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LONG TIME BEHAVIOR OF THE STRONGLY DAMPED WAVE

EQUATION WITH p-LAPLACIAN IN Rn

Z. ŞEN, §

Abstract. In this paper, the initial value problem for the one dimensional strongly
damped wave equation with p-Laplacian and localized damping in the whole space is
concerned. Under the condition 2 < p < 4, the existence of weak local attractors for this
problem in

(
W 1,p (R) ∩H1 (R)

)
× L2 (R) is proved.
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1. Introduction

This paper is devoted to the investigation of the long time behavior of the strongly
damped wave equation including p-Laplacian and localized damping

utt − utxx − uxx −
∂

∂x

(
|ux|p−2 ux

)
+ a (x)ut + f (u) = g (x) , in (0,∞)× R, (1)

with the initial data

u (0, ·) = u0 (·) , ut (0, ·) = u1 (·) , in R, (2)

where
p > 2 , g ∈ L2(R) (3)

and the functions a (·), f (·) satisfy the following conditions:

a ∈ L1 (R) , a (·) ≥ 0 a.e. in R, (4)

a (·) ≥ a0 > 0 a.e. in {x ∈ R : |x| ≥ r0} , (5)

f ∈ C1 (R) and sf (s) ≥ λs2, ∀s ∈ R, (6)

for some r0, λ > 0.
The strongly damped wave equations have been drawing a great deal of attention of

many mathematicians for many years. In particular, long term analysis of these types of
equations has recently been an attractive research topic due to their presence in model-
ing many significant physical phenomena, such as motions of viscoelastic materials, heat
conduction and so on. With particular reference to the fact that asymptotic behavior of
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evolution equations can be represented in terms of attractors, authors have been inves-
tigating the attractors for the strongly damped wave equations over the last years. In
bounded domains, attractors for the equations involving linear Laplacian were studied
in [1-11] and in [12-13] for the equations with the linear and nonlinear strong damping,
respectively. For the equations with nonlinear Laplacian, it is referred to [14-16]. In [14],
by applying the splitting method, the authors proved the existence of finite dimensional
global attractor for the strongly damped wave equation including nonlinear Laplacian in
the form ∂

∂xσ(ux) under the conditions σ ∈ C1(R) and σ′(·) ≥ r0 > 0. In [15], the exis-
tence of finite dimensional regular exponential and global attractors was obtained for the
strongly damped wave equation with more general nonlinear Laplacian. Here, it is worth
noting that the additional term −∆u in the considered equation, together with nonlinear
degenerate Laplacian, produces actually non-degenerate Laplacian, which yields some use-
ful estimates for weak and strong solutions. For the strongly damped wave equations with
degenerate Laplacian, it is referred to [16] in which the authors considered the strongly
damped wave equation with p-Laplacian

utt − utxx −
∂

∂x

(
|ux|p−2 ux

)
+ f (u) = g (x) ,

for p > 2, g ∈ L2(0, 1) and

f ∈ C1 (R) and lim inf
|s|→∞

f (s)

|s|p−2 s
> −λp,

where λ is the first eigenvalue of the Laplacian. In the paper, for p > 2, the existence
of the weak local attractors in W 1,p

0 (0, 1) × L2 (0, 1) was firstly proved. Then, under
the restriction 2 < p < 4, the authors obtained the boundedness of the attractors in
W 1,∞ (0, 1)×W 1,∞ (0, 1) and thereby established the existence of a regular strong global

attractor in W 1,p
0 (0, 1)× L2 (0, 1).

In unbounded domains, the obstacle is that one can not apply the methods used in the
study of long time behavior of wave equations in bounded domain because of the absence of
Sobolev compact embedding theorems. In order to overcome this difficulty, many different
approaches have been presented over the last years. As far as it is known, the first studies
about the attractors for hyperbolic and hyperbolic-like equations were presented by Feireisl
in [17] and [18] in which the existence of global attractors of weakly damped wave equations
in H1 (Rn) × L2 (Rn) was proved using the property of finite propagation speed of wave
equations. In those works, the author used the splitting method based on a decomposition
of solution in asymptotically small and compact parts. It is referred to [19] and [20] in
which the authors proved the existence of global attractors in H1 (Rn) × L2 (Rn) for the
wave equations with the strong damping term −∆ut as well as weak damping term, under
different conditions on nonlinearities. Here, while the strong damping term increases the
dissipation, it also brings parabolicity to the equation, which means more regularization,
but also an infinite propagation speed of initial disturbances. Therefore, the authors could
not apply Feireisl’s method. However, they overcame this situation by introducing further
decomposition of the compact part of the solution. In the present paper, instead of using
the splitting method, by establishing regular tail estimates for equation (1), the existence
of weak local attractors in

(
W 1,p(R) ∩H1 (R)

)
× L2 (R) for 2 < p < 4 is shown.

