
TWMS J. App. Eng. Math. V.10, N.2, 2020, pp. 360-369

SUBCLASSES OF MULTIVALENT FUNCTIONS OF COMPLEX

ORDER ASSOCIATED WITH SIGMOID FUNCTION AND

BERNOULLI LEMNISCATE

S.O. OLATUNJI1, H. DUTTA2, §

Abstract. In this present work, subclasses of multivalent functions of complex order
associated with simple logistic sigmoid activation function and Bernoulli Lemniscate
were investigated. Early few coefficient bounds, relevant connection to Fekete-Szego
inequalities and second Hankel determinant for the two classes ML(p, λ, b,Φm,n) and
GL(p, λ, b,Φm,n) were obtained. Our results are new in this direction and give birth to
many corollaries.
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1. Introduction

Special functions deal with an information process that is inspired by the way nervous
system such as brain processes information. It comprises of large number of highly in-
terconnected processing elements (neurones) working together to solve a specific problem.
The functions are outshinning by other fields like real analysis, algebra, topology, func-
tional analysis, differential equations and so on because it mimicks the way human brain
works. They can be programmed to solve a specific problem and it can also be trained by
examples.
Special functions can be categorized into three namely, threshold function, ramp function
and the logistic sigmoid function. The most important one among all is the logistic sig-
moid function because of its gradient descendent learning algorithm. It can be evaluated
in different ways, most especially by truncated series expansion. The logistic sigmoid
function of the form

h(z) =
1

1 + e−z
(1)

is differentiable and has the following properties:
(i) it outputs real numbers between 0 and 1.

1 Department of Mathematical Sciences, Federal University of Technology, P.M.B.704, Akure, Nigeria.
e-mail: olatunjiso@futa.edu.ng; ORCID: https://orcid.org/0000-0001-9155-3230.

2 Department of Mathematics, Gauhati University, Guwahati-781014, India.
e-mail: hemen dutta08@rediffmail.com; ORCID: https://orcid.org/0000-0003-2765-2386.
§ Manuscript received: August 8, 2018; accepted: February 10, 2019.

TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.2 c© Işık University, Department
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(ii) it maps a very large input domain to a small range of outputs.
(iii) it never loses information because it is a one-to-one function.
(iv) it increases monotonically.
With all the aforementioned properties above, it is clear that logistic sigmoid function

is very useful in geometric functions theory (see details in [3], [5], [8] and [9]).

LetA represent the class of analytic functions f defined by the unit disc U = {z : |z| < 1}
and given by

f(z) = z +

∞∑
n=2

anz
n (2)

and normalized by f(0) = f ′(0) − 1 = 0. Also, let S be the well-known subclass of A
consisting of functions which are univalent. Recall that, S∗ and K are the two usual classes

of starlike and convex functions which their geometric conditions satisfies Re
(
zf ′(z)
f(z)

)
> 0

and Re
(

1 + zf ′′(z)
f ′(z)

)
> 0.

Two analytic functions are said to be subordinate to each other written as f ≺ g, if there
exists a Schwartz function ω(z) which is analytic in U with ω(0) = 0 and |ω(z)| < 1, for
all z ∈ U , such that f(z) = g(ω(z)), and f(U) ⊂ g(U).
Sokol and Thomas [11] introduced and studied the class S∗L in the unit disc U , normalized
by f(0) = f ′ − 1 = 0 and satisfying the condition

zf ′(z)

f(z)
≺
√

1 + z =: q(z), z ∈ U, (3)

where the branch of the square root is choosen to be q(0) = 1.
It also noted that the set q(U) lies in the region bounded by the right loop of the lemniscate
of Bernoulli γ1 : (x2 + y2)2 − 2(x2 − y2) = 0.
Let Ap denote the class of functions of the form

f(z) = zp +

∞∑
n=2

anz
n+p (4)

which are analytic and p−valent in the unit disc U = {z : |z| < 1}.
Let E be the class of bounded functions

ω(z) =
∞∑
n=1

cnz
n (5)

which are analytic in the unit disc and satisfying the conditions ω(0) = 0 and |ω(z)| < 1
in U .
A function f ∈ Ap is said to be in the class f ∈ S∗b,p(ϕ) if

1 +
1

b

[
1

p

zf ′(z)

f(z)
− 1

]
≺ ϕ(z) (p ∈ N, z ∈ U), (6)

and a function f ∈ Ap is said to be in the class f ∈ Cb,p(ϕ) if

1− 1

b
+

1

bp

[
1 +

zf ′′(z)

f ′(z)

]
≺ ϕ(z) (p ∈ N, z ∈ U). (7)

The above two classes were studied and investigated by [1]. Varying the parameters
involved in (6) and (7), we have some other subclasses of analytic functions studied by
many authors. For instance, taking b = 1 in (6) and (7), we obtain the classes of functions
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studied by [2]. Also, setting p = b = 1 gives the classes of functions introduced by [4].
The two classes become the well-known starlike and convex functions when ϕ = 1+z

1−z .

