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FOURTH-ORDER ACCURATE METHOD BASED ON HALF-STEP

CUBIC SPLINE APPROXIMATIONS FOR THE 1D

TIME-DEPENDENT QUASILINEAR PARABOLIC PARTIAL

DIFFERENTIAL EQUATIONS

R.K. MOHANTY1, S. SHARMA2, §

Abstract. In this article, we discuss a fourth-order accurate scheme based on cubic
spline approximations for the solution of quasilinear parabolic partial differential equa-
tions (PDE). The stability of the scheme is discussed using a model linear PDE. The
proposed method is tested on Burgers’ equations in polar coordinates and Burgers-Huxley
equation.
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1. Introduction

We study the following 1D quasi-linear parabolic partial differential equation (PDE) of
the form

∂2w

∂x2
= f(x, t, w,wx, wt), 0 < x < 1, t > 0 (1)

subject to the initial and boundary conditions are prescribed by

w(x, 0) = w0(x), 0 ≤ x ≤ 1,

w(0, t) = g0(t), w(1, t) = g1(t), t > 0,

where we assume that f, w0(x), g0(t)and g1(t) are the continuous functions of sufficient
differentiability.

In this work, we attempt to capture the patterns of time dependent quasi-linear PDE
in one dimensional model equations. The quasi-linear PDE arise in various mathematical
models of physical phenomenon in science and engineering such as reaction mechanism,
convection and diffusion transports. Major quasi-linear PDE (1) which occur in wide vari-
ety of physical problems are considered in our studies, which are Burgers-Huxley equation
(BHE) and Burgers’ equation.
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Mathematical modeling of nerve pulse propagation in nerve fibres and wall motion in
liquid crystals is explained by BHE [16] whereas Burgers’ equation explains the model of
wave propagation in non-linear dissipative systems [3]. Various numerical and analytical
methods for BHE have been found in the literature [1, 2, 4, 5, 6, 9, 10, 14]. High order finite
difference methods for the solution of quasilinear parabolic equations have been discussed
by Jain et al. [7, 8] and Mohanty et al. [12, 13]. Rashidinia et al. [15] have proposed
non-polynomial cubic spline methods for the solution of parabolic equations. In the recent
past, using the second order consistency condition, a polynomial cubic spline method for
quasilinear parabolic PDE was proposed by Mohanty and Jain [11], and that method
needs modification in order to solve singular parabolic PDE, which is a main drawback
of that method. Using fourth order consistency condition, we have developed half-step
cubic spline method which can solve singular parabolic PDE without any alteration in
the scheme. To the authors’ cognition, there is no polynomial cubic spline scheme of
fourth-order accuracy has been seen in the literature so far.

Rest of the article is organized as follows: In section 2, cubic spline function and its
properties on uniform mesh are given. Derivation of the implicit method is discussed in
section 3. Unconditionally stability condition is proven for model linear problem in section
4. In section 5, we obtain the maximum absolute errors for BHE, Burgers’ equation and
Burgers’ equation in polar coordinates and compare the numerical results with the results
found in earlier research work. Concluding remarks of the article are presented in section
6.

2. Cubic spline function and its properties

For the approximate solution of the given PDE (1), we discretize the space interval [0, 1]
as 0 = x0 < x1 < .... < xN < xN+1 = 1. where N is a positive integer. The grid points
of the interval is defined as xl+1 = xl + h, l = 0(1)N , where h be spacing in x -direction
and the time steps are given by tj = jk, j = 0(1)J, where k = tj+1− tj > 0, j = 0, 1, 2, ...

be the spacing in t-direction. The half-step points are defined as xl−1/2 = xl − h
2 and

xl+1/2 = xl + h
2 , l = 1(1)N. Let W j

l = w(xl, tj) be the exact solution value of w(x, t) and

is approximated by wjl .

A cubic spline polynomial of degree three interpolating the value wjl at j th-level is given
by

Sj(x) = ajl + bjl (x− xl) + cjl (x− xl)
2 + djl (x− xl)

3, xl−1 ≤ x ≤ xl, l = 1(1)N + 1, j > 0,
(2)

which satisfy the following conditions at j th-time level:
(i) In each subinterval [xl−1, xl], Sj(x) coincides with a polynomial of degree three,
(ii) Sj(x) ∈ C2[0, 1], and

(iii) Sj(xl) = W j
l , Sj(xl−1) = W j

l−1.