This paper is structured as follows. In the next section, some definitions and the main
result of the paper are stated. In the last section, the existence of the weak local attractors
in
(
W 1,p(R) ∩H1 (R)

)
× L2(R) for 2 < p < 4 is established. Moreover, it is proved that

these attractors attract the trajectories in the strong topology of H1(R)× L2(R).
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2. The Statement of the Main Result

First of all, the definitions are given as follows:

Definition 2.1. The function u ∈ L1(0, T ;W 1,p(R)∩H1(R)) satisfying ut ∈ L1(0, T ;H1(R))

∩C([0, T ];W
−1, p

p−1 (R) +H−1 (R)), u(0, x) = u0(x), ut(0, x) = u1(x) and the equation

d

dt

∫
R

ut(t, x)v(x)dx+

∫
R

utx(t, x)v′(x)dx+

∫
R

ux(t, x)v′(x)dx

+

∫
R

|ux(t, x)|p−2 ux(t, x)v′(x)dx+
d

dt

∫
R

a (x)u (t, x) v (x) dx

+

∫
R

f(u(t, x))v(x)dx =

∫
R

g(x)v(x)dx,

in the sense of distributions on (0, T ), for all v ∈ W 1,p(R) ∩ H1 (R), is called a weak
solution to the problem (1)-(2) in [0, T ]× R.

Definition 2.2. Let {V (t)}t≥0 be an operator semigroup on a linear normed space E and
B be a bounded subset of E. A set AB ⊂ E is called a strong (weak) local attractor for B
and the semigroup {V (t)}t≥0 iff

• AB is strongly (weakly) compact in E;
• AB is invariant, i.e. V (t)AB = AB, ∀t ≥ 0;
• AB attracts the image of B in the strong (weak) topology, namely, for every neighbor-

hood O of AB in the strong (weak) topology of E there exists a T = T (O) > 0 such that
V (t)B ⊂ O for every t ≥ T .

The following well-posedness result can be obtained by applying the method of [15]:

Theorem 2.1. Assume that the conditions (3)-(6) are satisfied. Then, for any T > 0
and u0 ∈ W 1,p(R) ∩ H1 (R), u1 ∈ L2(R), the problem (1)-(2) admits a unique weak
solution u(t, x) which satisfies u ∈ L∞

(
0, T ;W 1,p(R) ∩H1 (R)

)
, ut ∈ L∞

(
0, T ;L2 (R)

)
∩

L2
(
0, T ;H1 (R)

)
, utt ∈ L2

(
0, T ;W

−1, p
p−1 (R) +H−1 (R)

)
and the energy inequality

E (u (t)) +

t∫
s

‖utx (τ)‖2L2(R) dτ +

t∫
s

∫
R

a (x) |ut (τ, x)|2 dxdτ ≤ E (u (s)) , ∀t ≥ s ≥ 0, (7)

where E(u(t)) = 1
2 ‖ut (t)‖2L2(R) + 1

2 ‖ux (t)‖2L2(R) + 1
p ‖ux (t)‖pLp(R) +

∫
R
F (u (t, x)) dx −∫

R
g (x)u (t, x) dx and F (u) =

u∫
0

f(z)dz. Moreover, if v ∈ L∞
(
0, T ;W 1,p(R) ∩H1 (R)

)
∩

W 1,∞ (0, T ;L2 (R)
)
∩W 1,2

(
0, T ;H1 (R)

)
∩W 2,2

(
0, T ;W

−1, p
p−1 (R) +H−1 (R)

)
is also a

weak solution to (1)-(2) with initial data (v0, v1) ∈
(
W 1,p(R) ∩H1 (R)

)
× L2 (R), then

‖u (t)− v (t)‖H1(R) + ‖ut (t)− vt (t)‖H−1(R)

≤ C
(
T, ‖(u0, u1)‖(W 1,p(R)∩H1(R))×L2(R) , ‖(v0, v1)‖(W 1,p(R)∩H1(R))×L2(R)

)
×
(
‖u0 − v0‖H1(R) + ‖u1 − v1‖L2(R)

)
, ∀t ∈ [0, T ] (8)

where C : R+ ×R+ ×R+ → R+ is a nondecreasing function with respect to each variable.
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With the aid of Theorem 2.1, one can immediately derive that the problem (1)-(2)
generates a weakly continuous semigroup {S (t)}t≥0 in

(
W 1,p(R) ∩H1 (R)

)
× L2 (R), by

the formula S (t) (u0, u1) = (u (t) , ut (t)), where u(t, x) is the weak solution of the problem
(1)-(2) with the initial data (u0, u1). By the weak continuity, it is meant that ϕn →

n→∞
ϕ in(

W 1,p(R) ∩H1 (R)
)
×L2 (R) implies S (t)ϕn

w−→
n→∞

S (t)ϕ in
(
W 1,p(R) ∩H1 (R)

)
×L2 (R).

