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ON FUZZY QUOTIENT BCK-ALGEBRAS

S. SAIDI GORAGHANI1, §

Abstract. In this paper, by considering the concept of fuzzy congruence in some alge-
braic structures, we specially study fuzzy congruence in BCK-algebras. We prove that
there is a bijection between the set of fuzzy ideals and the set of fuzzy congruences in
BCK-algebras. Then we show that for each fuzzy ideal µ, there is an associated algebra
X/µ that is a BCK-algebra. Also, we obtain a congruence relation on a BCK-algebra
by fuzzy ideals.
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1. Introduction

The notion of BCK-algebra was formulated first in 1966 by Imai and Iséki [6]. This
notion is originated from two different ways. One of the motivations is based on set theory.
Another motivation is from classical and non-classical propositional clacului. As is well
known, there is close relationship between the notion of the set difference in set theory and
the implication functor in logical systems. Then the following problems arise from this
relationship. What is the most essential and fundamental common properties? Can we
establish a good theory of general algebra? To give an answer this problems, Y. Imai and
K. Iséki introduced a notion of a new class of general algebras, which is called a BCK-
algebra. This name is taken from BCK-system of C. A. Meredith. BCK-algebras have
been applied to many branches of mathematics, such as group theory, functional analysis,
probability theory and topology. The concept of fuzzy subset was introduced by Zadeh for
the first time [14]. At present these ideas have been applied to other algebraic structures
such as groups, rings, modules and since then many studies were performed about this
subject on fuzzy new algebraic structures. In 1993 the consept of fuzzy sets was applied to
BCI-algebras [1, 7]. The concept of a fuzzy relation on a set was introduced by Zadeh [14].
In [8], Kondo defined the quotient BCI-algebras induced by fuzzy ideals. Note that each
congruence class in quotient BCI-algebras induced by fuzzy ideals is not a fuzzy set but
it is a crisp set. In [11], A. Rezaei and A. Borumand Saeid studied and introduced fuzzy
congruence relations on CI-algebras. Recently, some reasearchers worked on MV -algebras
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and ideals in them (see [10, 12, 13]). In this paper, specially, we present the definitions of
fuzzy congruence, fuzzy congruence classes and fuzzy quotient algebras in BCK-algebras.
We will show that the elements in fuzzy quotient algebras induced by fuzzy ideals are
fuzzy sets in BCK-algebras. Hence we prove that there is a bijection between the set of
fuzzy ideals and the set of fuzzy congruence. For each fuzzy ideal µ, there is an associated
algebra X/µ. We prove that X/µ is a BCK-algebra and it is isomorphic to the BCK-
algebra X/µµ(0). Finally, we obtain a congruence relation on a BCK-algebra by fuzzy
ideals.

2. Preliminaries

In this section, we review related lemmas and theorems that we use in the next sections.

Definition 2.1. [9] A BCK-algebra is a structure X = (X, ∗, 0) of type (2, 0) such that:
(BCK1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCK2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCK3) x ∗ x = 0,
(BCK4) 0 ∗ x = 0,
(BCK5) x ∗ y = y ∗ x = 0 implies that x = y, for all x, y, z ∈ X.
The relation x ≤ y which is defined by x ∗ y = 0 is a partial order on X with 0 as least
element. In BCK-algebra X, for any x, y, z ∈ X, we have
(BCK6) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(BCK7) x ≤ y implies z ∗ y ≤ z ∗ x,
(BCK8) x ≤ y implies x ∗ z ≤ y ∗ z.

Let (X, ∗, 0) be a BCK-algebra. Then ∅ 6= X0 ⊆ X is called to be a subalgebra of X, if
for any x, y ∈ X0, x ∗ y ∈ X0, i.e., X0 is closed under the binary operation “ ∗ ” of X. X
is called bounded, if there exists 1 ∈ X such that x ≤ 1, for any x ∈ X and in this case,
we let Nx = 1∗x. X is said to be commutative, if y ∗ (y ∗x) = x∗ (x∗ y), for all x, y ∈ X.
Subset ∅ 6= I ⊆ X is called an ideal of X, if 0 ∈ I and for any x, y ∈ X, x ∗ y ∈ I and
y ∈ I, implies that x ∈ I. In a BCK-algebra X, we let x∧y = y ∗ (y ∗x) and in a bounded
BCK-algebra X, we let x ∨ y = N(Nx ∧Ny), for all x, y ∈ X. In bounded commutative
BCK-algebra X, for any x, y ∈ X, x ∨ y is the least upper bound and x ∧ y is the grate
lower bound of x, y and so (L,∨,∧) is a bounded lattice.