For p = 1 and ϕ = 1+z
1−z reduces to the classes of functions investigated [6] and [14].

Recently, [12] investigated the two classes of functions Mp,λ(b,Φm,n) and Gp,λ(b,Φm,n)
which their geometric conditions satisfies

p+
1

b

[
zf ′(z) + λz2f ′′(z)

λzf ′(z) + (1− λ)f(z)
− p
]
> 0

and

p+
1

b

[
zf ′(z)

f(z)
+ λ

z2f ′′(z)

f(z)
− p
]
> 0,

for 0 ≤ λ < 1 and Φm,n is a modified sigmoid function and the interesting result were
obtained.
In 1933, Fekete and Szego gave the sharp bound for the function |a3 − µa22| for the class
S of univalent functions when µ is real. The determination of the sharp bounds for the
functional |a3−µa22| is known as the relevant connection to the Fekete-Szego inequality and
this has been studied by many researchers for different subclasses of univalent functions.
Noonman and Thomas [7] stated the qth Hankel determinant for q ≥ 1 and n ≥ 1 as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 . . . . .
. . . . . .

an+q−1 . . . . an+2q−2

∣∣∣∣∣∣∣∣ .
It can be observed from the determinant that Fekete and Szego functional is H2(1) and
the above determinant has been considered my many researchers in different perspectives.
For q = 2 and n = 2, we have

H2(2) =

∣∣∣∣ a2 a3
a3 a2

∣∣∣∣ .
which is the second Hankel determinant.
Motivation by earlier work done by [3], [10], [12] and [13], a new subclasses were introduced
for the p−valent analytic functions of complex order related to Bernoulli Lemniscate and
simple logistic sigmoid activation function. The coefficient bounds, Fekete-Szego inequality
and second Hankel determinant for the two classes defined were obtained.The results are
new and generates many corollaries.
For the purpose of our discussion, we shall give the following Lemmas and definitions;

Lemma 1.1. [11] If a function p ∈ P is given by p(z) = 1 + p1z + p2z
2 + ...(z ∈ U), then

|pk| ≤ 2, n ∈ N where P is the family of all functions analytic in U for which p(0) = 1
and Re(p(z)) > 0(z ∈ U).

Lemma 1.2 (Fadipe-Joseph et al.[3]). Let h be a sigmoid function and

Φ(z) = 2h(z) = 1 +
∞∑
m=1

(−1)m

2m

( ∞∑
n=1

(−1)n

n!
zn

)m
(8)

then Φ(z) ∈ P , |z| < 1 where Φ(z) is a modified sigmoid function.

Lemma 1.3 (Fadipe-Joseph et al.[3]). Let

Φm,n(z) = 2h(z) = 1 +

∞∑
m=1

(−1)m

2m

( ∞∑
n=1

(−1)n

n!
zn

)
(9)
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then |Φm,n(z)| < 2.

Lemma 1.4 (Fadipe-Joseph et al.[3]). If Φ(z) ∈ P and it is starlike, then f is a normalized
univalent function of the form (1.2).

Setting m = 1, Fadipe-Joseph et al.[3] remarked that

Φ(z) = 1 +

∞∑
n=1

cnz
n

where cn = (−1)n+1

2n! . As such, |cn| ≤ 2, n = 1, 2, 3, ... and the result is sharp for each n.

Definition 1.1. For b ∈ C, let the class ML(p, λ, b,Φm,n) denote the subclass of Ap
consisting of functions of the form (4) and satisfying the following condition

p+
1

b

[
zf ′(z) + λz2f ′′(z)

λzf ′(z) + (1− λ)f(z)
− p
]
≺ p
√

1 + z (10)

where the branch of the square root is choosen to be q(0) = 1, 0 ≤ λ < 1 and Φm,n is a
modified sigmoid function.

