NEIGHBOURHOODS OF A CERTAIN SUBCLASS OF STRONGLY STARLIKE FUNCTIONS

P. THIRUPATHI REDDY ${ }^{1}$, B. VENKATESWARLU ${ }^{2}$, \S

Abstract

In this paper we introduce and study a new subclass of strongly starlike functions of order α defined by convolution structure. We investigate neighbourhoods and coefficient bounds of this class.

Keywords: strongly starlike, Hadamard product, neighborhood.
AMS Subject Classification: 30C45.

1. Introduction

Let A be the class of all functions $f(z)$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

in the open unit disc $E=\{z:|z|<1\}$. Let S be the subclass of A consisting of univalent functions and satisfy the following usual normalization condition $f(0)=f^{\prime}(0)-1=0$. We denote S by the subclass of A consisting of functions which are all univalent in E. Let $S T(\alpha), 0<\alpha \leq 1$, be denoted the class of functions in A that are starlike of order α and $C V$ be denote the class of convex functions. Then we have the classical analytic characterizations

$$
\begin{equation*}
f \in S T(\alpha) \Leftrightarrow \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, z \in E \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f \in C V \Leftrightarrow \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, z \in E \tag{2}
\end{equation*}
$$

Any $f \in A$ has the Taylor's expansion $f(z)=z+a_{2} z^{2}+\cdots$ in E. The convolution or Hadamard product of $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ is defined as

[^0]$(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}$.
Clearly $f(z) * \frac{z}{(1-z)^{2}}=z f^{\prime}(z)$ and $f(z) * \frac{z}{1-z^{2}}=\frac{f(z)-f(-z)}{2}$.
Strongly starlike and strongly convex functions were introduced and discussed by Brannan and Kirwan [1] and also by Stankiewincz [4] and [5]. The notion of δ-neighbourhood was introduced by Ruscheweyh [2]. In 1973, Rusheweyh and Sheil-Small [3] proved the Polya-Schoenberg conjecture that the class of convex functions is preserved under convolution.
In this paper we introduce the class $\operatorname{STS}_{s}(\alpha), 0<\alpha \leq 1$, satisfying the condition $\left|\arg \left(\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}\right)\right|<\frac{\alpha \pi}{2}$. We study neighbourhoods of this class and also prove a necessary and sufficient condition in terms of convolution for a function f to be $\operatorname{STS}_{s}(\alpha)$. Furthermore, it is shown that class $S T S_{s}(\alpha)$ is closed under convolution with function f which are convex univalent in E.

Definition 1.1. For $\delta \geq 0$, the δ-neighbourhood of $f(z) \in A$ is defined by

$$
\begin{equation*}
N_{\delta}(f)=\left\{g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}: \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta\right\}, z \in E . \tag{3}
\end{equation*}
$$

To prove our results we need the following lemma.
Lemma 1.1. [3] If ϕ is a convex univalent function with $\phi(0)=\phi^{\prime}(0)-1$ in the unit disk E and g is starlike univalent in E then for each analytic function F in E, the image of E under $\frac{(\phi * F g)(z)}{(\phi * g)(z)}$ is a subset of the convex hull of $F(E)$.

2. Main Results

In this section we give the definitions of $S T S_{s}(\alpha), 0<\alpha \leq 1$ and study the neighbourhoods of this class and also prove a necessary and sufficient condition in terms of convolution for a function f to be $\operatorname{STS}_{s}(\alpha)$. Furthermore, it is shown that class $\operatorname{STS}_{s}(\alpha)$ is closed under convolution with function f which are convex univalent in E.

