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ON THE SOLUTION APPROACHES OF THE BAND COLLOCATION

PROBLEM

H. KUTUCU1, A. GURSOY2, M. KURT3, U. NURIYEV4, §

Abstract. This paper introduces the first genetic algorithm approach for solving the
Band Collocation Problem (BCP) which is a combinatorial optimization problem that
aims to reduce the hardware costs on fiber optic networks. This problem consists of
finding an optimal permutation of rows of a given binary rectangular matrix representing
a communication network so that the total cost of covering all 1’s by Bands is minimum.
We present computational results which indicate that we can obtain almost optimal
solutions of moderately large size instances (up to 96 rows and 28 columns) of the BCP
within a few seconds.

Keywords: Band Collocation Problem, Dense Wavelength Division Multiplexing, Meta-
heuristic Algorithms
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1. Introduction

We consider a communication network in which a service provider or a source transmits
data stream including m data packages to n sinks. Modern optic cable using Dense
Wavelength Division Multiplexing (DWDM) technology can carry data stream coded in a
given m different wavelengths [5, 17]. DWDM uses a multiplexer at the service provider to
join the several signals (data) together, and a demultiplexer at the sink to split them apart.
Add/Drop Multiplexers (ADM) installed at sinks facilitate flows on some wavelengths to
exit the cable according to their paths.

In Figure 1, a service provider transmits a data stream at different wavelengths of light
simultaneously. Sink stations have special cards to control these wavelengths. Sink s1
requests the data carried on wavelengths λ1, λ2, λ4 and λ5; sink s2 requests the data
carried on wavelengths λ1, λ3, λ5 and λ6; sink s3 requests the data carried on wavelengths
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λ1, λ3, λ5 and λ6; sink s4 requests the data carried on wavelengths λ1 and λ5 and finally
sink s5 requests the data carried on wavelengths λ1 and λ4. This is described by a binary
matrix A = aij : if data carried on wavelength i = 1, ...,m is requested by sink j = 1, ..., n
then aij = 1 otherwise aij = 0.

Figure 1. Cards in ADMs needed for each wavelength.

Let c0 be the cost of one card controlling only one wavelength. In this case, the total
cost of the cards is 15× c0 since 15 cards are used in the above network.

In DWDM networks, there are some cards that are able to control a group of consecutive
(adjacent) wavelengths as well as there are cards controlling only one single wavelength.
We call this group Band. For instance, there are cards controlling two, four or eight
wavelengths, that is, cards controlling Bands of length two, four or eight. The length of
these Bands are generally power of two. We represent the length 2k of cards as Bk-Band.
Naturally, ck denotes the cost of Bk-Band.

Network hardware vendors generally price the cards so that a card cannot be more
expensive than two cards in a lower level. In this regard, the following condition always
holds:

2× ck > ck+1. (1)

We may handle the communication from the source to five sinks in Figure 2 using cards
of different lengths instead of using 15 cards of length one. If we use four cards for B1-Band
and seven cards for B0-Band shown in Figure 2, then the total cost would be 4×c1+7×c0.
By the condition (1), 4× c1 + 7× c0 < 15× c0.

Figure 2. The positions of B0-Band and B1-Band cards.

In DWDM networks, it is also possible to arrange the order of the wavelengths. Re-
ordering the wavelengths may provide us to decrease the cost and the number of cards used
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in the ADMs. If we reorder the wavelengths as in Figure 3, then two B2-Bands and four
B1-Bands can be used to group of consecutive wavelengths. The cost of this configuration
is 2× c2 + 4× c1 which is less than 4× c1 + 7× c0 by the condition (1).

Figure 3. New Bk-Bands after reordering wavelengths in Figure 1.

The Band Collocation Problem is defined formally as follows: Let A = (aij) be a binary
matrix of dimension m×n which represents a communication traffic where m is the number
of wavelengths and n is the number of sinks. Let 2k be the length of Bk-Band and ck
be the cost of Bk-Band, where (k = 0, 1, . . . , blog2mc). Each one in a column have to
be included (or covered) in (or by) exactly one band. The BCP consists of finding an
optimal permutation of rows of the matrix A that minimizes the total cost of Bk-Bands
in all columns.