Definition 1.2. For b ∈ C, let the class GL(p, λ, b,Φm,n) denote the subclass of Ap con-
sisting of functions of the form (4) and satisfying the following condition

p+
1

b

[
zf ′(z)

f(z)
+ λ

z2f ′′(z)

f(z)
− p
]
≺ p
√

1 + z (11)

where the branch of the square root is choosen to be q(0) = 1, 0 ≤ λ < 1 and Φm,n is a
modified sigmoid function.

It also noted for two definitions that the set q(U) lies in the region bounded by the right
loop of the lemniscate of Bernoulli γ1 : (x2 + y2)2 − 2(x2 − y2) = 0.

2. Main Results

Coeffiecient Bounds.

Theorem 2.1. If f ∈ Ap of the form (4) is belonging to ML(p, λ, b,Φm,n), then

|ap+1| ≤
p|b|[1 + λ(p− 1)]

8[1 + λp]
, (12)

|ap+2| ≤
p|b|[1 + λ(p− 1)]|2bp− 5|

256[1 + λ(p+ 1)]
(13)

and

|ap+3| ≤
p|b|[1 + λ(p− 1)]|6p2b2 − 30pb+ 7|

9216[1 + λ(p+ 2)]
. (14)

Proof. As f(z) ∈ML(p, λ, b,Φm,n), therefore

p+
1

b

[
zf ′(z) + λz2f ′′(z)

λzf ′(z) + (1− λ)f(z)
− p
]

= p
√

1 + ω(z) = p

√
1 +

Φm,n(z)− 1

Φm,n(z) + 1
(15)

where

Φm,n(z) = 1 +
z

2
− z3

24
+

z5

240
− z6

64
+

779z7

20160
− ... (16)
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Using (16) in (15) can be expanded as

(1 + λp)ap+1z + 2(1 + λ(p+ 1))ap+2z
2 + 3(1 + λ(p+ 2))ap+3z

3 + 4(1 + λ(p+ 3))ap+4z
4 + ...

= bp

[
z

8
−

5z2

128
+

224z3

98304
+ ...

] [
(1 + λ(p− 1)) + (1 + λp)ap+1z + (1 + λ(p+ 1))ap+2z

2
+ (1 + λ(p+ 2))ap+3z

3
+ ...

]
.

(17)

Equating the coefficient of z, z2 and z3 in (17). we obtain

ap+1 =
pb[1 + λ(p− 1)]

8[1 + λp]
, (18)

ap+2 =
pb[1 + λ(p− 1)](2bp− 5)

256[1 + λ(p+ 1)]
(19)

and

ap+3 =
pb[1 + λ(p− 1)](3p2b2 − 15pb+ 7)

9216[1 + λ(p+ 2)]
. (20)

Results (12), (13) and (14) can be easily obtained from (18), (19) and (20) respectively. �

For λ = 0 in Theorem 2.1, we obtain

Corollary 2.1. If f ∈ Ap of the form (4) is belonging to ML(p, λ, b,Φm,n), then

|ap+1| ≤
p|b|
8
, (21)

|ap+2| ≤
p|b||2bp− 5|

256
(22)

and

|ap+3| ≤
p|b||3p2b2 − 15pb+ 7|

9216
. (23)

Setting λ = 1 in Theorem 2.1, we have

Corollary 2.2. If f ∈ Ap of the form (4) is belonging to ML(p, 1, b,Φm,n), then

|ap+1| ≤
p2|b|

8[1 + p]
, (24)

|ap+2| ≤
p2|b||2bp− 5|

256[2 + p]
(25)

and

|ap+3| ≤
p2|b||3p2b2 − 15pb+ 7|

9216[3 + p]
. (26)

Putting p = 1 in Theorem 2.1 gives

Corollary 2.3. If f ∈ A of the form (2) is belonging to ML(1, λ, b,Φm,n), then

|a2| ≤
|b|

8[1 + λ]
, (27)

|a3| ≤
|b||2b− 5|

256[1 + 2λ]
(28)
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and

|a4| ≤
|b||3b2 − 15b+ 7|

9216[1 + 3λ]
. (29)

Theorem 2.2. If f ∈ Ap of the form (4) is belonging to GL(p, λ, b,Φm,n), then

|ap+1| ≤
p|b|

8[1 + λp(p+ 1)]
, (30)

|ap+2| ≤
p|b||2bp− 5[1 + λp(p+ 1)]|

128[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)]
(31)

and

|ap+3| ≤
p|b|

1024[3 + λ(p+ 2)(p+ 3)]