Now, the main result of this paper is as follows.

Theorem 2.2. In addition to (3)-(6), assume that p < 4. Then, for every bounded subset
B of

(
W 1,p (R) ∩H1 (R)

)
×L2 (R) the semigroup {S (t)}t≥0, generated by the problem (1)-

(2), has a weak local attractor AB in
(
W 1,p (R) ∩H1 (R)

)
× L2 (R). Moreover, the weak

local attractor AB attracts the image of B in the strong topology of H1 (R)× L2 (R).

3. Existence of Weak Local Attractors

The aim of this section is to prove Theorem 2.2. To this end, we need the following
lemmas.

Lemma 3.1. Let the conditions (3)-(6) hold and B be a bounded set in (W 1,p(R)∩H1(R))
×L2(R). Then, for any ε > 0, there exist T = T (B, ε) > 0 and R = R (B, ε) > 0 such
that

‖S (t)ϕ‖H1(R\(−r,r))×L2(R\(−r,r)) < ε, ∀t ≥ T, ∀r ≥ R, ∀ϕ ∈ B.

Proof. First of all, using (3)-(4) and (6) in (7), it is obtained that
‖S (t)ϕ‖(W 1,p(R)∩H1(R))×L2(R) ≤ CB, ∀t ≥ 0,∀ϕ ∈ B,
t∫

0

‖utx (τ)‖2L2(R) dτ ≤ CB, ∀t ≥ 0,
(9)

for some constant CB > 0. Now, let ϕ ∈ B and (u (t) , ut (t)) = S (t)ϕ. Define η ∈ C∞ (R),

0 ≤ η (·) ≤ 1, η (x) =

{
0, |x| ≤ 1 ,
1, |x| ≥ 2

and ηr (x) = η
(
x
r

)
. Multiplying the equation (1) by

δη2
ru and integrating the obtained equality over R, by (6) and (9), it is found that

d

dt

δ ∫
R

η2
r (x)ut (t, x)u (t, x) dx+

δ

2
‖ηrux (t)‖2L2(R) +

δ

2

∫
R

a (x) η2
r (x) |u (t, x)|2 dx


+δ ‖ηrux (t)‖2L2(R) + δ

∥∥∥ p
√
η2
rux (t)

∥∥∥p
Lp(R)

+ δλ ‖ηru (t)‖2L2(R) − δ ‖ηrut (t)‖2L2(R)

≤ C1

(
1

r
+

1

r
‖utx (t)‖2L2(R) + ‖g‖2L2(R\(−r,r))

)
, ∀t ≥ 0. (10)

On the other hand, multiplying the equation (1) by η2
rut and integrating the obtained

equality over R, by (5) and (9), it follows that

d

dt

(
1

2
‖ηrut (t)‖2L2(R) +

1

2
‖ηrux (t)‖2L2(R) +

1

p

∥∥∥ p
√
η2
rux (t)

∥∥∥p
Lp(R)

+

∫
R

η2
r (x)F (u (t, x)) dx

+ a0 ‖ηrut (t)‖2L2(R)

≤ C2

(
1

r
+

1

r
‖utx (t)‖2L2(R) + ‖g‖2L2(R\(−r,r))

)
, ∀r ≥ r0,∀t ≥ 0. (11)
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Now, summing (10) and (11), for sufficiently small δ, it is deduced that

dΦ (t)

dt
+ C3

(
‖ηrux (t)‖2L2(R) +

∥∥∥ p
√
η2
rux (t)

∥∥∥p
Lp(R)

+ ‖ηru (t)‖2L2(R) + ‖ηrut (t)‖2L2(R)

)

≤ C4

(
1

r
+

1

r
‖utx (t)‖2L2(R) + ‖g‖2L2(R\(−r,r))

)
, ∀r ≥ r0,∀t ≥ 0, (12)

where

Φ (t) := ‖ηrut (t)‖2L2(R) + ‖ηrux (t)‖2L2(R) +
∥∥∥ p
√
η2
rux (t)

∥∥∥p
Lp(R)

+

∫
R

η2
r (x)F (u (t, x)) dx

+δ

∫
R

η2
r (x)ut (t, x)u (t, x) dx+

δ

2
‖ηrux (t)‖2L2(R) +

δ

2

∫
R

a (x) ηr (x) |u (t, x)|2 dx.