The BCP is indeed an extended version of the Bandpass Problem (BP) introduced and
formulated mathematically by Babayev et al. in 2009 [1]. The BCP was first proposed
and modeled combinatorially by Nuriyev et al. in 2015 [14]. Then, Nuriyev et al. gave a
mathematical formulation of the BCP as a binary integer nonlinear programming model
[13]. Recent changes in ADM technology made the BP ineffective. In the BP, the length
of consecutive wavelengths which are controlled by special cards are defined as a fixed
number B. However, the bandpasses may be in different sizes. Furthermore, in the BP,
each wavelength existing in a bandpass B corresponding to a fixed Bk-Band has to carry
a data for a sink. But, the technology allows an ADM to drop a wavelength even if it
does not carry any information. In the BCP, a band may contain zero elements. Besides,
the BP ignores costs of the programmable cards. For the state of the art techniques, the
reader can refer to [14], [6] and [13].

The BP is studied by several researcher during the last decade. Li and Lin showed that
the three-column BP is solvable in linear time [12].

Chen and Wang improved an approximation algorithm for the BP when B = 2 using
two maximum weight matchings [2]. Their algorithm achieves a performance ratio of
220
117 ≈ 1.8805. Afterwards, Huang et al. proposed an improvement to partition a 4-
matching into a number of candidate sub-matchings, each of which can be used to extend
the first maximum weight matching. This last improved approximation algorithm in the
literature has a worst-case performance ratio of 128

70−
√
2
≈ 1.8663 [8].

Laguna et al. approached the BP with a scatter search procedure which is a population-
based meta-heuristic framework [11]. In [18], Tong et al. used the BP to prove that
the general multiple RNA interaction prediction problem, either allowing or disallowing
pseudo-knot-like interactions, is NP-hard.
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The paper is organized as follows: In Section 2, we first analyze how to solve the BCP.
We present a dynamic programming algorithm to find the cost of the current configuration
of the wavelengths ordering. This will be used as the fitness function of genetic algorithm.
In Section 3, we present some computational results for the problem and finally, give some
concluding remarks in Section 4.

2. Solution Analysis of the BCP

Solving the BCP includes two stages. The first one is finding the minimum total cost to
cover all 1’s in all columns using bands in the current permutation of the matrix. Covering
1’s in a column is independent from the other columns. Therefore, the numbers of Bk-
bands used and their coordinates would be determined for each column separately. Let us
consider the second column of the matrix representing a network traffic in Figure 4.

Figure 4. A binary matrix representing the network traffic.

In what follows, there are just three of the alternatives to cover 1’s in this column:

• using four B0 item in Figure 5(a),
• using two B0 and one B1 in Figure 5(b),
• using one B0 and one B2 in Figure 5(c).

We note that a zero element can be included by any Bk-Band.

Figure 5. Some combinations of Bk-Bands used in column 2.

The costs of Bk bands used in (a), (b) and (c) are 4 × c0, 2 × c0 + c1 and c0 + c2
respectively. Naturally, we choose the one yielding the minimum cost.

When the number of rows and Bk-Bands increase, the number of combinations will
increase exponentially. A brute-force technique is not reasonable. In [16], Nuriyeva im-
prove a dynamic programming algorithm to find the coordinates of Bk-Bands and also the
minimum cost to cover all 1’s of the underlying matrix. We use this algorithm given in
Section 2.1 for the first stage.

The second stage of solving the BCP is obtaining an optimal permutation of rows of the
matrix that minimizes the total cost of Bk-Bands in all columns. We improve a genetic
algorithm in Section 2.2 which uses the first stage as the fitness function.
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2.1. The Subproblem of the BCP and Its Exact Solution. We consider each column
of the traffic matrix as a sequence. The subproblem as the first stage for solving the BCP
is defined as follows:

Let Q[m] be a sequence with m elements such that Q(i) ∈ {0, 1}, i = 1, 2, . . . ,m.
Let Bk-Band be a cover with 2k elements and ck be the cost of Bk-Band , where k =
0, 1, ..., blog2mc.

