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EDGE DOMINATION IN SOME BRICK PRODUCT GRAPHS

U.VIJAYA CHANDRA KUMAR1, R. MURALI2, A. GIRISHA3, §

Abstract. Let G = (V,E) be a simple connected and undirected graph. A set F of
edges in G is called an edge dominating set if every edge e in E − F is adjacent to at

least one edge in F . The edge domination number γ
′
(G) of G is the minimum cardinality

of an edge dominating set of G. The shadow graph of G, denoted D2(G) is the graph

constructed from G by taking two copies of G, say G itself and G
′

and joining each

vertex u in G to the neighbors of the corresponding vertex u
′

in G
′
. Let D be the set of

all distinct pairs of vertices in G and let Ds (called the distance set) be a subset of D.
The distance graph of G, denoted by D(G,Ds) is the graph having the same vertex set
as that of G and two vertices u and v are adjacent in D(G,Ds) whenever d(u, v) ∈ Ds.
In this paper, we determine the edge domination number of the shadow distance graph
of the brick product graph C(2n,m, r).

Keywords: Dominating set, Brick product graph, Edge domination number, Minimal
edge dominating set, Shadow distance graph.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected graph without loops and multiple
edges. A subset S of V is called a dominating set of G if every vertex not in S is adjacent to
some vertex in S. The domination number of G denoted by γ(G) is the minimal cardinality
taken over all dominating sets of G. A subset F of E is called an edge dominating set if
each edge in E is either in F or is adjacent to an edge in F . An edge dominating set F is
called minimal if no proper subset of F is an edge dominating set. The edge domination
number of G denoted by γ

′
(G) is the minimum cardinality taken over all edge dominating

sets of G.
The open neighbourhood of an edge e ∈ E denoted by N(e) is the set of all edges

adjacent to e in G. If e = (u, v) is an edge in G, the degree of e denoted by deg(e) is
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ment of Mathematics, 2020; all rights reserved.

.

173



174 TWMS J. APP. ENG. MATH. V.10, N.1, 2020

defined as deg(e) = deg(u) + deg(v)− 2. The maximum degree of an edge in G is denoted

by 4′
(G).

Let m,n and r be a positive integers. Let C2n = a0, a1, a2, ...., a2n−1, a0 denote a cycle
order 2n. The (m, r) - brick product of C2n, [1] denoted by C(2n,m, r), is defined in two
cases as follows.

Figure 1. The brick product graph C(8, 1, 3)

Figure 2. The brick product graph C(10, 1, 5)

(1) For m=1, we require that r be odd and greater than 1. Then, C(2n,m,r) is ob-
tained from C2n by adding chords a2ka2k+r, k = 1,2,...,n, where the computation
is performed modulo 2n.

(2) For m >1, we require that m + r be even. Then, C(2n,m,r) is obtained by first
taking the disjoint union of m copies of C2n, namely C2n(1), C2n(2), ..., C2n(m),
where for each i = 1, 2, ...,m, C2n(i) = (i, 0)(i, 1)...(i, 2n). Next, for each odd i
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= 1, 2, ...m − 1 and each even k = 0, 1, 2, ...2n − 2, an edge (called a brick edge)
is drawn to join(ai, ak) to (ai+1, ak), whereas, for each even i= 1, 2, ...,m− 1 and
each odd k = 1, 2, ..., 2n − 1, an edge (also called a brick edge) is drawn to join
(ai, ak) to (ai+1, ak). Finally, for each odd k = 1, 2, .., 2n − 1, an edge (called a
hooking edge) is drawn to join (a1, ak) to (am, ak+r). An edge in C(2n,m,r) which
is neither a brick edge nor a hooking edge is called a flat edge.

The shadow graph of G, denoted by D2(G) is the graph constructed from G by taking two

copies of G, namely G itself and G
′

and by joining each vertex u in G to the neighbors of
the corresponding vertex u

′
in G

′
.

Let D be the set of all distances between distinct pairs of vertices in G and let Ds

(called the distance set) be a subset of D. The distance graph of G denoted by D(G,Ds)
is the graph having the same vertex set as that of G and two vertices u and v are adjacent
in D(G,Ds) whenever d(u, v) ∈ Ds.

