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NEIGHBOURHOODS OF A CERTAIN SUBCLASS OF STRONGLY

STARLIKE FUNCTIONS

P. THIRUPATHI REDDY 1, B. VENKATESWARLU 2, §

Abstract. In this paper we introduce and study a new subclass of strongly starlike
functions of order α defined by convolution structure. We investigate neighbourhoods
and coefficient bounds of this class.
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1. Introduction

Let A be the class of all functions f(z) of the form

f(z) = z +
∞∑
n=2

anz
n

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of univalent
functions and satisfy the following usual normalization condition f(0) = f ′(0) − 1 = 0.
We denote S by the subclass of A consisting of functions which are all univalent in E.
Let ST (α), 0 < α ≤ 1, be denoted the class of functions in A that are starlike of order
α and CV be denote the class of convex functions. Then we have the classical analytic
characterizations

f ∈ ST (α)⇔ Re

{
zf ′(z)

f(z)

}
> α, z ∈ E (1)

and

f ∈ CV ⇔ Re

{
1 +

zf ′′(z)

f ′(z)

}
> α, z ∈ E. (2)

Any f ∈ A has the Taylor’s expansion f(z) = z + a2z
2 + · · · in E. The convolution

or Hadamard product of f(z) = z +
∞∑
n=2

anz
n and g(z) = z +

∞∑
n=2

bnz
n is defined as
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(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n.

Clearly f(z) ∗ z
(1−z)2 = zf ′(z) and f(z) ∗ z

1−z2 = f(z)−f(−z)
2 .

Strongly starlike and strongly convex functions were introduced and discussed by Bran-
nan and Kirwan [1] and also by Stankiewincz [4] and [5]. The notion of δ−neighbourhood
was introduced by Ruscheweyh [2]. In 1973, Rusheweyh and Sheil-Small [3] proved the
Polya-Schoenberg conjecture that the class of convex functions is preserved under convo-
lution.

In this paper we introduce the class STSs(α), 0 < α ≤ 1, satisfying the condition∣∣∣arg ( 2zf ′(z)
f(z)−f(−z)

)∣∣∣ < απ
2 . We study neighbourhoods of this class and also prove a nec-

essary and sufficient condition in terms of convolution for a function f to be STSs(α).
Furthermore, it is shown that class STSs(α) is closed under convolution with function f
which are convex univalent in E.

Definition 1.1. For δ ≥ 0, the δ−neighbourhood of f(z) ∈ A is defined by

Nδ(f) =

{
g(z) = z +

∞∑
n=2

bnz
n :

∞∑
n=2

n|an − bn| ≤ δ

}
, z ∈ E. (3)

To prove our results we need the following lemma.

Lemma 1.1. [3] If φ is a convex univalent function with φ(0) = φ′(0)− 1 in the unit disk
E and g is starlike univalent in E then for each analytic function F in E, the image of E

under (φ∗Fg)(z)
(φ∗g)(z) is a subset of the convex hull of F (E).

2. Main Results

In this section we give the definitions of STSs(α), 0 < α ≤ 1 and study the neigh-
bourhoods of this class and also prove a necessary and sufficient condition in terms of
convolution for a function f to be STSs(α). Furthermore, it is shown that class STSs(α)
is closed under convolution with function f which are convex univalent in E.

Definition 2.1. A function f(z) is said to be in the class STSs(α), 0 < α ≤ 1 if all z ∈ E∣∣∣∣arg( 2zf ′(z)

f(z)− f(−z)

)∣∣∣∣ < απ

2
. (4)

f ∈ STSs(α) means that the image of E under w = 2zf ′(z)
f(z)−f(−z) lies in the region Ω =

|arg w| < απ
2 , equivalently 2zf ′(z)

f(z)−f(−z) 6= t e±i
απ
2 , t ∈ R+.

Now let us give a characterization for a function f ∈ A to be in STSs(α) by means of
convolution.