Furthermore, by (4), (6), (7) and (9), it is obtained that

C5

(
‖√ηrut (t)‖2L2(R) + ‖√ηrux (t)‖2L2(R) +

∥∥∥ p
√
η2
rux (t)

∥∥∥p
Lp(R)

+ ‖√ηru (t)‖2L2(R)

)

≤ Φ (t) ≤ C6

(
‖ηrut (t)‖2L2(R) + ‖ηrux (t)‖2L2(R)

+
∥∥∥ p
√
η2
rux (t)

∥∥∥p
Lp(R)

+ ‖ηru (t)‖2L2(R) +
1

r

)
, ∀t ≥ 0, (13)

for some constants C5, C6 > 0. Considering (13) in (12), it follows that

dΦ (t)

dt
+ C7Φ (t) ≤ C8

(
1

r
+

1

r
‖utx (t)‖2L2(R) + ‖g‖2L2(R\(−r,r))

)
, ∀r ≥ r0,∀t ≥ 0.

Therefore, together with (9) and (13), it is found that

Φ (t) ≤ C9

(
e−C7t +

1

r
+ ‖g‖2L2(R\(−r,r))

)
, ∀r ≥ r0,∀t ≥ 0.

Here, the constant C9 > 0 is dependent on the set B and is independent of t and r as
previous constants Ci(i = 1, 8). Hence, taking into account the right side of the last
inequality, together with (13), the proof of the lemma is completed. �

Lemma 3.2. Assume that the conditions (3)-(6) hold and B is a bounded subset of
(W 1,p(R) ∩ H1 (R)) × L2 (R). Then, every sequence of the form {PS (tk)ϕk}∞k=1, where
{ϕk}∞k=1 ⊂ B, tk → ∞, has a convergent subsequence in H1(R). Here, P : (W 1,p(R) ∩
H1(R))× L2 (R)→ W 1,p(R) ∩H1 (R) is the projection operator defined as P (φ, ψ) = φ.

Proof. Firstly, since the sequence {ϕk}∞k=1 is bounded in
(
W 1,p(R) ∩H1 (R)

)
×L2 (R), by

(9), it is obtained that the sequence {S (·)ϕk}∞k=1 is bounded in L∞(0,∞;
(
W 1,p(R) ∩H1 (R)

)
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×L2 (R)). Hence, by (1), (3)-(4), (6), (7) and (9), for any T0 ≥ 1, there exists a subse-
quence {km}∞m=1 such that tkm ≥ T0 and

S (tkm − T0)ϕkm
w→

m→∞
ϕ0 in

(
W 1,p(R) ∩H1 (R)

)
× L2 (R) ,

um
w∗→

m→∞
u in L∞

(
0,∞;W 1,p(R) ∩H1 (R)

)
,

umt
w∗→

m→∞
ut in L∞

(
0,∞;L2 (R)

)
,

umt
w→

m→∞
ut in L2

(
0,∞;H1 (R)

)
,

umtt
w→

m→∞
utt in L2

(
0,∞;H−2 (−r, r)

)
, ∀r > 0,

um (t)
w→

m→∞
u (t) in W 1,p(R) ∩H1 (R) , ∀t ≥ 0,

umt (t)
w→

m→∞
ut (t) in L2 (R) , ∀t ≥ 0,

(14)

for some ϕ0 ∈ (W 1,p(R) ∩ H1(R)) × L2(R) and u ∈ L∞(0,∞;W 1,p(R) ∩ H1(R)) ∩
W 1,∞(0,∞;L2(R))∩W 1,2(0,∞;H1(R))∩W 2,2(0,∞;H−2(−r, r)), where (um(t), umt(t)) =
S(t+ tkm − T0)ϕkm .

Now, replacing u in the equation (1) with um and un, and then subtracting the obtained
equations, the following equation is found:

umtt(t, x)− untt(t, x)− (umtxx(t, x)− untxx(t, x))− (umxx(t, x)− unxx(t, x))

− ∂

∂x
(|umx(t, x)|p−2 umx(t, x)− |unx(t, x)|p−2 unx(t, x))

+a (x) (umt(t, x)− unt(t, x)) + f (um(t, x))− f (un(t, x)) = 0.