The cost function f [Bk(Q(j), Q(j − 1), . . . , Q(j − 2k + 1))] to cover the elements of
Bk : Q(j), Q(j − 1), ..., Q(j − 2k + 1), where j = 1, 2, ...,m, is defined as follows:

f [Bk(Q(j), . . . , Q(j−2k+1))] =


0, if the elements covered by Bk are equal to 0, i.e.,

Q(j) = Q(j − 1) = . . . = Q(j − 2k + 1) = 0
ck, otherwise.

The aim is to cover all nonzero elements in Q[m] with a minimum cost. Algorithm
1 finds the set of covered elements of Bk-Bands with a minimum cost. This dynamic
programming algorithm runs in O(mnlog2m) time, where m is the number of rows and n
is the number of columns [16].

Algorithm 1: Dynamic Algorithm finds the minimum cost for a given traffic
matrix.
Data: A binary matrix A[m,n] and costs ck of Bk-Bands for k = 0, 1, ..., blog2mc
Result: The coordinates of Bk-Bands in each column and the total cost

1: for column = 1 to n do
2: for j = 1 to m do
3: Q[j] = A[j, column]
4: end for
5: R0 = 0, E0 = ∅
6: R1 = f [B0(Q(1))] + R0

7: if Q(1) = 0 then
8: E1 = ∅
9: else

10: E1 = {1}
11: end if
12: for j = 2 to m do
13: k = blog2jc
14: Rj = min{f [B0(Q(j))] + Rj−20 , f [B1(Q(j), Q(j − 1))] + Rj−21 ,

. . . , f [Bk(Q(j), Q(j − 1), . . . , Q(j − 2k + 1))] + Rj−2k}
15: Ej = argminelementsRj {the covered elements which gives the minimum value for Rj}
16: end for

Coordinates[column]= Em

17: Total Cost = Total Cost + Rm

18: end for

2.2. Metaheuristic Solution Approaches of the BCP. Due to the complexity of
combinatorial optimization problems, metaheuristic approaches have increased the interest
of researchers in the last four decades. The leading metaheuristic techniques are Genetic
Algorithm (GA), Simulated Annealing (SA), Particular Swarm Optimization (PSO), Ant
Colony Optimization (ACO) and Tabu Search (TS) proposed in [7], [10], [9], and [3],
respectively. In this section, we present the first genetic algorithm to solve the BCP.
In the genetic algorithm, a number of genes creates a chromosome (individual), and a
number of chromosomes create the population pool. New individuals are produced by
crossover and mutation operators. Then, the next generations are built using various
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selection methods from the union of old and new individuals until a termination criterion
is satisfied.

In our GA, individuals (solutions) are represented as permutations of rows (integers)
of the traffic matrix A. The general scheme of the GA is presented in pseudocode in
Algorithm 2. The fitting value of an individual is the minimum band cost calculated in
line 3 by Algorithm 1. Two parents are chosen using Binary Tournament Selection in line
6 at each generation. The crossover and mutation operators are applied to the individuals
in lines 8 and 9, respectively, with specified probabilities. Finally, the offspring is/are
inserted into the population (line 11) only if its/their fitness value is smaller than that of
any parent in the current population (elitist replacement). The algorithm stops when a
priori predetermined maximum number of generations is reached.

Algorithm 2: Pseudocode of the genetic algorithm for the BCP.

Data: A binary matrix A[m,n], costs ck of Bk-Bands for k = 0, 1, ..., blog2mc and
genetic algorithm parameters.

Result: An optimal permutation of rows of the matrix that minimizes the total
cost of Bk-Bands.