Definition 2.1. A function $f(z)$ is said to be in the class $\operatorname{STS}(\alpha), 0<\alpha \leq 1$ if all $z \in E$

$$
\begin{equation*}
\left|\arg \left(\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}\right)\right|<\frac{\alpha \pi}{2} . \tag{4}
\end{equation*}
$$

$f \in \operatorname{STS}_{s}(\alpha)$ means that the image of E under $w=\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}$ lies in the region $\Omega=$ $|\arg w|<\frac{\alpha \pi}{2}$, equivalently $\frac{2 z f^{\prime}(z)}{f(z)-f(-z)} \neq t e^{ \pm i \frac{\alpha \pi}{2}}, t \in \mathbb{R}^{+}$.

Now let us give a characterization for a function $f \in A$ to be in $S T S_{s}(\alpha)$ by means of convolution.

Definition 2.2. The class of all analytic functions $\operatorname{STS}_{s}^{\prime}(\alpha), 0<\alpha \leq 1$ is defined in E by

$$
\begin{equation*}
H(z)=\frac{1}{1-t e^{ \pm i \frac{\alpha \pi}{2}}}\left[\frac{z}{(1-z)^{2}}-t e^{ \pm i \frac{\alpha \pi}{2}}\left(\frac{z}{1-z^{2}}\right)\right], t \in \mathbb{R}^{+} . \tag{5}
\end{equation*}
$$

Theorem 2.1. Let $0<\alpha \leq 1$ and $z \in E$. Then $f \in \operatorname{STS}_{s}(\alpha)$ if and only if $\frac{(f * H)(z)}{z} \neq 0$, for all $H(z) \in S T S_{s}^{\prime}(\alpha)$.

Proof. Let us assume that $\frac{(f * H)(z)}{z} \neq 0, z \in E$ and for all $H(z) \in S T S_{s}^{\prime}(\alpha)$. Then we have

$$
\begin{aligned}
\frac{(f * H)(z)}{z} & =\frac{1}{z\left(1-t e^{ \pm i \frac{\alpha \pi}{2}}\right)}\left[f(z) * \frac{z}{(1-z)^{2}}-\left(t e^{ \pm i \frac{\alpha \pi}{2}}\right)\left(f(z) * \frac{z}{1-z^{2}}\right)\right] \\
& =\frac{1}{z\left(1-t e^{ \pm i \frac{\alpha \pi}{2}}\right)}\left[z f^{\prime}(z)-t e^{ \pm i \frac{\alpha \pi}{2}}\left(\frac{f(z)-f(-z)}{2}\right)\right] \neq 0, t \in \mathbb{R}^{+}
\end{aligned}
$$

Equivalently $\frac{2 z f^{\prime}(z)}{f(z)-f(-z)} \neq t e^{ \pm i \frac{\alpha \pi}{2}}$. But $t \in \mathbb{R}^{+}$then $t e^{ \pm i \frac{\alpha \pi}{2}}$ covers the half lines $\arg w=$ $\pm \frac{\alpha \pi}{2}$.
Then $\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}=1$ at $z=0$. Hence $\frac{2 z f^{\prime}(z)}{f(z)-f(-z)} \in \Omega=\left\{z \in C:|\arg w|<\frac{\alpha \pi}{2}\right.$ or $f \in S T S_{s}(\alpha)$.

Conversely let us assume that $f \in S T S_{s}(\alpha)$. Then $\frac{2 z f^{\prime}(z)}{f(z)-f(-z)} \neq t e^{ \pm i \frac{\alpha \pi}{2}}$.
Or equivalently $f(z) *\left[\frac{z}{(1-z)^{2}}-t e^{ \pm i \frac{\alpha \pi}{2}}\left(\frac{z}{1-z^{2}}\right)\right] \neq 0$, for $z \neq 0$.
Normalizing the function with in the brackets, we get $\frac{(f * H)(z)}{z} \neq 0$ in E, where $H(z)$ is the function defined (5)