Testing this equation with 2 (1− ηr) t (um − un) in (0, T ) × R, where ηr is the function
defined in the previous lemma, and considering (4) and the inequality(

|a|p−2 a− |b|p−2 b
)

(a− b) ≥ 0, a, b ∈ R,

it is deduced that

T
∥∥∥√1− ηr (umx (T )− unx (T ))

∥∥∥2

L2(R)

≤ −2T

∫
R

(1− ηr (x)) (umt (T, x)− unt (T, x)) (um (T, x)− un (T, x)) dx

+2

T∫
0

∫
R

(1− ηr (x)) (umt (t, x)− unt (t, x)) (um (t, x)− un (t, x)) dxdt

+2

T∫
0

t
∥∥∥√1− ηr (umt (t)− unt (t))

∥∥∥2

L2(R)
dt

+
2

r

T∫
0

∫
R

tη′
(x
r

)
(umtx (t, x)− untx (t, x)) (um (t, x)− un (t, x)) dxdt

+

T∫
0

∥∥∥√1− ηr (umx (t)− unx (t))
∥∥∥2

L2(R)
dt
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+
2

r

T∫
0

∫
R

tη′
(x
r

)
(umx (t, x)− unx (t, x)) (um (t, x)− un (t, x)) dxdt

−2

T∫
0

t
∥∥∥√1− ηr (umx (t)− unx (t))

∥∥∥2

L2(R)
dt

+
2

r

T∫
0

∫
R

tη′
(x
r

)(
|umx(t, x)|p−2 umx(t, x)− |unx(t, x)|p−2 unx(t, x)

)
× (um (t, x)− un (t, x)) dxdt

+2

T∫
0

∫
R

a (x) (1− ηr (x)) |(um (t, x)− un (t, x))|2 dxdt

−2

T∫
0

∫
R

t (1− ηr (x)) (f (um(t, x))− f (un(t, x)))

× (um (t, x)− un (t, x)) dxdt, ∀T ≥ 0. (15)

For the fifth term on the right side of (15), it is obtained that

T∫
0

∥∥∥√1− ηr (umx (t)− unx (t))
∥∥∥2

L2(R)
dt ≤ c1 + 2

T∫
1

t
∥∥∥√1− ηr (umx (t)− unx (t))

∥∥∥2

L2(R)
dt

≤ c1 + 2

T∫
0

t
∥∥∥√1− ηr (umx (t)− unx (t))

∥∥∥2

L2(R)
dt, ∀T ≥ 1. (16)

Taking into account (16) in (15) and considering (4), (6), (9) and (14), it is found that

lim sup
m→∞

lim sup
n→∞

‖umx (T )− unx (T )‖2L2(−r,r) ≤
c1

T
, ∀T ≥ 1.

Thus, together with Lemma 3.1, taking T = T0, for any ε > 0, it is obtained that

lim inf
k→∞

lim inf
n→∞

‖PS (tk)ϕk − PS (tn)ϕn‖H1(R) <
c2√
T0

+ ε, ∀T0 ≥ 1,

which, by taking limit as T0 →∞, yields

lim inf
k→∞

lim inf
n→∞

‖PS (tk)ϕk − PS (tn)ϕn‖H1(R) = 0.

Moreover, it can be immediately seen that for every subsequence {km}∞m=1, the following
holds:

lim inf
m→∞

lim inf
n→∞

‖PS (tkm)ϕkm − PS (tkn)ϕkn‖H1(R) = 0. (17)

Now, it is concluded that the sequence {PS (tk)ϕk}∞k=1 has a convergent subsequence in
H1 (R). If the contrary is assumed, then, by the completeness of H1 (R), there exist ε0 > 0
and a subsequence {km}∞m=1 such that

‖PS (tkm)ϕkm − PS (tkn)ϕkn‖H1(R) ≥ ε0, m 6= n,

which contradicts (17). Hence, the proof is completed. �
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Lemma 3.3. In addition to the conditions (3)-(6), assume that p < 4. If u is a weak
solution to problem (1)-(2), then there exists a constant c > 0 such that

sup
t≥1
‖ut (t)‖H1−α(R) ≤ c, α ∈

[
p− 2

p
,
1

2

)
.