Definition 2.2. [14] Let X be a set. A fuzzy set in X is a mapping µ : X → [0, 1]. The
notations 1X and 0X represent two special fuzzy sets in X satisfying 1X = 1 and 0X = 0,
for every x ∈ X, respectively. For every sequence {a1, · · · , an} of real numbers,
a1 ∧ · · · ∧ an = min{a1, · · · , an} and a1 ∨ · · · ∨ an = max{a1, · · · , an}. For any fuzzy sets
f, g in X, f ≤ g means that f(x) ≤ g(x), for every x ∈ X. Let µ be a fuzzy set in X,
t ∈ [0, 1], the set µt = {x ∈ X : µ(x) ≥ t} is called a level subset of µ.

Definition 2.3. [5] A fuzzy set µ in BCK-algebra X is a fuzzy ideal of X, if it satisfies
(F1) µ(0) ≥ µ(x), for all x ∈ X,
(F2) µ(y) ≥ µ(x) ∧ µ(y ∗ x), for all x, y ∈ X.

Definition 2.4. [2] A fuzzy relation µ in a set X is a fuzzy subset of X × X. µ is ε-
reflexive in X if µ(x, x) ≥ ε > 0, for all x ∈ X. µ is symmetric in X if µ(x, y) = µ(y, x),
for all x, y ∈ X. µ is transitive in X if µ ◦ µ ⊆ µ.

Proposition 2.1. [5] Let µ be a fuzzy ideal in BCK-algebra X. Then
(i) if x ≤ y, then µ(x) ≥ µ(y),
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(ii) µ(x ∗ y) ≥ µ(x ∗ z) ∧ µ(z ∗ y),
(iii) if µ(x ∗ y) = µ(0), then µ(x) ≥ µ(y), for all x, y, z ∈ X.

Definition 2.5. [3] An MV-algebra is a structure M = (M,⊕,′ , 0) of type (2, 1, 0) such
that:
(MV 1) (M,⊕, 0) is an Abelian monoid,
(MV 2) (a′)′ = a,
(MV 3) 0′ ⊕ a = 0′,
(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a,
If we define the constant 1 = 0′ and operations � and 	 by a�b = (a′⊕b′)′, a	b = a�b′,
then
(MV 5) (a⊕ b) = (a′ � b′)′,
(MV 6) x⊕ 1 = 1,
(MV 7) (a	 b)⊕ b = (b	 a)⊕ a,
(MV 8) a⊕ a′ = 1,
for every a, b ∈ A. It is clear that (M,�, 1) is an abelian monoid. Now, if we define
auxiliary operations ∨ and ∧ on M by a ∨ b = (a � b′) ⊕ b and a ∧ b = a � (a′ ⊕ b), for
every a, b ∈M , then (M,∨,∧, 0) is a bounded distributive lattice. An ideal of MV -algebra
M is a subset I of M , satisfying the following condition: (I1) 0 ∈ I, (I2) x ≤ y and
y ∈ I implies that x ∈ I, (I3) x ⊕ y ∈ I, for every x, y ∈ I.. Let M and K be two
MV -algebras. A mapping f : M → K is called an MV -homomorphism if (H1) f(0) = 0,
(H2) f(x⊕ y) = f(x)⊕ f(y) and (H3) f(x′) = (f(x))′, for every x, y ∈M . If f is one to
one (onto), then f is called an MV -monomorphism (epimorphism) and if f is onto and
one to one, then f is called an MV -isomorphism.

The following results were proved in MV -algebras. Then this results are proved in
BCK-algebras, easily.

Lemma 2.1. [4] Let A be an MV -algebra and µ : A→ [0, 1] be a fuzzy set on A. Then µ
is a fuzzy ideal on A if and only if
(1) µ(x) ≤ µ(0), (2) x ≤ y implies that µ(x) ≤ µ(y), for all x, y ∈ A and .

Theorem 2.1. [4] Let µ be a fuzzy set in MV -algebra A. µ is a fuzzy ideal if and only if
for all t ∈ [0, 1], µt is either empty or an ideal of A.

Corollary 2.1. [4] I is an ideal of MV -algebra A if and only if χI is a fuzzy ideal of A,
where χI is characteristic function of I.