We assume some notation of second order derivative of Sj(x)

S′′j (xl) = Ajl = W j
xxl, S

′′
j (xl±1) = Ajl±1 = W j

xxl±1 and S′′j (xl±1/2) = Ajl±1/2 = W j
xxl±1/2, l =

0(1)N + 1, j > 0.

With the help of cubic spline properties, we get the coefficients
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ajl = W j
l , bjl =

W j
l −W

j
l−1

h
+
h

6

[
Ajl + 2Ajl−1/2

]
, cjl =

Ajl
2
, djl =

Ajl −A
j
l−1/2

3h
.

Substituting the coefficients ajl , b
j
l , c

j
l , d

j
l , in the equation (2), we get the cubic spline

function

Sj(x) = W j
l +

[
W j

l −W
j
l−1

h + h
6

[
Ajl + 2Ajl−1/2

]]
(x− xl) +

Aj
l
2 (x− xl)2

+
Aj

l−A
j
l−1/2

3h (x− xl)3 , x ∈ [xl−1, xl].

(3)

Similarly, we get

Sj(x) = W j
l +

[
W j

l+1−W
j
l

h − h
6

[
Ajl + 2Ajl+1/2

]]
(x− xl) +

Aj
l
2 (x− xl)2

+
Aj

l+1/2
−Aj

l

3h (x− xl)3 , x ∈ [xl, xl+1].

(4)

From equation (3)-(4), we define the derivative of cubic spine function at xl±1/2

S′j(xl−1/2) =
W j
l −W

j
l−1

h
+

h

12

(
Ajl−1/2 −A

j
l

)
= W j

xl−1/2 +O
(
h4
)
, x ∈ [xl−1, xl], (5)

S′j(xl+1/2) =
W j
l+1 −W

j
l

h
+

h

12

(
Ajl −A

j
l+1/2

)
= W j

xl+1/2 +O
(
h4
)
, x ∈ [xl, xl+1], (6)

Using the continuity of the first derivative, that is, S′j(xl−) = S′j(xl+),we obtain the
following consistency condition

W j
l+1 − 2W j

l +W j
l−1 =

h2

3

(
Ajl+1/2 +Ajl +Ajl−1/2

)
+ T jl , (7)

where T jl = O
(
h6
)
.

3. Derivation of the method

To formulate the method, we simply follow the approaches given by Mohanty [11].
At the grid point(xl, tj), let us define some notation

Wpq =
∂p+qW

∂xp∂tq
, αjl =

(
∂f

∂w

)j
l

, βjl =

(
∂f

∂wx

)j
l

, γjl =

(
∂f

∂wt

)j
l

, δjl =

(
∂f

∂t

)j
l

. (8)

Partially differentiate the PDE (1) with respect to ‘t ’, we obtain

−γjlW02 = δjl +W01α
j
l +W11β

j
l −W21 (9)

At the grid point(xl, tj), we can write the PDE (1) as

Ajl = f
(
xl, tj ,W

j
l ,W

j
xl,W

j
tl

)
(10)

Similarly,

Ajl±1/2 = f
(
xl±1/2, tj ,W

j
l±1/2,W

j
xl±1/2,W

j
tl±1/2

)
. (11)
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Since Ajl and Ajl±1/2contain the first derivative terms, then from the consistency condition

(7) the cubic spline method for the parabolic equation (1) can be written as

W̄ j
l+1 − 2W̄ j

l + W̄ j
l−1 =

h2l
3

(
Âjl+1/2 + Âjl + Âjl−1/2

)
+ T̂ jl , (12)

where T̂ jl ≡ O
(
k2h2 + kh4 + h6

)
,

for the development of above method (13), we use the following approximations:

t̄j = tj + θk

W̄ j
l = θW j+1

l + (1− θ)W j
l = W j

l + θkW01 +O
(
k2
)
,

W̄ j
l±1 = θW j+1

l±1 + (1− θ)W j
l±1 = W j

l±1 + θk (W01 ± hW11) +O
(
k2
)
,

W̄ j
l±1/2 =

1

2

(
W̄ j
l±1 + W̄ j

l

)
= W j

l±1/2 + θkW01 +
h2

8
W20 +O

(
k2 + kh2 + h4

)
,

W̄ j
tl =

1

k

(
W j+1
l −W j

l

)
= W01 +

k

2
W02 +O

(
k2
)
,

W̄ j
tl±1 =

1

k

(
W j+1
l±1 −W

j
l±1

)
= W j

tl±1 +
k

2
W02 +O

(
kh+ k2

)
,

W̄ j
tl±1/2 =

1

2k

(
W j+1
l±1 +W j+1

l −W j
l±1 −W

j
l

)
= W j

tl±1/2 +
k

2
W02 +

h2

8
W21 +O

(
k2 + kh2 + h4

)
,

W̄ j
xl =

W̄ j
l+1 − W̄

j
l−1

2h
= W10 +

h2

6
W30 + θkW11 +O

(
k2 + h4

)
,

W̄ j
xl+1/2 =

W̄ j
l+1 − W̄

j
l

h
= W j

xl+1/2 +
h4

24
W30 + θkW11 +O

(
k2 + kh2 + h4

)
,

W̄ j
xl−1/2 =

W̄ j
l − W̄

j
l−1

h
= W j

xl−1/2 +
h2

24
W30 + θkW11 +O

(
k2 + kh2 + h4

)
,

W̄ j
xxl =

W̄ j
l+1 − 2W̄ j

l + W̄ j
l−1

h2
= W j

xxl + θkW21 +O(k2 + h2).

where ′θ′ is a parameter to be determined. By the help of above approximations, we can
simplify the following approximations:

Ājl = f
(
xl, t̄j , W̄

j
l , W̄

j
xl, W̄

j
tl

)
= Ajl + θk

(
δjl +W01α

j
l +W11β

j
l

)
+
k

2
W02γ

j
l +

h2

6
W30β

j
l +O

(
k2 + kh2 + h4

)
,
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Ājl±1/2 = f
(
xl±1/2, t̄j , W̄

j
l±1/2, W̄

j
xl±1/2, W̄

j
tl±1/2

)
= Ajl±1/2 + θk

(
δjl +W01α

j
l +W11β

j
l

)
+ k

2W02γ
j
l

+h2

24

(
3W20α

j
l +W30β

j
l + 3W21γ

j
l

)
+O

(
k2 + kh2 + h4

)
.

From the properties of spline function given by (5) and (6), we define the approximations:

Ŵ j
xl+1/2 =

W̄ j
l+1 − W̄

j
l

h
+

h

12

(
Ājl − Ā

j
l+1/2

)
, (13)

Ŵ j
xl−1/2 =

W̄ j
l − W̄

j
l−1

h
− h

12

(
Ājl − Ā

j
l−1/2

)
. (14)

By the help of the approximations W̄ j
l ,W̄ j

l±1,Ā
j
l ,Ā

j
l±1/2, and simplifying (13)-14, we obtain

Ŵ j
xl+1/2 = W j

xl+1/2 + θkW11 +O
(
k2 + kh2 + h4

)
, (15)

Ŵ j
xl−1/2 = W j

xl−1/2 + θkW11 +O
(
k2 + kh2 + h4

)
. (16)

Now, we needO
(
k2 + kh2 + h4

)
-approximations forW j

l , W
j
xl andO

(
k2 + h4

)
-approxima-

tion for W̄ j
tl. Let

Ŵ j
l = W̄ j

l + ah2W̄ j
xxl, (17)

Ŵ j
xl = W̄ j

xl + bh
(
Ājl+1/2 − Ā

j
l−1/2

)
, (18)

Ŵ j
tl = W̄ j

tl + c
(
W̄ j
tl+1 − 2W̄ j

tl + W̄ j
tl−1

)
. (19)

where a, b and c are parameters to be determined. With the help of the approximation

W̄ j
xl,Ā

j
l±1/2, and from (18) we obtain

Ŵ j
xl = W j

xl + θkW11 +
h2

6
(1 + 6b)W30 +O

(
k2 + kh2 + h4

)
,

Equating the coefficient of h2 to zero in above equation, we obtain b = −1
6 and the equation

reduces to

Ŵ j
xl = W j

xl + θkW11 +O
(
k2 + kh2 + h4

)
, (20)