Proof. By taking derivative of the equation (1) according to t and denoting v := ut, it is
found that

vtt +
(

Λ̃vt − vt
)

+
(

Λ̃v − v
)
− (p− 1)

∂

∂x

(
|ux|p−2 utx

)
+ a (x) vt + f ′ (u)ut = 0, (18)

where Λ̃ : H2 (−2n, 2n) ∩ H1
0 (−2n, 2n) → L2 (−2n, 2n) , Λ̃ϕ = −∂2ϕ

∂x2
+ ϕ. Testing (18)

with t2Λ̃−αvt in R, where α ∈
[
p−2
p , 1

2

)
, by the self adjointness of the operator Λ̃, it is

deduced that

d

dt

(
t2

2

∥∥∥Λ̃−
α
2 vt (t)

∥∥∥2

L2(R)
+
t2

2

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)

)
+ t2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)

= t
∥∥∥Λ̃−

α
2 vt (t)

∥∥∥2

L2(R)
+ t2

∥∥∥Λ̃−
α
2 vt (t)

∥∥∥2

L2(R)
+ t
∥∥∥Λ̃

1−α
2 v (t)

∥∥∥2

L2(R)

+t2
〈

Λ̃−
α
2 v (t) , Λ̃−

α
2 vt (t)

〉
− (p− 1) t2

〈
|ux (t)|p−2 utx (t) ,

∂

∂x

(
Λ̃−αvt (t)

)〉
−t2

〈
avt (t) , Λ̃−αvt (t)

〉
− t2

〈
f ′ (u (t))ut (t) , Λ̃−αvt (t)

〉
, ∀t ≥ 0. (19)

First of all, for the first term on the right side of (19), by interpolation and Young in-
equality, for any ε > 0, it is obtained that

t
∥∥∥Λ−

α
2 vt (t)

∥∥∥2

L2(R)
≤ εt2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)
+ C (ε)

∥∥∥Λ̃−
1+α
2 vt (t)

∥∥∥2

L2(R)
, ∀t ≥ 0. (20)

For the second term on the right side of (20), from (1) and using (3)-(4), (6) and (9), it
follows that∥∥∥Λ̃−

1+α
2 vt (t)

∥∥∥2

L2(R)
≤ C1

1 + ‖utx (t)‖2L2(R) +

∫
R

a (x) |ut (t, x)|2 dx

 , ∀t ≥ 0,

which, together with (20), yields

t
∥∥∥Λ̃−

α
2 vt (t)

∥∥∥2

L2(R)
≤ εt2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)

+C̃ (ε)

1 + ‖utx (t)‖2L2(R) +

∫
R

a (x) |ut (t, x)|2 dx

 , ∀t ≥ 0. (21)

Similarly, it is found that

t2
∥∥∥Λ̃−

α
2 vt (t)

∥∥∥2

L2(R)
≤ εt2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)

+C̃ (ε) t2

1 + ‖utx (t)‖2L2(R) +

∫
R

a (x) |ut (t, x)|2 dx

 , ∀t ≥ 0. (22)

Regarding the fourth term on the right side of (19), by (9), it is obtained that

t2
〈

Λ̃−
α
2 v (t) , Λ̃−

α
2 vt (t)

〉
≤ C2

(
C (ε) t2 + εt2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)

)
, ∀t ≥ 0. (23)
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Considering the fifth term on the right side of (19), by (9) and the embedding H
p−2
p (R) ↪→

L
2p
4−p (R), it follows that

− (p− 1) t2
〈
|ux (t)|p−2 utx (t) ,

∂

∂x

(
Λ̃−αvt (t)

)〉
≤ C3t

2 ‖utx (t)‖L2(R)

∥∥∥∥ ∂∂x (Λ̃−αvt (t)
)∥∥∥∥

H
p−2
p (R)

≤ C4

(
C (ε) t2 ‖utx (t)‖2L2(R) + εt2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)

)
, ∀t ≥ 0. (24)

Now, let us estimate the sixth term on the right side of (19). Since, by the interpolation
and Young inequality, for any µ > 0, it is obtained that

‖vt (t)‖2H1−2α(R) ≤ C5

(
C (µ)

∥∥∥Λ̃−
α
2 vt (t)

∥∥∥2

L2(R)
+ µ

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)

)
, ∀t ≥ 0,

applying Young inequality, for any β > 0, by (4) and (22), it is found that

−t2
〈
avt (t) , Λ̃−αvt (t)

〉
≤ C6t

2 ‖vt (t)‖L∞(R)

∥∥∥Λ̃−αvt (t)
∥∥∥
L∞(R)

≤ C7

(
βt2 ‖vt (t)‖2H1−α(R) + C (β) ‖vt (t)‖2H1−2α(R)

)
≤ C8

[(
β + µC (β) + εĈ (µ, β)

)
t2
∥∥∥Λ̃

1−α
2 vt (t)

∥∥∥2

L2(R)

+
̂̂
C (µ, β, ε) t2

1 + ‖utx (t)‖2L2(R) +

∫
R

a (x) |ut (t, x)|2 dx

 , ∀t ≥ 0. (25)

For the last term on the right side of (19), by (6) and (9), it follows that

−t2
〈
f ′ (u (t))ut (t) , Λ̃−αvt (t)