Definition 2.6. [14] Let X,Y be two MV -algebras, µ be a fuzzy subset of X, µ′ be a fuzzy
subset of Y and f : X → Y be a homomorphism. The image of µ under f denoted by f(µ)
is a fuzzy set of Y defined by

f(µ)(y) =

{
supx∈f−1(y)µ(x) if f−1(y) 6= ∅

0 if f−1(y) = ∅

for all y ∈ Y . The preimage of µ′ under f denoted by f−1(µ′) is a fuzzy set of X defined
by: for all x ∈ X, f−1(µ′)(x) = µ′(f(x)).

Theorem 2.2. [5] Let µ be a fuzzy ideal in MV -algebra A. For any x, y, z ∈ A, µ(x∨y) =
µ(x) ∧ µ(y).

Note: From now on, in this paper, we let X be a BCK-algebra.
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3. On congruence relations induced by fuzzy ideals

In [8], Kondo defined the quotient BCI-algebras induced by fuzzy ideals. Note that
each congruence class in quotient BCI-algebras induced by fuzzy ideals is not a fuzzy set
but it is a crisp set. In the following, we present the notions of fuzzy congruences, fuzzy
congruence classes and fuzzy quotient algebras in BCK-algebras. Note that the definition
of fuzzy relation in most of algebraic structures is the same. We will show that the elements
in fuzzy quotient algebras induced by fuzzy ideals are fuzzy sets in BCK-algebras.

Definition 3.1. A fuzzy relation θ from X ×X to [0, 1] is called a fuzzy congruence in X
if it satisfies the following:
(C1) θ(0, 0) = θ(x, x), for all x ∈ X,
(C2) θ(x, y) = θ(y, x), for all x, y ∈ X,
(C3) θ(x, z) ≥ θ(x, y) ∧ θ(y, z), for all x, y, z ∈ X,
(C4) θ(x∗z, y∗z) ≥ θ(x, y) (right compatible) and θ(z ∗x, z∗y) ≥ θ(x, y) (left compatible).

Example 3.1. Let X = {0, a, b, 1} and ∗ be defined as follows:

∗ 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

Then (X, ∗, 0) is a BCK-algebra. Consider fuzzy relation θ from X × X to [0, 1] with
θ(0, 0) = θ(a, a) = θ(b, b) = θ(1, 1) = 0.8, θ(a, 1) = θ(b, 0) = θ(1, a) = θ(0, b) = 0.5 and
θ(0, 1) = θ(1, 0) = θ(a, b) = θ(b, a) = θ(a, 0) = θ(b, 1) = θ(0, a) = θ(1, b) = 0.3. It is easily
checked that θ is a fuzzy congruence in X.

Proposition 3.1. If θ is a fuzzy congruence in X, then
(i) θ(Nx,Ny) ≥ θ(x, y),
(ii) θ(x ∧ z, y ∧ z) ≥ θ(x, y),
(iii) θ(x ∨ z, y ∨ z) ≥ θ(x, y)
(iv) θ(0, 0) ≥ θ(x, y),
(v) θ(x, y) = θ(x ∗ y, 0),
(vi) if θ satisfies the conditions (C2), (C3) and (C4), then (C1) is equivalet to θ(0, 0) ≥
θ(x, y), for all x, y ∈ X.

Proof. (i), (ii), (iii): By C4, the proof is clear.
(iv) We have θ(0, 0) = θ(x, x) and θ(x, x) ≥ θ(x, y) ∧ θ(y, x) = θ(x, y). Then θ(0, 0) ≥
θ(x, y).
(v) By (C4), θ(x, y) ≤ θ(x ∗ y, y ∗ y) = θ(x ∗ y, 0). On the other hand, θ(x ∗ y, 0) =
θ(x ∗ y, x ∗ x) ≥ θ(y, x) = θ(x, y). Hence θ(x, y) = θ(x ∗ y, 0).
(vi) Let θ(0, 0) = θ(x, x). By (C2) and (C3), θ(0, 0) = θ(x, x) ≥ θ(x, y)∧ θ(y, x) = θ(x, y).
Converesly, by (C4), θ(0, 0) ≤ θ(x ∗ 0, x ∗ 0) = θ(x, x). �

Let θ be a fuzzy relation on X. Consider Ut(θ) = {(x, y) ∈ X × X|θ(x, y) ≥ t} and
Ut>(θ) = {(x, y) ∈ X ×X|θ(x, y) > t}, where t ∈ [0, 1].