∣∣∣∣bp[2bp− 5[1 + λp(p+ 1)]− 5bp[2 + λ(p+ 1)(p+ 2)]

[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)
+

7

3

∣∣∣∣ .
(32)

Proof. Since f ∈ GL(p, λ, b,Φm,n), therefore

p+
1

b

[
zf ′(z)

f(z)
+ λ

z2f ′′(z)

f(z)
− p
]

= p
√

1 + ω(z) = p

√
1 +

Φm,n(z)− 1

Φm,n(z) + 1
. (33)

Using (16) in (33) yields

λp(p− 1) + (1 + λp(p+ 1))ap+1z + (2 + λ(p+ 1)(p+ 2))ap+2z
2
+ (3 + λ(p+ 2)(p+ 3))ap+3z

3
+ (4 + λ(p+ 3)(p+ 4))ap+4z

4
+ ...

= bp

[
z

8
− 5z2

128
+

224z3

98304
+ ...

] [
1 + ap+1z + ap+2z

2 + ap+3z
3 + ...

]
(34)

Equating the coefficients of z, z2 and z3 in (34), we obtain

ap+1 =
pb

8[1 + λp(p+ 1)]
, (35)

ap+2 =
pb(2bp− 5[1 + λp(p+ 1)])

128[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)]
(36)

and

ap+3 =
pb

1024[3 + λ(p+ 2)(p+ 3)]

[
bp[2bp− 5[1 + λp(p+ 1)]− 5bp[2 + λ(p+ 1)(p+ 2)]

[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)]
+

7

3

]
.

(37)

Results (35), (36) and (37) can be easily obtained from (30), (31) and (32) respectively �

For λ = 0 in Theorem 2.2, we have

Corollary 2.4. If f ∈ Ap of the form (4) is belonging to GL(p, 0, b,Φm,n), then

|ap+1| ≤
p|b|
8
, (38)

|ap+2| ≤
p|b||2bp− 5|

256
(39)

and

|ap+3| ≤
p|b|
3072

∣∣∣∣bp[2bp− 5− 10bp

2
+

7

3

∣∣∣∣ . (40)
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Putting λ = 1 in Theorem 2.2, we have

Corollary 2.5. If f ∈ Ap of the form (4) is belonging to GL(p, 1, b,Φm,n), then

|ap+1| ≤
p|b|

8[1 + p(p+ 1)]
, (41)

|ap+2| ≤
p|b||2bp− 5[1 + p(p+ 1)]|

128[1 + p(p+ 1)][2 + (p+ 1)(p+ 2)]
(42)

and

|ap+3| ≤
p|b|

1024[3 + (p+ 2)(p+ 3)]

∣∣∣∣bp[2bp− 5[1 + p(p+ 1)]− 5bp[2 + (p+ 1)(p+ 2)]

[1 + p(p+ 1)][2 + (p+ 1)(p+ 2)
+

7

3

∣∣∣∣ .
(43)

Setting p = 1 in Theorem 2.2, gives

Corollary 2.6. If f ∈ A of the form (2) is belonging to GL(1, λ, b,Φm,n), then

|a2| ≤
|b|

8[1 + 2λ]
, (44)

|a3| ≤
|b||2b− 5[1 + 2λ]|

128[1 + 2λ][2 + 6λ]
(45)

and

|a4| ≤
|b|

1024[3 + 12λ]

∣∣∣∣b[2b− 5[1 + 2λ]− 5bp[2 + 6λ]

[1 + 2λ][2 + 6λ
+

7

3

∣∣∣∣ . (46)

Fekete-Szego Inequality.

Theorem 2.3. If f ∈ Ap of the form (4) is belonging to ML(p, λ, b,Φm,n), then∣∣ap+2 − µa2p+1

∣∣ ≤ p|b|[1 + λ(p− 1)]

64[1 + λp]2

∣∣∣∣(2bp− 5)(1 + λp)2

4[1 + λp(p+ 1)]
− µpb[1 + λ(p− 1)]

∣∣∣∣ . (47)

Proof. From (18) and (19), we obtain

ap+2 − µa2p+1 =
pb[1 + λ(p− 1)]

64[1 + λp]2

[
(2bp− 5)(1 + λp)2

4[1 + λp(p+ 1)]
− µpb[1 + λ(p− 1)]