Similarly, simplifying (17) and (19), we obtain

Ŵ j
l = W j

l + θkW01 + ah2W20 +O
(
k2 + kh2 + h4

)
, (21)

Ŵ j
tl = W j

tl +
k

2
W02 + ch2W21 +O

(
k2 + h4

)
. (22)

Further, we define

Âjl = f
(
xl, t̄j , Ŵ

j
l , Ŵ

j
xl, Ŵ

j
tl

)
, (23)

Âjl±1/2 = f
(
xl±1/2, t̄j , W̄

j
l±1/2, Ŵ

j
xl±1/2, W̄

j
tl±1/2

)
. (24)
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By the help of the approximations t̄j ,W̄
j
l±1/2, W̄

j
tl±1/2, using the equation (15)-(16), and

(20), we simplify the equation (23)-(24)

Âjl = Ajl + θk
(
δjl +W01α

j
l +W11β

j
l

)
+
k

2
W02γ

j
l

+
h2

2

(
2aW20α

j
l + 2cW21γ

j
l

)
+O

(
k2 + kh2 + h4

)
,

Âjl±1/2 = Ajl±1/2 + θk
(
δjl +W01α

j
l +W11β

j
l

)
+
k

2
W02γ

j
l

+
h2

8

(
W20α

j
l +W21γ

j
l

)
+O

(
k2 + kh2 + h4

)
,

Using the approximation W̄ j
l , W̄ j

l±1, Â
j
l , Â

j
l , from (12), we obtain

W j
l+1 − 2W j

l +W j
l−1

=
h2

3
[Ajl+1/2 +Ajl +Ajl−1/2 + 3θk(δjl +W01α

j
l +W11β

j
l −W21)

+
3k

2
W02γ

j
l +

h2

4
(1 + 4a)W20α

j
l +

h2

4
(1 + 4c)W21γ

j
l ] + T̂ jl , (25)

Now with the help of the consistency condition (7) and the relation (9), and using the
equations (21)-(22), and (25), we obtain the local truncation error

T̂ jl = −h
2

3

[
3

(
1

2
− θ
)
kW02γ

j
l +

h2

8
(1 + 4a)W21α

j
l +

h2

4
(1 + 4c)W30γ

j
l

]
+O

(
k2h2 + kh4 + h6

)
. (26)

The proposed cubic spline method (12) to be of O
(
k2 + kh2 + h4

)
, the coefficients of kh2

and h4 in (26) must be zero.
Thus we obtain θ = 1

2 , a = −1
4 , c = −1

4 and the local truncation error reduces to

T̂ jl ≡ O
(
k2h2 + kh4 + h6

)
.

4. Application and stability consideration of the method

Now let us consider the quasilinear singular parabolic PDE in polar coordinates

1

Re

(
wrr +

τ

r
wr −

τ

r2
w
)

= wt + wwr + g(r, t), 0 < r < 1, t > 0, (27)

where Re > 0 denotes the Reynolds number. For τ = 1 and 2, the above equation de-
scribes Burgers’ equation in cylindrical and spherical symmetry, respectively. It represents
the mathematical model of shock wave, turbulence and boundary layer in fluid dynam-
ics. It establishes the similar characteristics with 1D Navier-Stokes equation because of
the presence of viscosity and convection term. Due to the large fluctuations around the
singularity in the numerical solution of Burgers’ equation, half-step implicit cubic spline
technique plays a crucial role for getting the high accurate numerical solution.

Re-writing equation (27) as

εwrr = wt +Q(r)wr + wwr + S(r)w + g(r, t), (28)

where Re = ε−1 > 0 represents a Reynolds number and Q(r) = −τε
r , S(r) = τε

r2
.
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Replacing the variable x by r and applying the method (12) to the differential equation
(28), we obtain

ε
(
W̄ j
l+1 − 2W̄ j

l + W̄ j
l−1

)
=
h2

3

(
Âjl+1/2 + Âjl + Âjl−1/2

)
+ T̂ jl , (29)

where

Âjl = Ŵ j
tl +QlŴ

j
rl + Ŵ j

l Ŵ
j
rl + SlŴ

j
l + ḡjl ,

Âjl±1/2 = W̄ j
tl±1/2 +Ql±1/2Ŵ

j
rl±1/2 + W̄ j

l±1/2Ŵ
j
rl±1/2 + Sl±1/2W̄

j
l±1/2 + ḡjl±1/2,

where W̄ j
l±1/2,W̄

j
tl±1/2, Ŵ

j
l , Ŵ j

rl,Ŵ
j
rl±1/2 and Ŵ j

tl are defined in section 3 and Ql =

Q(rl), Ql±1/2 = Q(rl±1/2), Sl = S(rl), Sl±1/2 = S(rl±1/2), ḡl = g
(
rl, tj + k

2

)
, ḡl±1/2 =

g
(
rl±1/2, tj + k

2

)
.