Theorem 3.1. If θ is a fuzzy congruence relation and Ut(θ) 6= ∅, for t ∈ [0, 1], then Ut(θ)
is a congruence relation on X.

Proof. Since Ut(θ) is not empty, there is an element (u, v) ∈ X×X such that (u, v) ∈ Ut(θ).
This means that t ≤ θ(u, v). Since θ is the congruence, by Proposition 3.1 (iv), we have
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t ≤ θ(u, v) ≤ θ(0, 0) = θ(x, x). That is, (x, x) ∈ Ut(θ). Also, the relation is clearly
symmetric.

Let (x, y), (y, z) ∈ Ut(θ). Since t ≤ θ(x, y) and t ≤ θ(y, z), we have t ≤ θ(x, y)∧θ(y, z) ≤
θ(x, z). Hence (x, z) ∈ Ut(θ).

Now, we assume that (x, y) ∈ Ut(θ). Since t ≤ θ(x, y) ≤ θ(x ∗ u, y ∗ u), for every u ∈ X,
we have (x ∗ u, y ∗ u) ∈ Ut(θ) and similarly (u ∗ x, u ∗ y) ∈ Ut(θ). Therefore, Ut(θ) is the
congruence on X. �

Since the definition of Ut(θ) is a general definition and it is not rerated to properties
of algebraic structures, we can easily prove that the following theorem in all algebraic
structures as BCK-algebras:

Theorem 3.2. Let θ, θ1 and θ2 be fuzzy congruence relations in X. Then
(i) Ut(θ) =

⋂
0≤s<t Us>(θ) and Ut>(θ) =

⋃
t<s≤1 Us(θ).

(ii) θ is a fuzzy left(right) compatible relation if and only if Ut(θ) (Ut>(θ)) is a left(right)
compatible relation on X.
(iii) Let the composition θ1 ◦θ2 is defined by θ1 ◦θ2 = supz∈Xmin(θ1(x, z), θ2(z, y)). Then
for every t ∈ [0, 1],
θ1 = θ2 if and only if Ut>(θ1) = Ut>(θ2) and Ut>(θ1 ◦ θ2) = Ut>(θ1) ◦ Ut>(θ2).
(iv) θ1◦θ2 = θ2◦θ1 if and only if Ut>(θ1)◦Ut>(θ2) = Ut>(θ2)◦Ut>(θ1), for every t ∈ [0, 1],
where θ1 6= ∅ and θ2 6= ∅.

Proof. (i) Let t ∈ [0, 1]. By definition Ut(θ) and Ut>(θ), we have

Ut>(θ) = {(x, y) ∈ X ×X|θ(x, y) > t} =
⋃

t<s≤1
{(x, y) ∈ X ×X|θ(x, y) ≥ s} =

⋃
t<s≤1

Us(θ)

and

Ut(θ) = {(x, y) ∈ X ×X|θ(x, y) ≥ t} =
⋂

0≤s<t
{(x, y) ∈ X ×X|θ(x, y) > s} =

⋃
0≤s<t

Us>(θ).

(ii) The proof is easy.
(iii) Let θ1 = θ2 and (x, y) ∈ Ut>(θ1). Then θ1(x, y) = θ2(x, y) > t and so (x, y) ∈ Ut>(θ2).
Hence Ut>(θ1) ⊆ Ut>(θ2). Similarly, Ut>(θ2) ⊆ Ut>(θ1) and so Ut>(θ1) = Ut>(θ2).
Conversely, let Ut>(θ1) = Ut>(θ2), but θ1 6= θ2 . Then there exists (x, y) ∈ X × X
such that t1 = θ1(x, y) 6= θ2(x, y) = t2. Without loss of generality, let t1 > t2. Then
θ1(x, y) > t2 and so (x, y) ∈ Ut>(θ2) = Ut>(θ1). Hence θ2(x, y) > t1 and so t2 > t1, which
is a contradiction.
Also, let (x, y) ∈ X ×X and t ∈ [0, 1]. Then

(x, y) ∈ Ut>(θ1 ◦ θ2) ↔ θ1 ◦ θ2 > t↔ supz∈Xmin(θ1(x, z), θ2(z, y)) > t

↔ ∃z0 ∈ X,min(θ1(x, z0), θ2(z0, y)) > t↔ θ1(x, z0) > t and θ2(z0, y) > t

↔ ∃z0 ∈ X, (x, z0) ∈ Ut>(θ1) and (z0, y) ∈ Ut>(θ2)

↔ (x, y) ∈ Ut>(θ1) ◦ Ut>(θ2).