Definition 2.2. The class of all analytic functions STS′s(α), 0 < α ≤ 1 is defined in E
by

H(z) =
1

1− t e±i
απ
2

[
z

(1− z)2
− t e±i

απ
2

(
z

1− z2

)]
, t ∈ R+. (5)

Theorem 2.1. Let 0 < α ≤ 1 and z ∈ E. Then f ∈ STSs(α) if and only if (f∗H)(z)
z 6= 0,

for all H(z) ∈ STS′s(α).
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Proof. Let us assume that (f∗H)(z)
z 6= 0, z ∈ E and for all H(z) ∈ STS′s(α). Then we have

(f ∗H)(z)

z
=

1

z(1− t e±i
απ
2 )

[
f(z) ∗ z

(1− z)2
− (t e±i

απ
2 )

(
f(z) ∗ z

1− z2

)]
=

1

z(1− t e±i
απ
2 )

[
zf ′(z)− t e±i

απ
2

(
f(z)− f(−z)

2

)]
6= 0, t ∈ R+.

Equivalently 2zf ′(z)
f(z)−f(−z) 6= t e±i

απ
2 . But t ∈ R+ then t e±i

απ
2 covers the half lines arg w =

±απ
2 .

Then 2zf ′(z)
f(z)−f(−z) = 1 at z = 0. Hence 2zf ′(z)

f(z)−f(−z) ∈ Ω = {z ∈ C : |arg w| < απ
2 or

f ∈ STSs(α).

Conversely let us assume that f ∈ STSs(α). Then 2zf ′(z)
f(z)−f(−z) 6= t e±i

απ
2 .

Or equivalently f(z) ∗
[

z
(1−z)2 − t e

±iαπ
2

(
z

1−z2

)]
6= 0, for z 6= 0.

Normalizing the function with in the brackets, we get (f∗H)(z)
z 6= 0 in E, where H(z) is

the function defined (5) �

Lemma 2.1. Let H(z) = z +
∞∑
n=2

cnz
n ∈ STS′s(α), 0 < α ≤ 1. Then

|cn| ≤
n

sin(απ2 )
.

Proof. Let H(z) ∈ STS′s(α). Then by Definition 2.2, for t ∈ R+,

H(z) =
1

1− t e±i
απ
2

[
z

(1− z)2
− t e±i

απ
2

(
z

1− z2

)]
=

1

1− t e±i
απ
2

[
(z + 2z2 + · · · )− (t e±i

απ
2 )(z + z3 + · · · )

]
= z +

∞∑
n=2

cnz
n.

Then comparing the coefficients on either side, we get

cn =


n

1−t e±i
απ
2
, when n is an even

n−t e±i
απ
2

1−t e±i
απ
2
, when n is an odd
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case (i): If n is an even then

|cn|2 =

∣∣∣∣ n

1− t e±i
απ
2

∣∣∣∣2 =
n2

(1− tcos(απ2 ))2 + (tsin(απ2 ))2

=
n2

1− 2tcos(απ2 ) + t2

= 1 +
n2 − 1 + 2tcos(απ2 )− t2

1− 2tcos(απ2 ) + t2

≤ max
t

[
1 +

n2 − 1

1− 2tcos(απ2 ) + t2

]
, since t ≥ 0

≤
[
1 +

n2 − 1

sin2(απ2 )

]
=
n2 − cos2(απ2 )

sin2(απ2 )
.

Therefore |cn| ≤
n

sin(απ2 )
.

case (ii): If n is an odd then

|cn|2 =

∣∣∣∣∣n− t e±i
απ
2

1− t e±i
απ
2

∣∣∣∣∣
2

=
(n− tcos(απ2 ))2 + (tsin(απ2 ))2

(1− tcos(απ2 ))2 + (tsin(απ2 ))2

=
n2 − 2ntcos(απ2 ) + t2

1− 2tcos(απ2 ) + t2

= 1 +
n2 − 1 + 2t(n− 1)cos(απ2 )

1− 2tcos(απ2 ) + t2

≤ max
t

[
1 +

n2 − 1

1− 2tcos(απ2 ) + t2

]
, since t ≥ 0

=

[
1 +

n2 − 1

sin2(απ2 )

]
=
n2 − cos2(απ2 )

sin2(απ2 )
.