We observe that, the method (29) is of fourth-order accuracy for the numerical solution
of PDE (27) and is independent from the terms 1/(rl±1), i.e. there is no need of any
other points to handle the singular problems. Hence, we can directly solve PDE (27) for
l = 1(1)N ; j = 0, 1, 2, ... in the given domain.

To discuss the stability of the method, we consider the convection-diffusion equation

νwxx = wt + ρwx, 0 < x < 1, t > 0 (30)

where the coefficients ρ and ν > 0 are constants and represents the convective velocity and
the diffusivity respectively. Applying the method (12) to the differential equation (30), we
obtain the following scheme[

1 +
1

12

(
1− 6λν − 2λνR2

)
δ2x −

R

12
(1− 6νλ) (2µxδx)

]
wj+1
l

=

[
1 +

1

12

(
1 + 6λν + 2λνR2

)
δ2x −

R

12
(1 + 6νλ) (2µxδx)

]
wjl , (31)

where R = ρh
2ν and λ = k/h2. Now, we consider the von Neumann stability method to

establish the stability of the scheme (31) for which we consider the periodic data u(0, t) =

u(1, t). we define the error term εjl = ξjeiµl at the grid point (xl, tj), where µ is a real

number and ξ is a complex number. Now, put the value of εjl into error equation of the
scheme (31), we get the amplification factor ξ as

ξ =

(
1− 1

3(1 + 6νλ+ 2νλR2) sin2 η
2 −

iR
6 (1 + 6νλ) sin η

)(
1− 1

3(1− 6λν − 2νλR2) sin2 η
2 −

iR
6 (1− 6νλ) sin η

) =
1 + (C + iD)

1− (C + iD)
, (32)

where

C + iD =
−2λν

[(
1 + R2

3

)
sin2 η

2 + iR
2 sin η

]
[
1− 1

3 sin2 η
2 −

iR
6 sin η

] .

For stability, it is required that |ξ|2 ≤ 1. Imposing this condition on (32) yields C ≤ 0,
which satisfied for all variable angle η. Hence the scheme (31) is unconditionally stable.
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5. Numerical Results

To check the efficiency and usefulness of the scheme, we solve BHE, Burgers’ equation
and Burgers equation in polar coordinates. The analytical solution (exact solution) is
known as a test procedure. From the analytical solution of the problem, we can obtain
the initial and boundary conditions for that problem. We use Newton-Raphson method
to obtain the numerical solution of time dependent quasilinear PDE. In each example, we
choose 0 as the initial guess.

Example 1. (Burgers-Huxley equation): The one-dimensional viscous Burgers-
Huxley equation described in [3, 16] is given by the following form:

εwxx = wt + αwwx + β(w3 + γ0w
2 + γw), a < x < b, t > 0

where w = w(x, t) is sufficiently differentiable function, ε > 0 is a small positive parameter,
αis real parameter, β ≥ 0, γ ∈ (0, 1) and γ0 = −(1 + γ). The exact solution (See [10]) is
given by

w(x, t) =
1

2
[1 + tanh(c1(x− c2t))], t ≥ 0,

where

c1 =
−α−

√
α2 + 8β

8
, c2 =

α

2
−

(1− 2γ)
(
α−

√
α2 + 8β

)
4

.

In this example, we choose the interval [a, b] as [0, 1] and β = 1. The maximum absolute
errors are reported in Table 1 at t = 1.0 for different values of α and γ. The graphical
results are depicted at t = 1 in Fig. 1.