Therefore, Ut>(θ1 ◦ θ2) = Ut>(θ1) ◦ Ut>(θ2).
(iv) (⇒) Let θ1 ◦ θ2 = θ2 ◦ θ1. Then by Theorem (iii), the proof is clear.
(⇐) Let Ut>(θ1) ◦ Ut>(θ2) = Ut>(θ2) ◦ Ut>(θ1), for every t ∈ [0, 1]. Then by (i), (ii) and
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(iii),

Ut(θ1 ◦ θ2) =
⋂

0≤s<t
Us>(θ1 ◦ θ2) =

⋂
0≤s<t

Us>(θ1) ◦ Us>(θ2) =
⋂

0≤s<t
Us>(θ2) ◦ Us>(θ1)

=
⋂

0≤s<t
Us>(θ2 ◦ θ1) = Ut(θ2 ◦ θ1).

Now, let x, y ∈ X such that (θ1 ◦ θ2)(x, y) = t. Then (x, y) ∈ Ut(θ1 ◦ θ2) = Ut(θ2 ◦ θ1)
and so (θ1 ◦ θ2)(x, y) ≥ t = (θ1 ◦ θ2). Similarly, (θ2 ◦ θ1)(x, y) ≥ (θ1 ◦ θ2)(x, y). Therefore,
θ1 ◦ θ2 = θ2 ◦ θ1.

�

Definition 3.2. Let θ be a fuzzy congruence in X and x ∈ X. Define the fuzzy set θx in
X by θx(y) = θ(x, y), for all y ∈ X. The fuzzy set θx is called a fuzzy congruence class of
x by θ in X. The set X/θ = {θx|x ∈ X} is called a fuzzy quotient set by θ.

Example 3.2. Consider BCK-algebra X = {0, a, b, 1} with fuzzy congruence relation θ
in Example 3.1. A fuzzy quotient set by θ is X/θ = {θ0, θa, θb, θ1}.

Lemma 3.1. Let θ be a fuzzy congruence in X. Then θ0 is a fuzzy ideal in X.

Proof. Since θ is a fuzzy congruence in X, by Proposition 3.1 (iv), we have θ0(0) =
θ(0, 0) ≥ θ(0, x) = θ0(x), for every x ∈ X.

Also, since θ is a fuzzy congruence in X, we have θ(0, y) ≥ θ(0, y ∗ x) ∧ θ(y ∗ x, y)
and θ(y ∗ x, y) = θ(y ∗ x, y ∗ 0) ≥ θ(x, 0). Hence θ(0, y) ≥ θ(0, y ∗ x) ∧ θ(0, x). Thus
θ0(y) ≥ θ0(y ∗ x) ∧ θ0(x), for all x, y ∈ X. Therefore, θ0 is a fuzzy ideal in X. �

Lemma 3.2. Let µ be a fuzzy ideal in X. Then θµ(x, y) = µ(x ∗ y) ∧ µ(y ∗ x) is a fuzzy
congruence in X.

Proof. (C1) and (C2) are clear.
(C3) Let x, y, z ∈ X. By Proposition 2.1 (ii),

θµ(x, z) = µ(x ∗ z) ∧ µ(z ∗ x) ≥ (µ(x ∗ y) ∧ µ(y ∗ z)) ∧ (µ(z ∗ y) ∧ µ(y ∗ x))

= (µ(x ∗ y) ∧ µ(y ∗ x)) ∧ (µ(y ∗ z) ∧ µ(z ∗ y))

= θµ(x, y) ∧ θµ(y, z).

(C4) Let x, y, z ∈ X. By (BCK1), we have (x∗z)∗(y∗z) ≤ x∗y and (y∗z)∗(x∗z) ≤ y∗x.
Then by Proposition 2.1 (i),

θµ((x ∗ z), (y ∗ z)) = µ((x ∗ z) ∗ (y ∗ z))∧µ((y ∗ z) ∗ (x ∗ z)) ≥ µ(x ∗ y)∧µ(y ∗ x) = θµ(x, y).

Similarly, θµ(z ∗ x, z ∗ y) ≥ θµ(x, y). �

Theorem 3.3. There is a bijection between the set of fuzzy ideals and the set of fuzzy
congruences in X.