1: Set iteration number t = 1;
2: Initialize the population P randomly;
3: Evaluate the population according to fitness value f(P );
4: Sort the population in increasing order of fitnes;
5: while termination condition is not met do
6: t = t+ 1;
7: Select parents from the current population by binary tournament selection;
8: Crossover the selected chromosomes according to cr;
9: Mutate the selected chromosomes according to mr;

10: Evaluate new individuals;
11: Insert offspring into the population by the Elitism strategy;
12: end while
13: Return the row order having the best fitness value;

We use two crossover operators Partialy-mapped crossover (PMX) and Order crossover
(OX) [4]. In examples of Figure 6 and Figure 7, all parents and offspring have 9-gene
length. The examples in Figure 6 show how PMX and OX construct two offspring from
two parents (chromosomes). In this figure, Pi and Oi (i = 1, 2) are called parents and
offspring, respectively. The mutation consists in applying three different mutation methods
that are Insertion, Swap and Inverse [4]. They are illustrated in Figure 7.

3. Computational Experiments

Our genetic algorithm has been implemented in C++ and tested on i7-5600U machine
with a 2.60 GHz processor and 8GB RAM with a test suite composed by instances of
the BCPLib [15]. 72 problem instances with known optimal solutions are chosen. We
performed 10 independent runs to get reliable statistical results. We listed in Table 1 the
parameters used in Algorithm 2 in all our tests. We implemented the genetic algorithm
according to six combinations of two crossover and three mutation operators discussed
before.

We presented the results of 72 problem instances in this paper. Besides, due to the
limited space, we showed the computational results with just the inverse mutation and OX,
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Figure 6. An example of two crossover operators.

Figure 7. An example of three mutation operators.

PMX crossover methods. The results of the other mutation operators (insertion and swap)
can be accessed at http://fen.ege.edu.tr/~arifgursoy/bps/BCP_Large_Tables.pdf.
In Table 2, m is the number of rows, n is the number of columns, d is the density of
non-zero elements of the matrix in %, Opt is the optimal value of the problem instance
(matrix), Best is the best value obtained over 10 runs, Avg is the average value obtained
over 10 runs, Gap is the relative error (in %) between the optimal value and the best
value, Time is the average CPU time in seconds.

The computational results which are presented in Table 3 show that the solutions ob-
tained using PMX crossover are better than using OX crossover for the inverse mutation
operator. We compare three mutation operators using PMX operator in Table 3. The in-
verse mutation operator outperforms insertion and swap operators. The genetic algorithm
with the inverse operator and PMX crossover has solved to optimality 30 instances out of
72 and CPU time varies from 1 second to 61 seconds.

Table 1. Parameters used in the GA.

Population size 200 Individuals
Selection of parents Binary Tournament Selection
Crossover PMX, OX
Mutation Insertion, Swap, Inverse
Probability of crossover (cr) 0.9
Probability of mutation (mr) 0.3
Termination condition 25000 Generations

http://fen.ege.edu.tr/~arifgursoy/bps/BCP_Large_Tables.pdf
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Table 2. Computational results with inverse mutation and OX, PMX
crossover methods.