Lemma 2.1. Let $H(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in S T S_{s}^{\prime}(\alpha), 0<\alpha \leq 1$. Then

$$
\left|c_{n}\right| \leq \frac{n}{\sin \left(\frac{\alpha \pi}{2}\right)}
$$

Proof. Let $H(z) \in S T S_{s}^{\prime}(\alpha)$. Then by Definition 2.2 , for $t \in \mathbb{R}^{+}$,

$$
\begin{aligned}
H(z) & =\frac{1}{1-t e^{ \pm i \frac{\alpha \pi}{2}}}\left[\frac{z}{(1-z)^{2}}-t e^{ \pm i \frac{\alpha \pi}{2}}\left(\frac{z}{1-z^{2}}\right)\right] \\
& =\frac{1}{1-t e^{ \pm i \frac{\alpha \pi}{2}}}\left[\left(z+2 z^{2}+\cdots\right)-\left(t e^{ \pm i \frac{\alpha \pi}{2}}\right)\left(z+z^{3}+\cdots\right)\right] \\
& =z+\sum_{n=2}^{\infty} c_{n} z^{n}
\end{aligned}
$$

Then comparing the coefficients on either side, we get

$$
c_{n}= \begin{cases}\frac{n}{1-t e^{ \pm i \frac{\alpha \pi}{2}}}, & \text { when } n \text { is an even } \\ \frac{n-t e^{ \pm i \frac{\alpha \pi}{2}}}{1-t e^{ \pm i \frac{\alpha \pi}{2}}}, & \text { when } n \text { is an odd }\end{cases}
$$

case (i): If n is an even then

$$
\begin{aligned}
\left|c_{n}\right|^{2} & =\left|\frac{n}{1-t e^{ \pm i \frac{\alpha \pi}{2}}}\right|^{2}=\frac{n^{2}}{\left(1-t \cos \left(\frac{\alpha \pi}{2}\right)\right)^{2}+\left(t \sin \left(\frac{\alpha \pi}{2}\right)\right)^{2}} \\
& =\frac{n^{2}}{1-2 t \cos \left(\frac{\alpha \pi}{2}\right)+t^{2}} \\
& =1+\frac{n^{2}-1+2 t \cos \left(\frac{\alpha \pi}{2}\right)-t^{2}}{1-2 t \cos \left(\frac{\alpha \pi}{2}\right)+t^{2}} \\
& \leq \max _{t}\left[1+\frac{n^{2}-1}{1-2 t \cos \left(\frac{\alpha \pi}{2}\right)+t^{2}}\right], \text { since } t \geq 0 \\
& \leq\left[1+\frac{n^{2}-1}{\sin ^{2}\left(\frac{\alpha \pi}{2}\right)}\right]=\frac{n^{2}-\cos ^{2}\left(\frac{\alpha \pi}{2}\right)}{\sin ^{2}\left(\frac{\alpha \pi}{2}\right)}
\end{aligned}
$$

Therefore $\left|c_{n}\right| \leq \frac{n}{\sin \left(\frac{\alpha \pi}{2}\right)}$.
case (ii): If n is an odd then

$$
\begin{aligned}
\left|c_{n}\right|^{2} & =\left|\frac{n-t e^{ \pm i \frac{\alpha \pi}{2}}}{1-t e^{ \pm i \frac{\alpha \pi}{2}}}\right|^{2}=\frac{\left(n-t \cos \left(\frac{\alpha \pi}{2}\right)\right)^{2}+\left(t \sin \left(\frac{\alpha \pi}{2}\right)\right)^{2}}{\left(1-t \cos \left(\frac{\alpha \pi}{2}\right)\right)^{2}+\left(t \sin \left(\frac{\alpha \pi}{2}\right)\right)^{2}} \\
& =\frac{n^{2}-2 n t \cos \left(\frac{\alpha \pi}{2}\right)+t^{2}}{1-2 t \cos \left(\frac{\alpha \pi}{2}\right)+t^{2}} \\
& =1+\frac{n^{2}-1+2 t(n-1) \cos \left(\frac{\alpha \pi}{2}\right)}{1-2 t \cos \left(\frac{\alpha \pi}{2}\right)+t^{2}} \\
& \leq \max _{t}\left[1+\frac{n^{2}-1}{1-2 t \cos \left(\frac{\alpha \pi}{2}\right)+t^{2}}\right], \text { since } t \geq 0 \\
& =\left[1+\frac{n^{2}-1}{\sin ^{2}\left(\frac{\alpha \pi}{2}\right)}\right]=\frac{n^{2}-\cos ^{2}\left(\frac{\alpha \pi}{2}\right)}{\sin ^{2}\left(\frac{\alpha \pi}{2}\right)}
\end{aligned}
$$