Proof. By Lemmas 3.1 and 3.2, it is easily checked that µ = (θµ)0 and θ = θθ0 for each
fuzzy ideal µ and fuzzy congruence θ in X. Hence there is a bijection between the set of
fuzzy ideals and the set of fuzzy congruences in X. �

Let µ be a fuzzy ideal in X, µx denote the fuzzy congruence class of x by θµ in X,
for every x ∈ X and X/µ be the fuzzy quotient set by θµ. In following, we introduce
congruence relations induced by fuzzy ideals.

Proposition 3.2. Let µ be a fuzzy ideal in X. Then µx = µy if and only if µ(x ∗ y) =
µ(y ∗ x) = µ(0), for all x, y ∈ X.
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Proof. Let µx = µy, for x, y ∈ X. We have µu(v) = θuµ(v) = θµ(u, v) = µ(u ∗ v) ∧ µ(v ∗ u),
for any u, v ∈ X. Since µx = µy, µx(x) = µy(x), for all x ∈ X. It follows that µ(x ∗ x) ∧
µ(x ∗ x) = µ(y ∗ x) ∧ µ(x ∗ y) and so by (F1), µ(x ∗ y) = µ(y ∗ x) = µ(0).

Conversely, let µ(x ∗ y) = µ(y ∗ x) = µ(0). By Proposition 2.1 (ii), we have µ(x ∗ z) ≥
µ(x∗y)∧µ(y∗z) and µ(y∗z) ≥ µ(y∗x)∧µ(x∗z), for all z ∈ X. Since µ(x∗y) = µ(y∗x) =
µ(0), we have µ(x ∗ z) ≥ µ(y ∗ z) and µ(y ∗ z) ≥ µ(x ∗ z) and so µ(x ∗ z) = µ(y ∗ z).

Similarly, we have µ(z ∗ x) = µ(z ∗ y). This implies that

µx(z) = µ(x ∗ z) ∧ µ(z ∗ x) = µ(y ∗ z) ∧ µ(z ∗ y) = µy(z), for all z ∈ X.
Hence µx = µy �

By Proposition 3.2, consider the binary relation ∼µ on X by x ∼µ y ⇐⇒ µ(y ∗ x) =
µ(x ∗ y) = µ(0) where µ is a fuzzy ideal in X.

Lemma 3.3. Let µ be a fuzzy ideal in X. Then ∼µ is an equivalent relation on X.

Proof. It is clear that ∼µ is reflexive and symmetric. Let x ∼µ y and y ∼µ z, for any
x, y, z ∈ X. Then µ(y ∗ x) = µ(x ∗ y) = µ(z ∗ y) = µ(y ∗ z) = µ(0). We have z ∗ y ≤
(y ∗ x) ∗ (z ∗ x) and x ∗ y ≤ (y ∗ z) ∗ (x ∗ z). Then

µ(z ∗ x) ≥ µ(y ∗ x) ∧ µ((y ∗ x) ∗ (z ∗ x)) ≥ µ(y ∗ x) ∧ µ(z ∗ y) = µ(0)

and
µ(x ∗ z) ≥ µ(y ∗ z) ∧ µ((y ∗ z) ∗ (x ∗ z)) ≥ µ(y ∗ z) ∧ µ(x ∗ y) = µ(0)

and so µ(z ∗ x) = µ(x ∗ z) = µ(0). It results that x ∼µ z. Therefore, ∼µ is an equivalent
relation on X. �

Theorem 3.4. Let µ be a fuzzy ideal of X. Then ∼µ is a congruence relation on X.

Proof. By Lemma 3.3, it is cofitient to prove that x ∼µ y implies z ∗ x ∼µ z ∗ y, for any
x, y, z ∈ X. Let x ∼µ y. Then µ(y ∗x) = µ(x ∗ y) = µ(0). Since y ∗x ≤ (z ∗ y) ∗ (z ∗x) and
x ∗ y ≤ (z ∗x) ∗ (z ∗ y), we have µ(0) = µ(x ∗ y) ≤ µ((z ∗x) ∗ (z ∗ y)) and µ(0) = µ(y ∗x) ≤
µ((z ∗ y) ∗ (z ∗ x)) and so µ((z ∗ x) ∗ (z ∗ y)) = µ((z ∗ y) ∗ (z ∗ x)) = µ(0). Therefore,
z ∗ x ∼µ z ∗ y.

�

Theorem 3.5. Let µ be a fuzzy ideal in X. Then X/µ is a BCK-algebra (BCK-quotient
algebra induced by fuzzy ideal µ).

