860	187654	1.67	21.88	181860	188434	0.02	20.86
OT48-M1-R10	80	12	75	565080	566080	570999	0.18	21.89	565080	569174	0.00	20.94
OT48-M1-R30	80	12	75	293760	293760	304363	0.00	21.89	293760	297850	0.00	20.98
OT49-M1-R10	88	12	35	297360	307800	312568	3.51	24.80	305160	313057	2.62	23.62
OT49-M1-R30	88	12	35	172800	187600	191720	8.56	24.77	180800	191631	4.63	23.60
OT51-M1-R10	88	12	75	587880	595180	600972	1.24	24.86	590280	593622	0.41	23.71
OT51-M1-R30	88	12	75	314160	319160	336013	1.59	24.83	316460	321002	0.73	23.75
OT52-M1-R10	96	12	35	315660	321960	328831	2.00	27.63	319760	328278	1.30	26.39
OT52-M1-R30	96	12	35	189700	198400	205128	4.59	27.73	196270	203043	3.46	26.26
OT54-M1-R10	96	12	75	647400	652110	656523	0.73	27.74	651940	653574	0.70	26.45
OT54-M1-R30	96	12	75	352800	369100	381918	4.62	27.76	359240	371155	1.83	26.54

TABLE 3. Computational results for PMX crossover and three mutation operators.