〉
≤ C9

(
C (ε) t2 + εt2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)

)
, ∀t ≥ 0. (26)

If we use (21)-(26) in (19), it is obtained that

d

dt

(
t2

2

∥∥∥Λ̃−
α
2 vt (t)

∥∥∥2

L2(R)
+
t2

2

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)

)
+ t2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)

≤ C10

[(
β + ε+ µC (β) + εĈ (µ, β)

)
t2
∥∥∥Λ̃

1−α
2 vt (t)

∥∥∥2

L2(R)

+
˜̃
C (µ, β, ε)

((
1 + t+ t2

) (
1 + ‖utx (t)‖2L2(R)

)
+
(
1 + t2

) ∫
R

a (x) |ut (t, x)|2 dx

 , ∀t ≥ 0. (27)

Now, testing (8) with δt2Λ̃−αv in R, by (9), it is obtained that

d

dt

(
δt2
〈

Λ̃−
α
2 vt (t) , Λ̃−

α
2 v (t)

〉
+
δ

2
t2
∥∥∥Λ̃

1−α
2 v (t)

∥∥∥2

L2(R)

)
+ δt2

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)

= δt2
∥∥∥Λ̃−

α
2 vt (t)

∥∥∥2

L2(R)
+ δt

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)
+ δt2

∥∥∥Λ̃−
α
2 v (t)

∥∥∥2

L2(R)

+δ
(
t2 + 2t

) 〈
Λ̃−

α
2 vt (t) , Λ̃−

α
2 v (t)

〉
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−δ (p− 1) t2
〈
|ux (t)|p−2 utx (t) ,

∂

∂x

(
Λ̃−αv (t)

)〉
−δt2

〈
avt (t) , Λ̃−αv (t)

〉
− δt2

〈
f ′ (u (t))ut (t) , Λ̃−αv (t)

〉
, ∀t ≥ 0. (28)

For the fourth term on the right side of (28), by (9), it follows that

δ
(
t2 + 2t

) 〈
Λ̃−

α
2 vt (t) , Λ̃−

α
2 v (t)

〉
≤ δt2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)
+ C11 (t+ 2)2 , ∀t ≥ 0. (29)

Taking into account the fifth term on the right side of (28), by (9), it is found that

−δ (p− 1) t2
〈
|ux (t)|p−2 utx (t) ,

∂

∂x

(
Λ̃−αv (t)

)〉
≤ C12t

2 ‖utx (t)‖L2(R)

∥∥∥∥ ∂∂x (Λ̃−αv (t)
)∥∥∥∥

H
p−2
p (R)

≤ C13

(
t2 ‖utx (t)‖2L2(R) + t2 ‖ut (t)‖2H1(R)

)
≤ C14

(
t2 ‖utx (t)‖2L2(R) + t2

)
, ∀t ≥ 0. (30)

For the sixth term on the right side of (28), by (4), (9), it is obtained that

−δt2
〈
avt (t) , Λ̃−αv (t)

〉
≤ δt2

∥∥∥Λ̃
1−α
2 vt (t)

∥∥∥2

L2(R)
+ C15

(
t2 ‖utx (t)‖2L2(R) + t2

)
, ∀t ≥ 0. (31)

For the last term on the right side of (28), by (6) and (9), it is found that

−δt2
〈
f ′ (u (t))ut (t) , Λ̃−αv (t)

〉
≤ C16t

2, ∀t ≥ 0. (32)

Hence, using (29)-(32) in (28), we have

d

dt

(
δt2
〈

Λ̃−
α
2 vt (t) , Λ̃−

α
2 v (t)

〉
+
δ

2
t2
∥∥∥Λ̃

1−α
2 v (t)

∥∥∥2

L2(R)

)
+ δt2

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)

≤ δC17t
2
∥∥∥Λ̃

1−α
2 vt (t)

∥∥∥2

L2(R)
+ C18

(
t+ t2

)
‖utx (t)‖2L2(R) + C17

(
1 + t+ t2

)
,∀t ≥ 0,

and summing this equation with (27), for sufficiently small ε, µ, β and δ, it follows that

dΦ (t)

dt
+ C19

(
t2
∥∥∥Λ̃

1−α
2 vt (t)

∥∥∥2

L2(R)
+ t2

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)

)
≤ C20

(
1 + t+ t2

) (
1 + ‖utx (t)‖2L2(R)

)
+ C21

(
1 + t2

) ∫
R

a (x) |ut (t, x)|2 dx, ∀t ≥ 0, (33)

where

Φ (t) := δt2
〈

Λ̃−
α
2 vt (t) , Λ̃−

α
2 v (t)

〉
+
δ

2
t2
∥∥∥Λ̃

1−α
2 v (t)

∥∥∥2

L2(R)

+
t2

2

∥∥∥Λ̃−
α
2 vt (t)

∥∥∥2

L2(R)
+
t2

2

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)
.