Proof. For every µx, µy ∈ A/µ, we define µx ∗ µy = µx∗y. We prove that the operation on
X/µ is well defined. Let µx = µs, µy = µt. Then x ∼µ s and y ∼µ t. By Theorem 3.4, we
have x ∗ y ∼µ s ∗ t and so µx∗y = µs∗t. It is routine to prove that X/µ = (X/µ, ∗, µ0) is a
BCK-algebra. �

Example 3.3. Let Ω = {1, 2} and X = P(Ω). Then (X, ∗, ∅) is a BCK-algebra. If

µ is a non-constant fuzzy ideal such that µ(X) 6= µ(∅), for X 6= ∅, then µ{1} = {{1}},
µ{2} = {{2}}, µ∅ = {∅} and µ{1,2} = {{1, 2}} and so X/µ = (X/µ, ∗, µ∅) is a BCK-
algebra.

Remark 3.1. By Theorem 3.5, we conclude that µx ∨ µy = µx∨y and µx ∧ µy = µx∧y,
where µ is a fuzzy ideal in X and x, y ∈ X.

Note. Let I be an ideal of X. Then a congruence relation ∼I induced by I will obtained
by x ∼I y if an only if x ∗ y, y ∗ x ∈ I.

Theorem 3.6. Let I be an ideal of X and χI be the characteristic function of I. Then
x ∼I y if and only if x ∼χI y.
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Proof. We have

x ∼I y ⇐⇒ y ∗ x, x ∗ y ∈ I ⇐⇒ χI(y ∗ x) = 1 and χI(x ∗ y) = 1

⇐⇒ χI(y ∗ x) = χI(I) and χI(x ∗ y) = χI(I)⇐⇒ x ∼χI y.

�

Theorem 3.7. Let X and Y be BCK-algebras, f : X −→ Y be a BCK-epimorphism
and µ be a fuzzy ideal of Y . Then X/f−1(µ) ∼= Y/µ.

Proof. We know f−1(µ) is a fuzzy ideal of X. Then by Theorem 3.5, X/f−1(µ) and

Y/µ are BCK-algebras. Define g : X/f−1(µ) −→ Y/µ by g((f−1(µ))x) = µf(x). Let
(f−1(µ))x = (f−1(µ))y, for any x, y ∈ X. Then f−1(µ)(x∗y) = f−1(µ)(y ∗x) = f−1(µ)(0)
and hence µ(f(x)∗f(y)) = µ(f(y)∗f(x)) = µ(f(0)) = µ(0). This means that f(x) ∼µ f(y),

that is, µf(x) = µf(y). Hence g is well-defined. For injectiveness of g, we suppose that
g((f−1(µ))x) = g((f−1(µ))y), that is, µf(x) = µf(y), for any x, y ∈ X. Since f(x) ∼µ f(y),
we have µ(f(x)∗f(y)) = µ(f(y)∗f(x)) = µ(0). It follows that f−1(µ)(x∗y) = f−1(µ)(y ∗
x) = f−1(µ)(0) and hence (f−1(µ))x = (f−1(µ))y. It is easy to show that g is a surjective
BCK-homomorphism. Therefore, X/f−1(µ) ∼= Y/µ. �

Corollary 3.1. Let X and Y be BCK-algebras, f : X −→ Y be a BCK-epimorphism
and I be an ideal of Y . Then
(i) X/f−1(I) ∼= Y/I.
(ii) X/(Ker(f)) ∼= Y

Proof. (i) We know that f−1(I) is an ideal of X. Consider

χf−1(I) =

{
1, if x ∈ f−1(I)
0, otherwise

Hence χf−1(I) = f−1(χI)(x) and so X/f−1(I) = X/χf−1(I). Furthermore, we have

X/f−1(I) = X/f−1(χI) and Y/I = Y/χI . Now, by Theorem 3.7, we have X/f−1(χI) ∼=
Y/χI . Therefore, X/f−1(I) ∼= Y/I.
(ii) By (i), the proof is clear. �

Theorem 3.8. For two fuzzy quotient algebras ξ and η which are defined by
ξ : X/f−1(µ) → [0, 1], ξ(x/f−1(µ)) = f−1(µ)(x) and η : f(X)/µ → [0, 1], η(f(x)/µ) =
µ(f(x)), respectively, there exists a bijective map h from X/f−1(µ) to f(X)/µ such that
η ◦ h = ξ.