		Insert			Swap			Inverse		
instance	opt	best	gap	time	best	gap	time	best	gap	time
OT1-M1-R10	22950	22950	0.00	0.99	22950	0.00	1.00	22950	0.00	1.00
OT1-M1-R30	19150	19150	0.00	1.02	19150	0.00	1.00	19150	0.00	1.00
OT3-M1-R10	47160	47160	0.00	1.06	47160	0.00	1.00	47160	0.00	1.02
OT3-M1-R30	35520	35520	0.00	1.02	35520	0.00	1.00	35520	0.00	1.01
OT4-M1-R10	41380	41380	0.00	1.94	41380	0.00	1.93	41380	0.00	1.95
OT4-M1-R30	34620	34620	0.00	2.00	34620	0.00	1.92	34620	0.00	2.03
OT6-M1-R10	84340	84340	0.00	2.00	84340	0.00	1.94	84340	0.00	2.07
OT6-M1-R30	60660	60660	0.00	1.99	60660	0.00	1.95	60660	0.00	1.96
OT7-M1-R10	73870	73870	0.00	4.37	74260	0.53	4.31	73870	0.00	4.36
OT7-M1-R30	55950	55950	0.00	4.40	55950	0.00	4.47	55950	0.00	4.37
OT9-M1-R10	148310	148310	0.00	4.49	148310	0.00	4.45	148310	0.00	4.55
OT9-M1-R30	100490	100490	0.00	4.48	100490	0.00	4.41	100490	0.00	4.44
OT10-M1-R10	118540	118540	0.00	6.83	118920	0.32	7.83	118540	0.00	7.57
OT10-M1-R30	91820	91820	0.00	6.13	91820	0.00	7.73	91820	0.00	8.52
OT12-M1-R10	242530	242530	0.00	6.24	242530	0.00	7.62	242530	0.00	8.98
OT12-M1-R30	163690	163690	0.00	6.25	163690	0.00	7.61	163690	0.00	8.43
OT13-M1-R10	173850	175180	0.77	10.00	174250	0.23	12.15	173850	0.00	12.81
OT13-M1-R30	118580	118580	0.00	9.99	119620	0.88	12.20	118580	0.00	13.56
OT15-M1-R10	344030	344030	0.00	10.04	344030	0.00	12.47	344030	0.00	13.31
OT15-M1-R30	202600	202600	0.00	10.05	202600	0.00	12.08	202600	0.00	12.52
OT16-M1-R10	224640	231580	3.09	14.48	235710	4.93	17.42	224640	0.00	18.11
OT16-M1-R30	151520	154320	1.85	14.54	155720	2.77	17.80	152520	0.66	17.77
OT18-M1-R10	453270	453270	0.00	14.60	453950	0.15	17.95	453270	0.00	16.87
OT18-M1-R30	279310	282220	1.04	14.66	279820	0.18	17.91	279310	0.00	14.34
OT19-M1-R10	293570	301310	2.64	19.82	302180	2.93	24.31	293570	0.00	19.45
OT19-M1-R30	201780	205480	1.83	19.85	202990	0.60	24.36	202380	0.30	19.39
OT21-M1-R10	603720	604640	0.15	19.96	604540	0.14	24.29	603920	0.03	19.48
OT21-M1-R30	378360	380560	0.58	20.04	378360	0.00	24.00	378960	0.16	19.54
OT22-M1-R10	377700	383870	1.63	25.95	385080	1.95	31.62	378560	0.23	25.39
OT22-M1-R30	263850	266440	0.98	25.97	269740	2.23	31.92	265460	0.61	25.42
OT24-M1-R10	756400	763320	0.91	26.14	765400	1.19	32.49	758400	0.26	25.49
OT24-M1-R30	457400	489600	7.04	26.30	489600	7.04	32.38	489600	7.04	25.66
OT25-M1-R10	464300	478140	2.98	33.68	479120	3.19	41.53	467710	0.73	32.88
OT25-M1-R30	316630	319130	0.79	34.02	323010	2.01	42.82	316720	0.03	32.92
OT27-M1-R10	953260	955720	0.26	33.79	953850	0.06	42.58	954040	0.08	33.04
OT27-M1-R30	538560	538560	0.00	34.02	538560	0.00	43.33	538560	0.00	33.25