Therefore |cn| ≤
n

sin(απ2 )
.

�

Lemma 2.2. For f ∈ A and and for every ε ∈ C such that |ε| < δ, if Fε(z) = f(z)+εz
1+ε ∈

STSs(α) then for every H ∈ STS′s(α),
∣∣∣ (f∗H)(z)

z

∣∣∣ ≥ δ, z ∈ E.
Proof. Let Fε(z) = f(z)+εz

1+ε . Then by Theorem 2.1, (f∗H)(z)
z 6= 0, for all f ∈ STSs(α), z ∈ E.

Equivalently, (f∗H)(z)+εz
(1+ε)z 6= 0 in E or (f∗H)(z)

z 6= −z, which show that∣∣∣ (f∗H)(z)
z

∣∣∣ ≥ δ. �

Theorem 2.2. For f ∈ A and ε ∈ C, |ε| < δ < 1, assume Fε(z) ∈ STSs(α). Then
Nδ′(f) ⊂ STSs(α), where δ′ = δsin(απ2 ).
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Proof. Let H ∈ STS′s(α) and g(z) = z +
∞∑
n=2

bnz
n ∈ Nδ′(f). Then∣∣∣∣(g ∗H)(z)

z

∣∣∣∣ =

∣∣∣∣(f ∗H)(z)

z
+

((g − f) ∗H)(z)

z

∣∣∣∣
≥
∣∣∣∣(f ∗H)(z)

z

∣∣∣∣− ∣∣∣∣(g − f)(z) ∗H(z)

z

∣∣∣∣
≥ δ −

∣∣∣∣∣
∞∑
n=2

(bn − an)cnz
n

z

∣∣∣∣∣ , by Lemma 2.2.

Thus∣∣∣∣(g ∗H)(z)

z

∣∣∣∣ ≥ δ − |z| ∞∑
n=2

|bn − an||cn|

> δ − 1

sin(απ2 )

∞∑
n=2

n|bn − an|, by Lemma 2.1

> δ − δ′

sin(απ2 )
= 0, for δ′ = δsin(

απ

2
).

Thus (g∗H)(z)
z 6= 0 in E for all H ∈ STS′s(α) which means by Theorem 2.2, g ∈ STSs(α),

in other words, Nδsin(απ
2
) ⊂ STSs(α). �

Lemma 2.3. If 0 < α ≤ 1 and g ∈ STSs(α) then G(z) = g(z)−g(−z)
2 ∈ STS(α) ⊂ ST (α).

Proof. Let 0 < α ≤ 1 and g ∈ STSs(α). Then 2zg′(z)
g(z)−g(−z) ∈ Ω. Now

zG′(z)

G(z)
=
zg′(z)

2G(z)
+
−zg′(−z)
2G(−z)

.

There exist ζ1, ζ2 in Ω such that
zG′(z)

G(z)
=
ζ1
2

+
ζ2
2

= ζ3.

Since Ω is convex sector ζ3 ∈ Ω and hence zG′(z)
G(z) ∈ Ω.

It can be easily seen that STS(α) ⊂ ST (α).
Thus G(z) ∈ STS(α) ⊂ ST (α). �

Theorem 2.3. Let f ∈ CV and g ∈ STSs(α). Then (f ∗ g)(z) ∈ STSs(α).

Proof. Let f(z) ∈ CV, g(z) ∈ STSs(α), G(z) = g(z)−g(−z)
2 and Ω is convex domain.

Since g(z) ∈ STSs(α), G(z) = g(z)−g(−z)
2 ∈ ST (α), by Lemma 2.3.

Hence, by an application of Lemma 1.1, we get

z(f ∗ g)′(z)

(f ∗G)(z)
=

(f ∗ zg′)(z)
(f ∗G)(z)

=
f ∗ zg

′(z)
G(z) G(z)

(f ∗G)(z)

⊂ C0

(
zg′(z)

G(z)

)
.

Since Ω is convex and g ∈ STSs(α). This proves that (f ∗ g)(z) ∈ STSs(α). �
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