OX PMX
Instance m n d Opt Best Ave gap Time Best Ave Gap Time
OT1-M1-R10 12 6 35 22950 22950 22969 0.00 1.00 22950 22988 0.00 1.00
OT1-M1-R30 12 6 35 19150 19150 19150 0.00 0.99 19150 19150 0.00 1.00
OT3-M1-R10 12 6 75 47160 47160 47160 0.00 1.00 47160 47160 0.00 1.02
OT3-M1-R30 12 6 75 35520 35520 35520 0.00 1.05 35520 35520 0.00 1.01
OT4-M1-R10 16 8 35 41380 41380 41380 0.00 1.98 41380 41390 0.00 1.95
OT4-M1-R30 16 8 35 34620 34620 34620 0.00 2.16 34620 34650 0.00 2.03
OT6-M1-R10 16 8 75 84340 84340 84340 0.00 2.05 84340 84340 0.00 2.07
OT6-M1-R30 16 8 75 60660 60660 60660 0.00 2.05 60660 60660 0.00 1.96
OT7-M1-R10 24 10 35 73870 73870 74174 0.00 4.41 73870 74019 0.00 4.36
OT7-M1-R30 24 10 35 55950 55950 56050 0.00 4.32 55950 56297 0.00 4.37
OT9-M1-R10 24 10 75 148310 148310 148652 0.00 4.33 148310 148310 0.00 4.55
OT9-M1-R30 24 10 75 100490 100490 100830 0.00 4.31 100490 100590 0.00 4.44
OT10-M1-R10 32 12 35 118540 118540 118569 0.00 7.52 118540 118651 0.00 7.57
OT10-M1-R30 32 12 35 91820 91820 91905 0.00 7.52 91820 91986 0.00 8.52
OT12-M1-R10 32 12 75 242530 242530 242530 0.00 7.53 242530 242530 0.00 8.98
OT12-M1-R30 32 12 75 163690 163690 164100 0.00 7.94 163690 163861 0.00 8.43
OT13-M1-R10 40 14 35 173850 174050 174651 0.12 12.28 173850 174665 0.00 12.81
OT13-M1-R30 40 14 35 118580 118580 120778 0.00 12.22 118580 120592 0.00 13.56
OT15-M1-R10 40 14 75 344030 344030 344711 0.00 12.56 344030 344753 0.00 13.31
OT15-M1-R30 40 14 75 202600 202600 204800 0.00 12.68 202600 203370 0.00 12.52
OT16-M1-R10 48 16 35 224640 224640 227038 0.00 18.04 224640 228216 0.00 18.11
OT16-M1-R30 48 16 35 151520 151520 154788 0.00 18.41 152520 154870 0.66 17.77
OT18-M1-R10 48 16 75 453270 453270 454190 0.00 17.57 453270 454159 0.00 16.87
OT18-M1-R30 48 16 75 279310 280310 284051 0.36 18.19 279310 280765 0.00 14.34
OT19-M1-R10 56 18 35 293570 293670 295388 0.03 23.04 293570 295283 0.00 19.45
OT19-M1-R30 56 18 35 201780 201780 203901 0.00 19.47 202380 203451 0.30 19.39
OT21-M1-R10 56 18 75 603720 604020 605281 0.05 19.51 603920 605347 0.03 19.48
OT21-M1-R30 56 18 75 378360 378960 385100 0.16 20.00 378960 381822 0.16 19.54
OT22-M1-R10 64 20 35 377700 378550 380096 0.23 26.55 378560 379333 0.23 25.39
OT22-M1-R30 64 20 35 263850 265760 267010 0.72 26.49 265460 267546 0.61 25.42
OT24-M1-R10 64 20 75 756400 758400 764872 0.26 26.63 758400 769791 0.26 25.49
OT24-M1-R30 64 20 75 457400 489600 489600 7.04 26.63 489600 489600 7.04 25.66
OT25-M1-R10 72 22 35 464300 466860 469943 0.55 34.38 467710 470047 0.73 32.88
OT25-M1-R30 72 22 35 316630 316730 319823 0.03 34.38 316720 322238 0.03 32.92
OT27-M1-R10 72 22 75 953260 953760 957295 0.05 34.43 954040 955311 0.08 33.04
OT27-M1-R30 72 22 75 538560 538560 540660 0.00 34.48 538560 539260 0.00 33.25
OT28-M1-R10 80 24 35 564240 567850 570848 0.64 43.11 569150 571622 0.87 41.24