OT28-M1-R10	564240	589160	4.42	42.15	578760	2.57	51.52	569150	0.87	41.24
OT28-M1-R30	345600	356600	3.18	42.27	354000	2.43	51.59	346600	0.29	41.22
OT30-M1-R10	1130160	1138160	0.71	42.44	1130160	0.00	51.88	1130160	0.00	41.45
OT30-M1-R30	587520	587520	0.00	42.63	587520	0.00	52.35	589520	0.34	41.60
OT31-M1-R10	644280	694360	7.77	51.75	686160	6.50	63.48	665290	3.26	50.61
OT31-M1-R30	374400	379400	1.34	51.79	393640	5.14	63.65	384400	2.67	50.60
OT33-M1-R10	1272940	1275740	0.22	52.09	1279760	0.54	63.37	1273140	0.02	50.80
OT33-M1-R30	680280	696750	2.42	52.16	683860	0.53	51.15	682680	0.35	50.95
OT34-M1-R10	736240	817740	11.07	62.06	813240	10.46	60.57	755150	2.57	60.79
OT34-M1-R30	442400	473830	7.10	62.20	478310	8.12	60.55	465590	5.24	60.67
OT36-M1-R10	1514880	1526360	0.76	62.59	1526530	0.77	60.89	1521750	0.45	61.04
OT36-M1-R30	828120	849170	2.54	62.79	841150	1.57	61.09	846230	2.19	61.31
OT37-M1-R10	196560	199670	1.58	13.30	199760	1.63	12.95	197410	0.43	12.98
OT37-M1-R30	136340	137540	0.88	13.30	138150	1.33	12.92	136340	0.00	12.98
OT39-M1-R10	402480	404800	0.58	13.40	403140	0.16	13.02	402580	0.02	13.06
OT39-M1-R30	252240	253440	0.48	13.40	254040	0.71	13.03	252540	0.12	13.10
OT40-M1-R10	227600	231090	1.53	15.69	233880	2.76	15.27	227700	0.04	15.33
OT40-M1-R30	158370	163860	3.47	15.65	162480	2.60	15.27	159270	0.57	15.33
OT42-M1-R10	453840	461200	1.62	15.80	458850	1.10	15.36	454840	0.22	15.40
OT42-M1-R30	274440	293760	7.04	15.91	293760	7.04	15.47	293760	7.04	15.47
OT43-M1-R10	252600	259570	2.76	18.49	258800	2.45	17.99	253250	0.26	18.09
OT43-M1-R30	172700	177720	2.91	18.49	175810	1.80	18.03	173750	0.61	18.06
OT45-M1-R10	519960	521450	0.29	18.60	520060	0.02	18.11	520260	0.06	18.15
OT45-M1-R30	293760	293760	0.00	18.67	293760	0.00	18.19	293760	0.00	18.25
OT46-M1-R10	279630	288120	3.04	21.34	287350	2.76	20.77	281290	0.59	20.87
OT46-M1-R30	181830	186650	2.65	21.37	188310	3.56	20.77	181860	0.02	20.86
OT48-M1-R10	565080	567830	0.49	21.43	566930	0.33	20.87	565080	0.00	20.94
OT48-M1-R30	293760	293760	0.00	21.53	293760	0.00	20.90	293760	0.00	20.98
OT49-M1-R10	297360	322220	8.36	24.13	319000	7.28	23.50	305160	2.62	23.62
OT49-M1-R30	172800	192460	11.38	24.13	184390	6.71	23.55	180800	4.63	23.60
OT51-M1-R10	587880	591980	0.70	24.29	592080	0.71	23.62	590280	0.41	23.71
OT51-M1-R30	314160	321410	2.31	24.41	314760	0.19	23.69	316460	0.73	23.75
OT52-M1-R10	315660	346490	9.77	26.90	337820	7.02	26.24	319760	1.30	26.39
OT52-M1-R30	189700	204210	7.65	26.92	201060	5.99	26.26	196270	3.46	26.26
OT54-M1-R10	647400	653950	1.01	27.05	653850	1.00	26.37	651940	0.70	26.45
OT54-M1-R30	352800	369970	4.87	27.22	358500	1.62	26.44	359240	1.83	26.54