Therefore $\left|c_{n}\right| \leq \frac{n}{\sin \left(\frac{\alpha \pi}{2}\right)}$.

Lemma 2.2. For $f \in A$ and and for every $\varepsilon \in C$ such that $|\varepsilon|<\delta$, if $F_{\varepsilon}(z)=\frac{f(z)+\varepsilon z}{1+\varepsilon} \in$ $S T S_{s}(\alpha)$ then for every $H \in S T S_{s}^{\prime}(\alpha),\left|\frac{(f * H)(z)}{z}\right| \geq \delta, z \in E$.

Proof. Let $F_{\varepsilon}(z)=\frac{f(z)+\varepsilon z}{1+\varepsilon}$. Then by Theorem 2.1, $\frac{(f * H)(z)}{z} \neq 0$, for all $f \in S T S_{s}(\alpha), z \in E$. Equivalently, $\frac{(f * H)(z)+\varepsilon z}{(1+\varepsilon) z} \neq 0$ in E or $\frac{(f * H)(z)}{z} \neq-z$, which show that $\left|\frac{(f * H)(z)}{z}\right| \geq \delta$.

Theorem 2.2. For $f \in A$ and $\varepsilon \in C,|\varepsilon|<\delta<1$, assume $F_{\varepsilon}(z) \in S T S_{s}(\alpha)$. Then $N_{\delta^{\prime}}(f) \subset S T S_{s}(\alpha)$, where $\delta^{\prime}=\delta \sin \left(\frac{\alpha \pi}{2}\right)$.

Proof. Let $H \in S T S_{s}^{\prime}(\alpha)$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in N_{\delta^{\prime}}(f)$. Then

$$
\begin{aligned}
\left|\frac{(g * H)(z)}{z}\right| & =\left|\frac{(f * H)(z)}{z}+\frac{((g-f) * H)(z)}{z}\right| \\
& \geq\left|\frac{(f * H)(z)}{z}\right|-\left|\frac{(g-f)(z) * H(z)}{z}\right| \\
& \geq \delta-\left|\sum_{n=2}^{\infty} \frac{\left(b_{n}-a_{n}\right) c_{n} z^{n}}{z}\right|, \text { by Lemma 2.2. }
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\frac{(g * H)(z)}{z}\right| & \geq \delta-|z| \sum_{n=2}^{\infty}\left|b_{n}-a_{n}\right|\left|c_{n}\right| \\
& >\delta-\frac{1}{\sin \left(\frac{\alpha \pi}{2}\right)} \sum_{n=2}^{\infty} n\left|b_{n}-a_{n}\right|, \text { by Lemma } 2.1 \\
& >\delta-\frac{\delta^{\prime}}{\sin \left(\frac{\alpha \pi}{2}\right)}=0, \text { for } \delta^{\prime}=\delta \sin \left(\frac{\alpha \pi}{2}\right)
\end{aligned}
$$

Thus $\frac{(g * H)(z)}{z} \neq 0$ in E for all $H \in S T S_{s}^{\prime}(\alpha)$ which means by Theorem 2.2, $g \in S T S_{s}(\alpha)$, in other words, $N_{\delta \sin \left(\frac{\alpha \pi}{2}\right)} \subset S T S_{s}(\alpha)$.