OT28-M1-R30 80 24 35 345600 345600 357523 0.00 43.09 346600 353812 0.29 41.22
OT30-M1-R10 80 24 75 1130160 1131160 1136370 0.09 43.22 1130160 1134258 0.00 41.45
OT30-M1-R30 80 24 75 587520 588520 602741 0.17 43.28 589520 592160 0.34 41.60
OT31-M1-R10 88 26 35 644280 669560 674677 3.92 52.72 665290 678238 3.26 50.61
OT31-M1-R30 88 26 35 374400 391900 405774 4.67 52.89 384400 403840 2.67 50.60
OT33-M1-R10 88 26 75 1272940 1283860 1302577 0.86 52.88 1273140 1279511 0.02 50.80
OT33-M1-R30 88 26 75 680280 697170 722271 2.48 53.29 682680 693641 0.35 50.95
OT34-M1-R10 96 28 35 736240 764690 777006 3.86 63.42 755150 771282 2.57 60.79
OT34-M1-R30 96 28 35 442400 466100 482306 5.36 63.38 465590 479853 5.24 60.67
OT36-M1-R10 96 28 75 1514880 1528600 1535075 0.91 63.68 1521750 1525689 0.45 61.04
OT36-M1-R30 96 28 75 828120 868790 899516 4.91 63.94 846230 860593 2.19 61.31
OT37-M1-R10 56 12 35 196560 196760 198081 0.10 13.64 197410 198731 0.43 12.98
OT37-M1-R30 56 12 35 136340 136530 138596 0.14 13.63 136340 138873 0.00 12.98
OT39-M1-R10 56 12 75 402480 402680 403769 0.05 13.63 402580 403094 0.02 13.06
OT39-M1-R30 56 12 75 252240 252240 258419 0.00 13.64 252540 253836 0.12 13.10
OT40-M1-R10 64 12 35 227600 227900 228926 0.13 16.05 227700 228777 0.04 15.33
OT40-M1-R30 64 12 35 158370 158670 160881 0.19 16.10 159270 162308 0.57 15.33
OT42-M1-R10 64 12 75 453840 455840 458921 0.44 16.03 454840 460168 0.22 15.40
OT42-M1-R30 64 12 75 274440 293760 293760 7.04 16.11 293760 293760 7.04 15.47
OT43-M1-R10 72 12 35 252600 253510 254870 0.36 18.94 253250 255286 0.26 18.09
OT43-M1-R30 72 12 35 172700 172740 174488 0.02 18.93 173750 175644 0.61 18.06
OT45-M1-R10 72 12 75 519960 520060 521617 0.02 18.99 520260 522150 0.06 18.15
OT45-M1-R30 72 12 75 293760 293760 294560 0.00 19.02 293760 294560 0.00 18.25
OT46-M1-R10 80 12 35 279630 281390 283370 0.63 21.82 281290 283382 0.59 20.87
OT46-M1-R30 80 12 35 181830 184860 187654 1.67 21.88 181860 188434 0.02 20.86
OT48-M1-R10 80 12 75 565080 566080 570999 0.18 21.89 565080 569174 0.00 20.94
OT48-M1-R30 80 12 75 293760 293760 304363 0.00 21.89 293760 297850 0.00 20.98
OT49-M1-R10 88 12 35 297360 307800 312568 3.51 24.80 305160 313057 2.62 23.62
OT49-M1-R30 88 12 35 172800 187600 191720 8.56 24.77 180800 191631 4.63 23.60
OT51-M1-R10 88 12 75 587880 595180 600972 1.24 24.86 590280 593622 0.41 23.71
OT51-M1-R30 88 12 75 314160 319160 336013 1.59 24.83 316460 321002 0.73 23.75
OT52-M1-R10 96 12 35 315660 321960 328831 2.00 27.63 319760 328278 1.30 26.39
OT52-M1-R30 96 12 35 189700 198400 205128 4.59 27.73 196270 203043 3.46 26.26
OT54-M1-R10 96 12 75 647400 652110 656523 0.73 27.74 651940 653574 0.70 26.45
OT54-M1-R30 96 12 75 352800 369100 381918 4.62 27.76 359240 371155 1.83 26.54
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Table 3. Computational results for PMX crossover and three mutation operators.