]
. (48)

Hence, (48) gives the desired results.
�

Taking λ = 0 in Theorem 2.3, implies

Corollary 2.7. If f ∈ Ap of the form (4) is belonging to ML(p, 0, b,Φm,n), then∣∣ap+2 − µa2p+1

∣∣ ≤ p|b|
64

∣∣∣∣(2bp− 5)

4
− µpb

∣∣∣∣ .
Setting λ = 1 in Theorem 2.3, we have

Corollary 2.8. If f ∈ Ap of the form (4) is belonging to ML(p, 1, b,Φm,n), then∣∣ap+2 − µa2p+1

∣∣ ≤ p2|b|
64[1 + p]2

∣∣∣∣(2bp− 5)(1 + p)2

4[1 + p(p+ 1)]
− µp2b

∣∣∣∣ .
Putting p = 1 in Theorem 2.3, then
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Corollary 2.9. If f ∈ A of the form (2) is belonging to ML(1, λ, b,Φm,n), then∣∣a3 − µa22∣∣ ≤ |b|
64[1 + λ]2

∣∣∣∣(2b− 5)(1 + λ)2

4[1 + 2λ]
− µb

∣∣∣∣ . (49)

Theorem 2.4. If f ∈ Ap of the form (4) is belonging to GL(p, λ, b,Φm,n), then∣∣ap+2 − µa2p+1

∣∣ ≤ p|b|
64[1 + λp(p+ 1)]2

∣∣∣∣ [2bp− 5[1 + λp(p+ 1)]][1 + λp(p+ 1)]

2[2 + λ(p+ 1)(p+ 2)]
− µpb

∣∣∣∣ .
(50)

Proof. Using (35) and (36), we obtain

ap+2 − µa2p+1 =
pb

64[1 + λp(p+ 1)]2

[
[2bp− 5[1 + λp(p+ 1)]][1 + λp(p+ 1)]

2[2 + λ(p+ 1)(p+ 2)]
− µpb

]
. (51)

�

Taking λ = 0 in Theorem 2.4, gives

Corollary 2.10. If f ∈ Ap of the form (4) is belonging to GL(p, 0, b,Φm,n), then∣∣ap+2 − µa2p+1

∣∣ ≤ p|b|
64

∣∣∣∣ [2bp− 5]

4
− µpb

∣∣∣∣ . (52)

Also, setting λ = 1 in Theorem 2.4, implies

Corollary 2.11. If f ∈ Ap of the form (4) is belonging to GL(p, 1, b,Φm,n), then∣∣ap+2 − µa2p+1

∣∣ ≤ p|b|
64[1 + p(p+ 1)]2

∣∣∣∣ [2bp− 5[1 + p(p+ 1)]][1 + p(p+ 1)]

2[2 + (p+ 1)(p+ 2)]
− µpb

∣∣∣∣ . (53)

Putting p = 1 in Theorem 2.4, to obtain

Corollary 2.12. If f ∈ A of the form (2) is belonging to GL(1, λ, b,Φm,n), then∣∣a3 − µa22∣∣ ≤ |b|
64[1 + 2λ]2

∣∣∣∣ [2bp− 5[1 + 2λ]][1 + 2λ]

2[2 + 6λ]
− µb

∣∣∣∣ . (54)

Second Hankel Determinant.

Theorem 2.5. If f ∈ Ap of the form (4) is belonging to ML(p, λ, b,Φm,n), then∣∣ap+1ap+3 − a2p+2

∣∣ ≤ p2|b|2(1 + λ(p− 1))2

8192(1 + λ(p+ 1))2

∣∣∣∣(3p2b2 − 15pb+ 7)(1 + λ(p+ 1))2

9(1 + λp)(1 + λ(p+ 2))
− µ(2bp− 5)2

8

∣∣∣∣
(55)

Proof. From (18), (19) and (20), we have

ap+1ap+3 − a2p+2 =
p2b2(1 + λ(p− 1))2

8192(1 + λ(p+ 1))2

[
(3p2b2 − 15pb+ 7)(1 + λ(p+ 1))2

9(1 + λp)(1 + λ(p+ 2))
− µ(2bp− 5)2

8

]
.