4. Conclusion

In this paper, we presented a genetic algorithm by applying two crossover operators PMX, OX and three mutation operators Insertion, Inverse and Swap for solving the Band Collocation Problem. We tested all implementations of the GA using the problem instances with known optimal solutions taken from the BCPLib. We observed that the GA using PMX and inverse operators gave better results. In the literature, there is no any relevant work solving the BCP instances with known optimal solutions to compare our results. However, computational experiments show that the proposed GA is satisfactory.

As a future work, it may be interesting to test the behaviour of the GA with some local search methods such as 2 -Opt, 3 -Opt and λ-interchange. Our future plan is to develop other metaheuristic algorithm mentioned in Section 2.2.

Acknowledgement

The authors would like to thank the anonymous referees for their valuable comments that considerably improved the presentation of the paper. This paper is supported by the Scientific and Technological Research Council of Turkey-TUBiTAK 3001 Project (Project No:114F073).

References

[1] Babayev, D. A., Bell, G. I. and Nuriyev, U. G., (2009), The Bandpass Problem: Combinatorial Optimization and Library of Problems, Journal of Combinatorial Optimization, 18, pp. 151-172.
[2] Chen, Z. Z. and Wang, L., (2012), An improved approximation algorithm for the bandpass-2 problem, In Proceedings of the 6th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2012), LNCS, 7402, 185-196.
[3] Dorigo, M., (1992), Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di Milano.
[4] Gen M., (2006), Genetic Algorithms and Their Applications, in Springer Handbook of Engineering Statistics (eds. P. Hoang), pp. 749-773.
[5] Goralski, W. J., (1997), SONET, a Guide to Synchronous Optical Networks, McGraw-Hill, New York.
[6] Gursoy, A., Tekin, A., Keserlioglu, S., Kutucu, H., Kurt M. and Nuriyev, U., (2017), An improved binary integer programming model of the Band Collocation problem, Journal of Modern Technology and Engineering, 2(1), pp. 34-42.
[7] Holland, J. H., (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press.
[8] Huang, L., Tong, W., Goebel, R., Liu, T. and Lin, G., (2015), A 0.5358-Approximation for Bandpass-2, Journal of Combinatorial Optimization, 30, pp. 612-626.
[9] Kennedy, J. and Eberhart, R. C., (1985), Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, 4, pp. 1942-1948.
[10] Kirkpatrick, S., Gelatt Jr, C.D. and Vecchi, M.P., (1983), Optimization by Simulated Annealing, Science, 220, pp. 671-680.
[11] Laguna, M., Sanchez-Oro, J., Marti, R. and Duarte, A., (2015), Scatter Search for the Bandpass Problem, 27th European Conference on Operational Research, July.
[12] Li, Z. and Lin, G., (2011), The Three Column Bandpass Problem is Solvable in Linear Time, Theor. Comput. Sci., 412, pp. 281-299.
[13] Nuriyev, U., Kutucu, H., Kurt, M. and Gursoy, A., (2015), The Band Collocation Problem in Telecommunication Networks, Book of Abstracts of the 5th International Conference on Control and Optimization with Industrial Applications, pp. 362-365, Baku, Azerbaijan, August 27-29.
[14] Nuriyev, U., Kurt, M., Kutucu, H. and Gursoy A., (2015), The Band Collocation Problem and Its Combinatorial Model, Abstract Book of the International Conference Matematical and Computational Modelling in Science and Technology, pp. 140-142, Izmir, Turkey, August 02-07.
[15] Nuriyev U., Kurt M., Kutucu, H. and Gursoy, A., (2015), Band Collocation Problem Online Library (BCPLib): http://fen.ege.edu.tr/ arifgursoy/bps/, (2015) (LAD: December 6, 2017).
[16] Nuriyeva, F., (2016), On a generalized sequential partially covering problem, Appl. Comput. Math., 15(2), pp. 239-242.
[17] Ramaswami, R., Sivarajan, K. and Sasaki, G., (1998), Optical Networks: A Practical Perspective. Morgan Kaufmann, San Francisco.
[18] Tong, W., Goebel, R., Liu, T. and Lin, G., (2014) Approximation Algorithms for the Maximum Multiple RNA Interaction Problem, Theoretical Computer Science, 556, pp. 63-70.

Hakan Kutucu received one of his master degree from International Computer Institute in 2004 and the other from the Department of Mathematics at Ege University in 2008. He completed his doctoral programme in the Department of Mathematics at Ege University in 2011. At present, he is focusing on network design problems, combinatorial optimization and mathematical modelling. He has been working in the Department of Computer Engineering at Karabuk University as an Assistant Professor since 2013.

Arif Gursoy received his master degree from the Department of Mathematics at Ege University in 2009. He also completed his doctoral programme in the same Department at Ege University in 2012. He is inteested in combinatorial optimization, mathematical modelling and soft computing. He has been working in the Department of Mathematics at Ege University as an Assistant Professor since 2013.

Mehmet Kurt received his master degree from the Department of Mathematics at Ege University in 2004. He also completed his doctoral programme in the same department at Ege University in 2010. He is inteested in combinatorial optimization, mathematical modelling, graph theory and its applications.

Urfat Nuriyev received his master degree from Azerbaijan State University in 1976, his doctoral degree from Cybernetic Institute of Academy of Sciences of Ukraine in 1983. He gave his Associate Professor thesis in 1989. Nuriyev, who won title of professor in 2005, has been interested in operation researches, combinatorial optimization and computer mathematics. He has been working in the Department of Mathematics at Ege University since 1997.

[^0]: ${ }^{1}$ Department of Computer Engineering, Karabuk University, Karabuk, Turkey. e-mail: hakankutucu@karabuk.edu.tr; ORCID: http://orcid.org/0000-0001-7144-7246.
 ${ }^{2}$ Corresponding Author, Department of Mathematics, Ege University, Izmir, Turkey. e-mail: arif.gursoy@ege.edu.tr; ORCID: http://orcid.org/0000-0002-0747-9806.
 ${ }^{3}$ Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey. Izmir Bahcesehir Science and Technology High School, Izmir, Turkey. e-mail: mehmet.kurt@eng.bau.edu.tr; ORCID: http://orcid.org/0000-0002-7308-5661.
 ${ }^{4}$ Department of Mathematics, Ege University, Izmir, Turkey. e-mail: urfat.nuriyev@ege.edu.tr; ORCID: http://orcid.org/0000-0002-3337-5859.
 § Manuscript received: December 11, 2017; accepted: March 22, 2018. TWMS Journal of Applied and Engineering Mathematics, Vol.9, No. 4 © Işık University, Department of Mathematics 2019; all rights reserved.