Insert Swap Inverse
instance opt best gap time best gap time best gap time
OT1-M1-R10 22950 22950 0.00 0.99 22950 0.00 1.00 22950 0.00 1.00
OT1-M1-R30 19150 19150 0.00 1.02 19150 0.00 1.00 19150 0.00 1.00
OT3-M1-R10 47160 47160 0.00 1.06 47160 0.00 1.00 47160 0.00 1.02
OT3-M1-R30 35520 35520 0.00 1.02 35520 0.00 1.00 35520 0.00 1.01
OT4-M1-R10 41380 41380 0.00 1.94 41380 0.00 1.93 41380 0.00 1.95
OT4-M1-R30 34620 34620 0.00 2.00 34620 0.00 1.92 34620 0.00 2.03
OT6-M1-R10 84340 84340 0.00 2.00 84340 0.00 1.94 84340 0.00 2.07
OT6-M1-R30 60660 60660 0.00 1.99 60660 0.00 1.95 60660 0.00 1.96
OT7-M1-R10 73870 73870 0.00 4.37 74260 0.53 4.31 73870 0.00 4.36
OT7-M1-R30 55950 55950 0.00 4.40 55950 0.00 4.47 55950 0.00 4.37
OT9-M1-R10 148310 148310 0.00 4.49 148310 0.00 4.45 148310 0.00 4.55
OT9-M1-R30 100490 100490 0.00 4.48 100490 0.00 4.41 100490 0.00 4.44
OT10-M1-R10 118540 118540 0.00 6.83 118920 0.32 7.83 118540 0.00 7.57
OT10-M1-R30 91820 91820 0.00 6.13 91820 0.00 7.73 91820 0.00 8.52
OT12-M1-R10 242530 242530 0.00 6.24 242530 0.00 7.62 242530 0.00 8.98
OT12-M1-R30 163690 163690 0.00 6.25 163690 0.00 7.61 163690 0.00 8.43
OT13-M1-R10 173850 175180 0.77 10.00 174250 0.23 12.15 173850 0.00 12.81
OT13-M1-R30 118580 118580 0.00 9.99 119620 0.88 12.20 118580 0.00 13.56
OT15-M1-R10 344030 344030 0.00 10.04 344030 0.00 12.47 344030 0.00 13.31
OT15-M1-R30 202600 202600 0.00 10.05 202600 0.00 12.08 202600 0.00 12.52
OT16-M1-R10 224640 231580 3.09 14.48 235710 4.93 17.42 224640 0.00 18.11
OT16-M1-R30 151520 154320 1.85 14.54 155720 2.77 17.80 152520 0.66 17.77
OT18-M1-R10 453270 453270 0.00 14.60 453950 0.15 17.95 453270 0.00 16.87
OT18-M1-R30 279310 282220 1.04 14.66 279820 0.18 17.91 279310 0.00 14.34
OT19-M1-R10 293570 301310 2.64 19.82 302180 2.93 24.31 293570 0.00 19.45
OT19-M1-R30 201780 205480 1.83 19.85 202990 0.60 24.36 202380 0.30 19.39
OT21-M1-R10 603720 604640 0.15 19.96 604540 0.14 24.29 603920 0.03 19.48
OT21-M1-R30 378360 380560 0.58 20.04 378360 0.00 24.00 378960 0.16 19.54
OT22-M1-R10 377700 383870 1.63 25.95 385080 1.95 31.62 378560 0.23 25.39
OT22-M1-R30 263850 266440 0.98 25.97 269740 2.23 31.92 265460 0.61 25.42
OT24-M1-R10 756400 763320 0.91 26.14 765400 1.19 32.49 758400 0.26 25.49
OT24-M1-R30 457400 489600 7.04 26.30 489600 7.04 32.38 489600 7.04 25.66
OT25-M1-R10 464300 478140 2.98 33.68 479120 3.19 41.53 467710 0.73 32.88
OT25-M1-R30 316630 319130 0.79 34.02 323010 2.01 42.82 316720 0.03 32.92
OT27-M1-R10 953260 955720 0.26 33.79 953850 0.06 42.58 954040 0.08 33.04
OT27-M1-R30 538560 538560 0.00 34.02 538560 0.00 43.33 538560 0.00 33.25
OT28-M1-R10 564240 589160 4.42 42.15 578760 2.57 51.52 569150 0.87 41.24
OT28-M1-R30 345600 356600 3.18 42.27 354000 2.43 51.59 346600 0.29 41.22
OT30-M1-R10 1130160 1138160 0.71 42.44 1130160 0.00 51.88 1130160 0.00 41.45
OT30-M1-R30 587520 587520 0.00 42.63 587520 0.00 52.35 589520 0.34 41.60
OT31-M1-R10 644280 694360 7.77 51.75 686160 6.50 63.48 665290 3.26 50.61
OT31-M1-R30 374400 379400 1.34 51.79 393640 5.14 63.65 384400 2.67 50.60
OT33-M1-R10 1272940 1275740 0.22 52.09 1279760 0.54 63.37 1273140 0.02 50.80