Example 2. (Burgers’ equation) In this example, we studied the problem considered
in example 1 with the parameters α = 1 and β = 0. The exact solution (See [8]) is given
by

w(x, t) =
2επ sin(πx) exp(−επ2t)
2 + cos(πx) exp(−επ2t)

.

where ε is the coefficient of viscosity and Re = ε−1 > 0 is the Reynolds Number. In this
case, we select the interval [a, b] as [0, 1]. The maximum absolute errors are reported in
Table 2 at t = 1.0 for different values of Re.. In Fig. 2, we portrayed the visual comparison
of numerical and exact solution at t = 1.

Example 3. (Burgers’ equation in polar coordinates): In this example, we solve
the problem (28) with the exact solution w(r, t) = e−t sinh r. In this case; we select the
parameters τ = 1 and 2 with the time spacing k = 1/100. Maximum absolute errors at t =
1 are presented in Table 3. In Fig. 3, we portrayed the two dimensional visual comparison
between numerical and exact solution at t = 1.

6. Concluding Remarks

In this manuscript, we present a new fourth-order accurate implicit numerical method
based on cubic spline approximations for the numerical solution of time-dependent quasi-
linear parabolic PDE in one spatial dimension. The stability consideration for one-
dimensional linear model problem has been demonstrated. The accuracy and applicability
of the proposed method has been tested on BHE and Burgers’ equation in polar coordi-
nates. These have been verified by the maximum absolute error given in tables. It can
be seen from table 1 and 2, fourth-order convergence have been achieved. We also see the
proposed method works well for high Reynolds number.
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N+1 Proposed Method (12) Method given in [2]

α = 5, γ =
0.85

α = 3, γ = 0.5 α = 5, γ =
0.85

α = 3, γ = 0.5

8 1.6011(-05) 1.2921(-05) 2.2121(-04) 1.7151(-04)
16 1.0031(-06) 8.0703(-07) 5.0308(-05) 4.1196(-05)
32 6.1135(-08) 5.0420(-08) 1.2278(-05) 1.0147(-05)
64 3.8419(-09) 3.0595(-09) 3.0526(-06) 2.5274(-06)

Table 1. Table 1: Example 1: Maximum absolute errors at t = 1 with β = 1.
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N+1 Proposed Method (12) Method given in [2]

Re = 102 Re = 104 Re = 106 Re = 102 Re = 104 Re = 106

8 1.7214(-
05)

3.8844(-
09)

4.1139(-
13)

4.1061(-
04)

8.3710(-
08)

8.4373(-
12)

16 1.0144(-
06)

2.4501(-
10)

2.5384(-
14)

1.1067(-
04)

2.2489(-
08)

2.2700(-
12)

32 6.2387(-
08)

1.5315(-
11)

3.1595(-
15)

2.7680(-
05)

5.7437(-
09)

5.7920(-
13)

64 3.8844(-
09)

1.0035(-
11)

9.8998(-
16)

6.9473(-
06)

1.4564(-
09)

1.4698(-
13)

Table 2. Table 2: Example 2: Maximum absolute errors at t = 1 with
α = 1, β = 0 .

N+1 τ = 1 τ = 2
Re = 10 Re = 100 Re = 10 Re = 100

50 1.7780(-06) 4.6738(-06) 1.5605(-06) 4.6672(-06)
60 1.5303(-06) 4.6710(-06) 1.3393(-06) 4.6655(-06)
70 1.3135(-06) 4.6651(-06) 1.1353(-06) 4.6602(-06)
80 1.0137(-06) 4.6712(-06) 8.5868(-07) 4.6623(-06)
90 6.7447(-07) 4.6703(-06) 5.4159(-07) 4.6626(-06)

Table 3. Table 3: Example 3: Maximum absolute error at t = 1, k = 0.01 .
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Figure 1. Example 1: The graph of exact and numerical solutions for the
values α = 5, β = 1.0, γ = 0.85 at t = 1 (a)Numerical Solution,(b)Exact
Solution and(c)Numerical vs Exact solution at t = 1
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Figure 2. Example 2: The graph of exact and numerical solutions for
the values Re = 100, N + 1 = 16 at t = 1 (a)Numerical Solution,(b)Exact
Solution and(c)Numerical vs Exact solution at t = 1
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Figure 3. Example 3: The graphs of numerical and exact solution for the
values k = 1/100, N + 1 = 50, and Re = 100 at t = 1.
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