Furthermore, there exist constants C22, C23 > 0 such that

C22

(
t2
∥∥∥Λ̃−

α
2 vt (t)

∥∥∥2

L2(R)
+ t2

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)

)
≤ Φ (t) ≤ C23

(
t2
∥∥∥Λ̃−

α
2 vt (t)

∥∥∥2

L2(R)
+ t2

∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)

)
, ∀t ≥ 0. (34)
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Considering (34) in (33) gives that

dΦ (t)

dt
+ C24Φ (t)

≤ C25

(
1 + t+ t2

) (
1 + ‖utx (t)‖2L2(R)

)
+ C26

(
1 + t2

) ∫
R

a (x) |ut (t, x)|2 dx,∀t ≥ 0,

which, together with (3)-(6) and (7), yields

Φ (t) ≤ C27

(
1 + t+ t2

)
, ∀t ≥ 0.

Hence, by (34), it is obtained that∥∥∥Λ̃
1−α
2 v (t)

∥∥∥2

L2(R)
≤ C28, ∀t ≥ 1,

which gives the result. �

Now, the weak ω-limit set of the trajectories emanating from a set B ⊂ (W 1,p (R)∩
H1 (R))× L2 (R) is defined as follows:

ωw (B) :=
⋂
τ≥0

⋃
t≥τ

S (t)B
w

.

where the bar over a set means weak closure in (W 1,p(R) ∩ H1(R)) × L2(R). It can be
easily shown that ϕ ∈ ωw (B) if and only if there exist sequences {tk}∞k=1, tk → ∞ and
{ϕk}∞k=1 ⊂ B such that S (tk)ϕk → ϕ weakly in (W 1,p(R) ∩H1(R)) × L2(R). Moreover,
the following invariance property of the set ωw (B) is stated:

Lemma 3.4. For any bounded set B ⊂
(
W 1,p(R) ∩H1(R)

)
× L2(R), the set ωw (B) is

invariant.

Proof. Let ψ ∈ ωw (B) and z = S (t)ψ for t ≥ 0. Then, by the definition of ωw (B), there
exist the sequences {tk}∞k=1, tk →∞ and {ψk}∞k=1 ⊂ B such that S (tk)ψk → ψ weakly in(
W 1,p(R) ∩H1(R)

)
×L2(R). Moreover, by Lemma 3.1, Lemma 3.2 and Lemma 3.3, there

exists a subsequence {km}∞m=1 such that S (tkm)ψkm −→m→∞
ψ in H1 (R)×H−1 (R). Then,

denoting τkm := t+ tkm , by (8), it is obtained that

S (τkm)ψkm = S (t)S (tkm)ψkm
w−→

m→∞
S (t)ψ = z in

(
W 1,p (R) ∩H1 (R)

)
× L2 (R) ,

which implies z ∈ ωw (B). Therefore, it follows that S (t)ωw (B) ⊂ ωw (B).
On the other hand, if ψ ∈ ωw (B), then there exist {tk}∞k=1, tk → ∞ and {ψk}∞k=1 ⊂

B such that S (tk)ψk → ψ weakly in
(
W 1,p(R) ∩H1(R)

)
× L2(R). Now, define ϕk =

S (tk − t)ψk, for tk ≥ t ≥ 0. By (9), there exists a subsequence {km}∞m=1 such that
ϕkm → ϕ weakly in

(
W 1,p(R) ∩H1(R)

)
×L2(R) for some ϕ ∈

(
W 1,p(R) ∩H1(R)

)
×L2(R),

which gives that ϕ ∈ ωw (B). Furthermore, using Lemma 3.1, Lemma 3.2 and Lemma 3.3,
and passing to a subsequence, it follows that ϕkmn −→n→∞ ϕ in H1 (R)×H−1 (R). Since

S
(
tkmn

)
ψkmn = S (t)S

(
tkmn − t

)
ψkmn = S (t)ϕkmn

applying (8), it is observed that S
(
tkmn

)
ψkmn

w−→
n→∞

S (t)ϕ in
(
W 1,p (R) ∩H1 (R)

)
×

L2 (R). Hence, ψ = S (t)ϕ and so ωw (B) ⊂ S (t)ωw (B). �

Thus, by applying Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4, the proof of
Theorem 2.2 is obtained.
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