Lemma 2.3. If $0<\alpha \leq 1$ and $g \in S T S_{s}(\alpha)$ then $G(z)=\frac{g(z)-g(-z)}{2} \in S T S(\alpha) \subset S T(\alpha)$.
Proof. Let $0<\alpha \leq 1$ and $g \in S T S_{s}(\alpha)$. Then $\frac{2 z g^{\prime}(z)}{g(z)-g(-z)} \in \Omega$. Now

$$
\frac{z G^{\prime}(z)}{G(z)}=\frac{z g^{\prime}(z)}{2 G(z)}+\frac{-z g^{\prime}(-z)}{2 G(-z)}
$$

There exist ζ_{1}, ζ_{2} in Ω such that $\frac{z G^{\prime}(z)}{G(z)}=\frac{\zeta_{1}}{2}+\frac{\zeta_{2}}{2}$

$$
=\zeta_{3}
$$

Since Ω is convex sector $\zeta_{3} \in \Omega$ and hence $\frac{z G^{\prime}(z)}{G(z)} \in \Omega$.
It can be easily seen that $S T S(\alpha) \subset S T(\alpha)$.
Thus $G(z) \in S T S(\alpha) \subset S T(\alpha)$.
Theorem 2.3. Let $f \in C V$ and $g \in S T S_{s}(\alpha)$. Then $(f * g)(z) \in S T S_{s}(\alpha)$.
Proof. Let $f(z) \in C V, g(z) \in S T S_{s}(\alpha), G(z)=\frac{g(z)-g(-z)}{2}$ and Ω is convex domain.
Since $g(z) \in S T S_{s}(\alpha), G(z)=\frac{g(z)-g(-z)}{2} \in S T(\alpha)$, by Lemma 2.3.
Hence, by an application of Lemma 1.1, we get

$$
\begin{aligned}
\frac{z(f * g)^{\prime}(z)}{(f * G)(z)} & =\frac{\left(f * z g^{\prime}\right)(z)}{(f * G)(z)} \\
& =\frac{f * \frac{z g^{\prime}(z)}{G(z)} G(z)}{(f * G)(z)} \\
& \subset \overline{C_{0}}\left(\frac{z g^{\prime}(z)}{G(z)}\right)
\end{aligned}
$$

Since Ω is convex and $g \in S T S_{s}(\alpha)$. This proves that $(f * g)(z) \in S T S_{s}(\alpha)$.

Acknowledgement. The authors express their sincere thanks to the esteemed referee(s) for their careful readings, valuable suggestions and comments, which helped them to improve the presentation of the paper.

References

[1] Brannan, D. A. and Kirwan, W. E. , (1969), On some classes of bounded univalent functions, J. London Math. Soc., 1, (2), pp. 431-443.
[2] Ruscheweyh, S., (1981), Neighbourhoods of Univalent functions, Proc. Amer. Maths. Soc., 81, pp. 521-527.
[3] Ruscheweyh, S. and Sheil, T., - Small, (1973), Hadamard product of Schilicht functions and the polya - Schoenberg Canjecture, Comment. Math. Helvi, 48, pp. 119-135.
[4] Stankiewicz, J., (1966), Quelques Problems extremanx dans des classes de functions angulairment etoilees, Ann. Univ. M. Curie - Sklodowska, Section-A, 20, pp. 59-75.
[5] Stankiewicz, J., (1970), Some remarks concerning starlike functions", Bull. Acad. Polon. Sci. Ser. Scie. Math., 18, pp. 143-146.

[^0]: ${ }^{1}$ Department of Mathematics, Kakatiya Univeristy, Warangal, 506 009, Telangana, India. e-mail: reddypt2@gmail.com; ORCID: https://orcid.org/0000-0002-0034-444X.
 2 Department of Mathematics, GITAM University, Doddaballapur, 561 203, Bengaluru, Rural, India. e-mail: bvlmaths@gmail.com; ORCID: https://orcid.org/0000-0003-3669-350X.
 \S Manuscript received: August 13, 2018; accepted: January 22, 2019. TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.2; © Işık University, Department of Mathematics, 2020; all rights reserved.