The shadow distance graph of G, denoted by Dsd(G,Ds) is constructed from G with
the following conditions:

(1) consider two copies of G say G itself and G
′

(2) if u ∈ V (G) (first copy) then we denote the corresponding vertex as u
′ ∈ V (G

′
)

(second copy)

(3) the vertex set of Dsd(G,Ds) is V (G) ∪ V (G
′
)

(4) the edge set of Dsd(G,Ds) is E(G)∪E(G
′
)∪Eds where Eds is the set of all edges

(called the shadow distance edges) between two distinct vertices u ∈ V (G) and

v
′ ∈ V (G

′
) that satisfy the condition d(u, v) ∈ Ds in G.

The applications of domination in graph structures lies in various fields like social net-
works, radio stations, communication networks etc. In particular, applications of edge
domination are well known and available in literature. Two problems of interest with
regard to an arbitrary graph G are (a) Determining a Hamiltonian cycle in G and (b) con-
structing an efficient algorithm to generate a Hamiltonian cycle in G. An alternative to
the construction of an algorithm, which leads to a reconstruction problem, is to determine
a spanning tree T such that G is the distance graph of T .

2. Main results

We recall the following results related to the edge domination number of a graph.

Theorem 2.1. [7] γ
′
(Cp) = dp3e for p ≥ 3.

Theorem 2.2. [6] An edge dominating set F is minimal if and only if for each edge e ∈ G,
one of the following two conditions holds:

(1) N(e) ∩ F = φ
(2) there exists an edge e ∈ E − F such that N(e) ∩ F = {e}.

We begin our results with the edge domination in brick product graphs

Theorem 2.3. Let G = C(2n, 1, 3). Then γ
′
(G) = d2n3 e , for n > 3, where 2n ≡ k(mod3)

and k= 1, 2.

Proof. We consider the vertex set of G as V (G) = {a0, a1, a2, ....a2n−1} and the edge set
of G as E(G) = E1∪ E2, where E1= {ei+1|ei+1 = (ai, ai+1)}, i = 0, 1, 2, ...2n− 1, modulo
2n and E2 = {li|li = (a2k, a2k+r)}, i = 1, 2, ..., n, modulo 2n.
For n = 4, the set F = {e1, e4, e6} is a minimal edge dominating set with minimum

cardinality and hence γ
′
(G)= 3.
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For n = 5, the set F = {e1, e4, e6, e9} is a minimal edge dominating set with minimum

cardinality and hence γ
′
(G)= 4.

For n = 7, the set F = {e1, e4, e6}∪{l4, l5} is a minimal edge dominating set with minimum

cardinality and hence γ
′
(G)= 5.

For n = 8, the set F = {e1, e4, e6, e9} ∪ {l4, l5} is a minimal edge dominating set with

minimum cardinality and hence γ
′
(G)= 6.

case(i): Let n = 3p+ 7, where p= 1, 2, 3, ...
Consider the set F = {e1, e4, e6}∪{e12j+4, e12j+6}∪{l6k−2, l6k−1} where 1 ≤ j ≤ dn6 e−1

when n is even, 1 ≤ j ≤ dn6 e − 2 when n is odd and 1 ≤ k ≤ dn6 e − 1
Case (ii) Let n = 6q + 8, q = 1, 2, 3, ...

Consider the set F = {e1, e4, e6} ∪ {e12j+4, e12j+6} ∪ {e2n−1} ∪ {l6k−2, l6k−1} where
1 ≤ j ≤ dn−4

6 e − 1, 1 ≤ k ≤ dn−4
6 e

Case (iii) Let n = 6t+ 5, t = 1, 2, 3, ...
Consider the set F = {e1, e4, e6} ∪ {e12j+4, e12j+6} ∪ {e2n−2} ∪ {l6k−2, l6k−1} where

1 ≤ j, k ≤ dn6 e − 1.
The set F in cases (i), (ii)and (iii) is a minimal edge dominating set with minimum

cardinality since for any edge ei ∈ F , F − {ei} is not an edge dominating set for N(ei)
in G. Hence, any set containing edges less than that of F cannot be a dominating set of
G. Also G is regular of degree 3 and each edge of G is of degree 4 and an edge of G can
dominate atmost 5 distinct edges of G including itself.