Proof. The proof is routine.
�

Theorem 3.9. Let µ be a fuzzy ideal in X. Define a mapping f : X → X/µ by f(x) = µx.
Then
(1) f is a surjective homomorphism,
(2) Ker(f) = µµ(0),
(3) X/µ is isomorphic to the BCK-algebra X/µµ(0).

Proof. (1) Clearly, f is surjective. We have f(x ∗ y) = µx∗y = µx ∗ µy = f(x) ∗ f(y) and
f(0) = µ0. Hence f is a surjective homomorphism.

(2) x ∈ Ker(f) if and only if f(x) = µ0 if and only if µx = µ0 if and only if x ∼µµ(0) 0

if and only if x ∈ µµ(0). Hence Ker(f) = µµ(0).
(3) By (1) and (2) we have X/µ is isomorphic to the BCK-algebra X/µµ(0). �
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Example 3.4. Consider BCK-algebra X and X/µ in Example 3.3. We have
µµ(∅) = {x ∈ X|µ(x) = µ(∅)} = {∅}. Hence

X/µµ(∅) = X/{∅} ∼= X ∼= {{∅}, {{1}}, {{2}}, {{1, 2}}} = {µ∅, µ{1}, µ{2}, µ{1,2}} = X/µ.

In following, we present the generalization of the congruence relation induced by a fuzzy
idela of X. It shows that more congruence relations on X can be induced by a fuzzy ideal of
X. Moreover, the above congruence relation is an special case of the following congruence
relations to be defined.
Let µ be a fuzzy subset of X and α ∈ [0, 1]. A binary relation µ̄α on X is defined as
follows:

µ̄α = {(x, y) : x, y ∈ X, µ(x ∗ y) > α and µ(y ∗ x) > α}

Lemma 3.4. Let µ be a fuzzy ideal of X, α ∈ [0, 1] and µ̄α 6= ∅. Then for every (x, y) ∈ µ̄α
and z ∈ X,

µ((z ∗ y) ∗ (z ∗ x)) > α, µ((z ∗ x) ∗ (z ∗ y)) > α,

µ((y ∗ z) ∗ (x ∗ z)) > α, µ((x ∗ z) ∗ (y ∗ z)) > α.

Proof. By (BCK1) and definition of fuzzy ideal, we have µ(((z ∗ y) ∗ (z ∗ x)) ∗ (x ∗ y)) =
µ(0) ≥ µ(y ∗x) > α. Hence µ((z ∗y)∗ (z ∗x)) ≥ µ(((z ∗y)∗ (z ∗x))∗ (x∗y))∧µ(x∗y) > α.
Similarly, we can prove other cases. �

Theorem 3.10. Let µ be a fuzzy ideal of X, α ∈ [0, 1] and µ̄α 6= ∅. Then µ̄α is an
equivalent relation on X.

Proof. Since µ̄α 6= ∅, there exists x, y ∈ X such that µ(y ∗ x) > α. By definition of
fuzzy ideal, µ(0) ≥ µ(y ∗ x) > α. We have µ(x ∗ x) = µ(0) > α, for every x ∈ X. It
results the reflexitivity of µ̄α. It is clear that µ̄α is symmetric. For proving the trasitivity
of µ̄α, let (x, y), (y, z) ∈ µ̄α. By Lemma 3.4, we have µ((z ∗ x) ∗ (z ∗ y)) > α. Then
µ(z ∗ x) ≥ µ((z ∗ x) ∗ (z ∗ y)) ∧ µ(z ∗ y) > α. Similarly, we can prove µ(x ∗ z) > α.
Therefore, (x, z) ∈ µ̄α. �

Theorem 3.11. Let µ be a fuzzy ideal of X and α ∈ [0, 1] such that µ(0) > α. Then µ̄α

is a congruence relation on X.

Proof. Since µ(0) > α, we have µ(x, x) = µ(0) > α and so µ̄α 6= ∅. Let (x, y), (z, t) ∈ µ̄α.
Then by Lemma 3.4, we get (z ∗ x, z ∗ y), (z ∗ y, t ∗ y) ∈ µ̄α and so by Theorem 3.10, we
have (z ∗ x, t ∗ y) ∈ µ̄α. Hence µ̄α is a congruence relation on X. �

4. Conclusions

We tried to improve the studying of fuzzy congruence in algebraic structures and proved
some results on BCK-algebras. Since congruence relations are interesting and important
subjects in fuzzy logic, we hope that we helped to open new fields to anyone that is
interested to studying of these concepts in BCK-algebras.
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