(56)

�

Taking λ = 0 in Theorem 2.5, implies

Corollary 2.13. If f ∈ Ap of the form (4) is belonging to ML(p, 0, b,Φm,n), then∣∣ap+1ap+3 − a2p+2

∣∣ ≤ p2|b|2

8192

∣∣∣∣3p2b2 − 15pb+ 7

9
− µ(2bp− 5)2

8

∣∣∣∣ . (57)

Setting λ = 1 in Theorem 2.5, gives



368 TWMS J. APP. ENG. MATH. V.10, N.2, 2020

Corollary 2.14. If f ∈ Ap of the form (4) is belonging to ML(p, 1, b,Φm,n), then∣∣ap+1ap+3 − a2p+2

∣∣ ≤ p4|b|2

8192(2 + p)2

∣∣∣∣(3p2b2 − 15pb+ 7)(2 + p)2

9(1 + p)(3 + p)
− µ(2bp− 5)2

8

∣∣∣∣ (58)

Putting p = 1 in Theorem 2.5, to obtain

Corollary 2.15. If f ∈ A of the form (2) is belonging to ML(1, λ, b,Φm,n), then∣∣a2a4 − a23∣∣ ≤ |b|2

8192(1 + 2λ)2

∣∣∣∣(3b2 − 15b+ 7)(1 + 2λ)2

9(1 + λ)(1 + 3λ)
− µ(2b− 5)2

8

∣∣∣∣ (59)

Theorem 2.6. If f ∈ Ap of the form (4) is belonging to GL(p, λ, b,Φm,n), then∣∣ap+1ap+3 − a2p+2

∣∣ ≤ p2|b|
8192

(60)

∣∣∣∣∣ 1

[1 + λp(p+ 1)][3 + λ(p+ 2)(p+ 3)]

[
bp[2bp− 5(1 + λp(p+ 1))] − 5bp[2 + λ(p+ 1)(p+ 2)]

[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)]
+

7

3

]
− µ

[2bp− 5(1 + λp(p+ 1))]2

2[1 + λp(p+ 1)]2[2 + λ(p+ 1)(p+ 2)]2

∣∣∣∣∣ .
(61)

Proof. From (35), (36) and (37), we have

ap+1ap+3 − a2p+2 =
p2|b|
8192

(62)

[
1

[1 + λp(p+ 1)][3 + λ(p+ 2)(p+ 3)]

[
bp[2bp− 5(1 + λp(p+ 1))] − 5bp[2 + λ(p+ 1)(p+ 2)]

[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)]
+

7

3

]
− µ

[2bp− 5(1 + λp(p+ 1))]2

2[1 + λp(p+ 1)]2[2 + λ(p+ 1)(p+ 2)]2

]
.

(63)

�

Taking λ = 0 in Theorem 2.5, gives

Corollary 2.16. If f ∈ Ap of the form (4) is belonging to GL(p, 0, b,Φm,n), then∣∣ap+1ap+3 − a2p+2

∣∣ ≤ p2|b|
8192

∣∣∣∣13
[
bp[2bp− 5]− 10bp

2
+

7

3

]
− µ [2bp− 5]2

8

∣∣∣∣ . (64)

Putting λ = 1 in Theorem 2.5, implies

Corollary 2.17. If f ∈ Ap of the form (4) is belonging to GL(p, 1, b,Φm,n), then∣∣ap+1ap+3 − a2p+2

∣∣ ≤ p2|b|
8192

(65)

∣∣∣∣∣ 1

[1 + p(p+ 1)][3 + (p+ 2)(p+ 3)]

[
bp[2bp− 5(1 + p(p+ 1))] − 5bp[2 + (p+ 1)(p+ 2)]

[1 + p(p+ 1)][2 + (p+ 1)(p+ 2)]
+

7

3

]
− µ

[2bp− 5(1 + p(p+ 1))]2

2[1 + p(p+ 1)]2[2 + (p+ 1)(p+ 2)]2

∣∣∣∣∣ .
(66)

Setting p = 1 in Theorem 2.5, gives

Corollary 2.18. If f ∈ A of the form (2) is belonging to GL(1, λ, b,Φm,n), then∣∣a2a4 − a23∣∣ ≤ |b|
8192

∣∣∣∣ 1

[1 + 2λ][3 + 12λ]

[
b[2b− 5(1 + 2λ)]− 5b[2 + 6λ]

[1 + 2λ][2 + 6λ]
+

7

3

]
− µ [2bp− 5(1 + 2λ)]2

2[1 + 2λ]2[2 + 6λ]2

∣∣∣∣ .
(67)
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