This implies that the set F described above is of minimum cardinality and since |F | =

d2n3 e, it follows that γ
′
(C(2n, 1, 3) = d2n3 e

Hence the proof. �

Theorem 2.4. Let G = C(2n, 1, r). Then γ
′
(G) = d2n3 e for

(i) r = 5 and n > 3
(ii) r= 7 and n > 4
(iii) r = n and n > 4 where 2n ≡ k(mod3) and k= 1, 2

Proof. The vertex set and edge set of G are as in theorem 2.3.
Consider the set F = {e1, e4, e7, ....e3j−2}, where 1 ≤ j ≤ d2n3 e

This set F is a minimal edge dominating set with minimum cardinality since for any
edge ei ∈ F , F − {ei} is not an edge dominating set for N(ei) in G. Hence, any set
containing edges less than that of F cannot be a dominating set of G. Also G is regular
of degree 3 and each edge of G is of degree 4 and an edge of G can dominate atmost 5
distinct edges of G including itself.

This implies that the set F described above is of minimum cardinality and since |F | =

d2n3 e, it follows that γ
′
(C(2n, 1, r) = d2n3 e

Hence the proof. �

We now investigate the edge domination number of some shadow distance graphs asso-
ciated with brick product graphs.

Theorem 2.5. Let G = C(2n, 1, 3). Then γ
′
(Dsd{G, {2}}) =

{
2n− 2, n =4,5,7

2n− 4, n ≥ 8

where 2n ≡ k(mod3) and k= 1, 2.

Proof. Consider two copies of G namely G itself and G
′
. In the first copy, let V (G) =

{(a0)1, (a1)1, (a2)1, ...., (a2n−1)1} and E(G)= (E1)1∪(E2)1 where (E1)1= {(ei+1)1|(ei+1)1 =
((ai)1, (ai+1)1)}, i= 0, 1, 2, ...2n−1, modulo 2n and (E2)1 = {(li)1|(li)1 = ((a2k)1, (a2k+r)1)},
i = 1, 2, ..., n, modulo 2n. In the second copy, let V (G

′
) = {(a0)2, (a1)2, (a2)2, ...., (a2n−1)2}
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and E(G
′
)= (E1)2∪(E2)2 where (E1)2= {(ei+1)2|(ei+1)2 = ((ai)2, (ai+1)2)}, i= 0, 1, 2, ...2n−

1, modulo 2n and (E2)2 = {(li)2|(li)2 = ((a2k)2, (a2k+r)2)}, i = 1, 2, ..., n, modulo 2n.

Let G1 = (Dsd{G, {2}}. Then V (G1)= V (G) ∪ V (G
′
) and E(G1) = E(G) ∪ E(G

′
) ∪ E3,

where E3 are the shadow distance edges.
For n = 4, the set F = {e2, e4, e8, e

′
2, e

′
4, e

′
8} is a minimal edge dominating set with

minimum cardinality and hence γ
′
(G1) = 6. (= 2n− 2)

Figure 3. The brick product graph γ
′
(Dsd{C(8, 1, 3), {2}})

For n = 5, the set F = {e2, e4, e7, e10, e
′
2, e

′
4, e

′
7, e

′
10} is a minimal edge dominating set

with minimum cardinality and hence γ
′
(G1) = 8. (= 2n− 2)

For n = 7, the set F = {e2, e4, e7, e10, e12, e14, e
′
2, e

′
4, e

′
7, e

′
10, e

′
12, e

′
14} is minimal edge

dominating set with minimum cardinality and hence γ
′
(G1) = 12. (= 2n− 2)

For n = 8, the set F = {e2, e4, e7, e10, e12, e15, e
′
2, e

′
4, e

′
7, e

′
10, e

′
12, e

′
15} is a minimal edge

dominating set with minimum cardinality and hence γ
′
(G1) = 12. (= 2n− 4)