OT33-M1-R30 680280 696750 2.42 52.16 683860 0.53 51.15 682680 0.35 50.95
OT34-M1-R10 736240 817740 11.07 62.06 813240 10.46 60.57 755150 2.57 60.79
OT34-M1-R30 442400 473830 7.10 62.20 478310 8.12 60.55 465590 5.24 60.67
OT36-M1-R10 1514880 1526360 0.76 62.59 1526530 0.77 60.89 1521750 0.45 61.04
OT36-M1-R30 828120 849170 2.54 62.79 841150 1.57 61.09 846230 2.19 61.31
OT37-M1-R10 196560 199670 1.58 13.30 199760 1.63 12.95 197410 0.43 12.98
OT37-M1-R30 136340 137540 0.88 13.30 138150 1.33 12.92 136340 0.00 12.98
OT39-M1-R10 402480 404800 0.58 13.40 403140 0.16 13.02 402580 0.02 13.06
OT39-M1-R30 252240 253440 0.48 13.40 254040 0.71 13.03 252540 0.12 13.10
OT40-M1-R10 227600 231090 1.53 15.69 233880 2.76 15.27 227700 0.04 15.33
OT40-M1-R30 158370 163860 3.47 15.65 162480 2.60 15.27 159270 0.57 15.33
OT42-M1-R10 453840 461200 1.62 15.80 458850 1.10 15.36 454840 0.22 15.40
OT42-M1-R30 274440 293760 7.04 15.91 293760 7.04 15.47 293760 7.04 15.47
OT43-M1-R10 252600 259570 2.76 18.49 258800 2.45 17.99 253250 0.26 18.09
OT43-M1-R30 172700 177720 2.91 18.49 175810 1.80 18.03 173750 0.61 18.06
OT45-M1-R10 519960 521450 0.29 18.60 520060 0.02 18.11 520260 0.06 18.15
OT45-M1-R30 293760 293760 0.00 18.67 293760 0.00 18.19 293760 0.00 18.25
OT46-M1-R10 279630 288120 3.04 21.34 287350 2.76 20.77 281290 0.59 20.87
OT46-M1-R30 181830 186650 2.65 21.37 188310 3.56 20.77 181860 0.02 20.86
OT48-M1-R10 565080 567830 0.49 21.43 566930 0.33 20.87 565080 0.00 20.94
OT48-M1-R30 293760 293760 0.00 21.53 293760 0.00 20.90 293760 0.00 20.98
OT49-M1-R10 297360 322220 8.36 24.13 319000 7.28 23.50 305160 2.62 23.62
OT49-M1-R30 172800 192460 11.38 24.13 184390 6.71 23.55 180800 4.63 23.60
OT51-M1-R10 587880 591980 0.70 24.29 592080 0.71 23.62 590280 0.41 23.71
OT51-M1-R30 314160 321410 2.31 24.41 314760 0.19 23.69 316460 0.73 23.75
OT52-M1-R10 315660 346490 9.77 26.90 337820 7.02 26.24 319760 1.30 26.39
OT52-M1-R30 189700 204210 7.65 26.92 201060 5.99 26.26 196270 3.46 26.26
OT54-M1-R10 647400 653950 1.01 27.05 653850 1.00 26.37 651940 0.70 26.45
OT54-M1-R30 352800 369970 4.87 27.22 358500 1.62 26.44 359240 1.83 26.54
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4. Conclusion

In this paper, we presented a genetic algorithm by applying two crossover operators
PMX, OX and three mutation operators Insertion, Inverse and Swap for solving the Band
Collocation Problem. We tested all implementations of the GA using the problem instances
with known optimal solutions taken from the BCPLib. We observed that the GA using
PMX and inverse operators gave better results. In the literature, there is no any relevant
work solving the BCP instances with known optimal solutions to compare our results.
However, computational experiments show that the proposed GA is satisfactory.

As a future work, it may be interesting to test the behaviour of the GA with some local
search methods such as 2-Opt, 3-Opt and λ-interchange. Our future plan is to develop
other metaheuristic algorithm mentioned in Section 2.2.
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