Let n ≥ 10.
Consider the set F = {e2, e4, e7, e10, e12, e

′
2, e

′
4, e

′
7, e

′
10, e

′
12, } ∪ {e2j+13, e

′
2j+13} ∪ {e0, e

′
0},

where 1 ≤ j ≤ n− 8.
This set F is a minimal edge dominating set with minimum cardinality since for any

edge ei ∈ F , F − {ei} is not an edge dominating set for N(ei) in G1. Hence, any set
containing edges less than that of F cannot be a dominating set of G1. Also G1 is regular
of degree 7 and each edge of G1 is of degree 12 and an edge of G1 can dominate atmost
13 distinct edges of G1 including itself.
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This implies that the set F described above is of minimum cardinality and since |F |
=2n− 4, it follows that γ

′
(Dsd{G, {2}}) = 2n− 4

Hence the proof. �

Theorem 2.6. Let G = C(2n, 1, 3). Then γ
′
(Dsd{G, {3}}) = 2n, where 2n ≡ k(mod3)

and k= 1, 2.

Proof. Let G1 = (Dsd{G, {3}}. The vertex set and edge set of G1 are as in theorem 2.5.
Let n ≥ 4.
Consider the set F = F1 ∪ F2, where F1 = {e2j−1} and F2 = {e′2j−1}, 1 ≤ j ≤ n.
This set F is a minimal edge dominating set with minimum cardinality since for any edge

ei ∈ F , F −{ei} is not an edge dominating set for N(ei) in G1. Hence, any set containing
edges less than that of F cannot be a dominating set of G1. Also for 4 ≤ n ≤ 5, G1 is
regular of degree n, each edge of G1 is of degree 2(n− 1) and an edge of G1 can dominate
atmost 2n distinct edges of G1 including itself. Further , for n ≥ 7, G1 is regular of degree
7, each edge of G1 is of degree 12 and an edge of G1 can dominate atmost 13 distinct edges
of G1 including itself.

This implies that the set F described above is of minimum cardinality and since |F |
=2n, it follows that γ

′
(Dsd{G, {3}})= 2n

Hence the proof �

Theorem 2.7. Let G = C(2n, 1, 5). Then γ
′
(Dsd{G, {2}})= 2n− 2, for n > 3

Proof. Let G1 = (Dsd{G, {2}}. The vertex set and edge set of G1 are as theorem 2.5.

For n = 4, the set F = {e2, e4, e8, e
′
2, e

′
4, e

′
8} is a minimal edge dominating set with

minimum cardinality and hence γ
′
(G1) = 6 (= 2n− 2).

For n = 5, the set F = {e2, e4, e7, e10, e
′
2, e

′
4, e

′
7, e

′
10} is a minimal edge dominating set

with minimum cardinality and hence γ
′
(G1) = 8 (= 2n− 2).

For n = 6, the set F = {e2, e4, e7, e9, e12, e
′
2, e

′
4, e

′
7, e

′
9, e

′
12} is a minimal edge dominating

set with minimum cardinality and hence γ
′
(G1) = 10(= 2n− 2).

Let n ≥ 7.
Consider set F = {e2, e4, e7, e9, e11}∪F1 ∪{e

′
2, e

′
4, e

′
7, e

′
9, e

′
11}∪F2, where F1 = {e2j+12}

and F2 = {e′2j+12}, 1 ≤ j ≤ n− 6.
This set F is a minimal edge dominating set with minimum cardinality since for any

edge ei ∈ F , F − {ei} is not an edge dominating set for N(ei) in G1. Hence, any set
containing edges less than that of F cannot be a dominating set of G1. Also G1 is regular
of degree 9 and each edge of G1 is of degree 16 and an edge of G1 can dominate atmost
17 distinct edges of G1 including itself.

This implies that the set F described above is of minimum cardinality and since |F |
=2n− 2, it follows that γ

′
(Dsd{G, {2}})= 2n− 2

Hence the proof. �

Theorem 2.8. Let G = C(2n, 1, 5). Then γ
′
(Dsd{G, {3}})= 2n, for n > 3

Proof. Let G1 = (Dsd{G, {3}}). The vertex set and edge set of G1 are as in theorem 2.5.

For n = 4, the set F = {e1, e3, e5, e8, e
′
1, e

′
3, e

′
5, e

′
8} is a minimal edge dominating set

with minimum cardinality and hence γ
′
(Gb) = 8 = 2n.

Let n ≥ 5.
Consider set F = F1 ∪ F2, where F1= {e2j−1} and F2 = {e′2j−1}, 1 ≤ j ≤ n.
This set F is a minimal edge dominating set with minimum cardinality since for any edge

ei ∈ F , F −{ei} is not an edge dominating set for N(ei) in G1. Hence, any set containing
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edges less than that of F cannot be a dominating set of G1. Also for 4 ≤ n ≤ 9, G1 is
regular of degree n, each edge of G1 is of degree 2(n− 1) and an edge of G1 can dominate
atmost 2n distinct edges of G1 including itself. Further, for n ≥ 10, G1 is regular of degree
10, each edge of G1 is of degree 18 and an edge of G1 can dominate atmost 19 distinct
edges of G1 including itself.

This implies that the set F described above is of minimum cardinality and since |F |
=2n, it follows that γ

′
(Dsd{G, {3}})= 2n

Hence the proof. �

Theorem 2.9. Let G = C(2n, 1, 7). Then γ
′
(Dsd{G, {2}})= 2n− 2, for n > 4

Proof. Let G1 = (Dsd{G, {2}}). The vertex set and edge set of G1 are as in theorem 2.5.

For n = 5, the set F = {e1, e4, e7, e9, e
′
1, e

′
4, e

′
7, e

′
9} is a minimal edge dominating set

with minimum cardinality and hence γ
′
(Gb) = 8.

Let n ≥ 6.
Consider set F = {e2, e4} ∪ F1 ∪ {e

′
2, e

′
4} ∪ F2, where F1 = {e2j+5} and F2 = {e′2j+5},

1 ≤ j ≤ n− 3.
This set F is a minimal edge dominating set with minimum cardinality since for any

edge ei ∈ F , F − {ei} is not an edge dominating set for N(ei) in G1. Hence, any set
containing edges less than that of F cannot be a dominating set of G1. Also for n > 8, G1

is regular of degree 9 and each edge of G1 is of degree 16 and an edge of G1 can dominate
atmost 17 distinct edges of G1 including itself.

This implies that the set F described above is of minimum cardinality and since |F |
=2n− 2, it follows that γ

′
(Dsd{G, {2}})= 2n− 2

Hence the proof. �

Theorem 2.10. Let G = C(2n, 1, 7). Then γ
′
(Dsd{G, {3}})= 2n, for n > 4

Proof. Let G1 = (Dsd{G, {3}}). The vertex set and edge set of G1 are as theorem 2.5.
Let n ≥ 4.
Consider set F = F1 ∪ F2, where F1= {e2j−1} and F2 = {e′2j−1}, 1 ≤ j ≤ n.
This set F is a minimal edge dominating set with minimum cardinality since for any edge

ei ∈ F , F −{ei} is not an edge dominating set for N(ei) in G1. Hence, any set containing
edges less than that of F cannot be a dominating set of G1. Also for 4 ≤ n ≤ 9, G1 is
regular of degree n, each edge of G1 is of degree 2(n− 1) and an edge of G1 can dominate
atmost 2n distinct edges of G1 including itself. Further, for n ≥ 10, G1 is regular of degree
10, each edge of G1 is of degree 18 and an edge of G1 can dominate atmost 19 distinct
edges of G1 including itself.

This implies that the set F described above is of minimum cardinality and since |F |
=2n, it follows that γ

′
(Dsd{G, {3}})= 2n

Hence the proof. �

3. Conclusions

In this paper, the edge domination number γ
′
(G) of some shadow distance graphs (intro-

duced in [3]) associated with the brick product graphs of even cycles C2n are determined.
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