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BOUNDS FOR THE SUM OF CUBES OF VERTEX DEGREES OF

SPLICE GRAPHS

VEEREBRADIAH LOKESHA1, SUSHMITHA JAIN1, MANJUNATH MUDDALAPURAM 1,
AHMET SINAN CEVIK2, ISMAIL NACI CANGUL3, §

Abstract. Some chemically interesting graphs can be derived from simpler graphs by
some graph operations. One of the most relevant among these interesting graphs is named
as splice graphs. They are related to RNA sequencing and therefore is of great inter-
est. The main target of this paper is to obtain the explicit interpretation of F -index in
terms of the graph size and maximum or minimum vertex degrees of special splice graphs.
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1. Introduction

A graphical invariant is a number obtained corresponding to a graph or equivalently,
it is a fixed number under graph automorphisms. That is, for isomorphic graphs, it has
the same value. In chemical graph theory, these invariants are also called the topological
indices. Topological indices play a crucial part in mathematical chemistry, especially in
QSAR/QSPR investigations, see [19] for the details. Wiener index, Zagreb indices, forgot-
ten index, symmetric division degree index are some of those frequently studied invariants.

The first and second Zagreb indices of a graph G, defined by M1(G) =
∑

u∈V (G) d(u)2

and M2(G) =
∑

uv∈E(G)[d(u)d(v)], respectively, are the oldest, most popular and ex-

tremely studied vertex degree based topological indices (we may refer to, for instance,
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[7, 10, 15, 20, 22, 33]). Although these indices were introduced to study the structure-
dependency of the total π-electron energy, see [14], in the same study, one more topological
index was defined as the sum of cubes of degrees of the vertices of a given graph G as
follows:

F (G) =
∑

u∈V (G)

d(u)3. (1)

But this index was no further studied till a paper written by Furtula and Gutman, [11].
In fact the authors concluded that the predictive ability of this index is almost near to
that of the first Zagreb index and, for the entropy and acentric factor, both of them yield
correlation coefficients greater than 0.954. They termed this index given in Eqn. (1) as
forgotten topological index or shortly F -index.

Some chemically interesting graphs are obtained by means of different graph opera-
tions which can be thought as graph extensions on some general or particular graphs,
[1, 4, 13, 21, 31]. The reason for studying these operations is to understand how the
graph operation can relate the values of the corresponding topological indices of the given
graphs to the values of the topological indices of the larger graph obtained as a result of
this operation or sometimes to the help us to comment on chemical properties of the com-
ponent graphs or the resulting graph. Actually this idea has similarities, for instance, to
group extensions in pure algebra. In the next paragraph we will remind one of the graph
operations, namely splice graphs and they will be the main graph type that we shall be
considering throughout this paper.

Let G and H be two simple connected graphs with disjoint vertex sets V (G) and V (H),
and edge sets E(G) and E(H), respectively. Let a1 ∈ V (G) and x1 ∈ V (H). Then the
splice graph S = S(G,H) of G and H by vertices a1 and x1, respectively, is defined by
identifying the vertices a1 and x1 in the union of G and H (see, for instance, [9, 2, 29]).
It is known that, for splice graphs, the total number of vertices is nG + nH − 1 while the
total number of edges is eG + eH .

Long non-coding RNAs (lncRNAs), a type of transcripts that are longer than 200 nu-
cleotides and unable to encode proteins in the intracellular space, have been at the forefront
in recent years. Several studies indicate that more than 80 percent of the human genome
has biochemical functions. These figures suggest that lncRNAs hide lots of valuable infor-
mation which are waiting to be discovered. Only a small amount of lncRNAs have already
been studied, but scientists have discovered some biological processes such as epigenetic
regulation, metabolic processes, chromosome dynamics and cell differentiation, [3, 25].
Lots of evidence have indicated that lncRNAs are highly relevant to various complex hu-
man diseases, [5], such as lung cancer, [30], Alzheimer diseases, [24], and cardiovascular
diseases, [6].

Sequencing studies on some organisms often interrogate both genomes and transcrip-
tomes with massive amounts of short sequences. Such studies require de novo analysis
tools and techniques, when the species and closely related species lack high quality ref-
erence resources. For certain applications such as de novo annotation, information on
putative exons and alternative splicing may be desirable.
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In [18], a new method called ChopStitch for finding putative exons de novo and con-
structing splice graphs using an assembled transcriptome and hence whole genome se-
quencing data have been constructed. ChopStitch identifies exon-exon boundaries in de
novo assembled RNA-Seq data with the help of a filter. The primary output of the tool
is a file containing putative exons. Further, exon edges are interrogated for alternative
exon-exon boundaries to detect transcript isoforms, which are naturally represented as
splice graphs.

After constructing the genomic filter, ChopStitch searches for the transcript sequences
to find putative exons. It then finds exons with overlapping edges and constructs a splice-
graph. A program Graphviz ccomps is used to find subgraphs which also give several
properties of some parts of the sequence under investigation. Therefore, new studies dis-
covering mathematical properties of splice graphs will help to discover physicochemical
properties of DNA and RNA sequences, and surely have a lot of applications. This is our
main motivation for this study.

Now let us recall two special graphs which will be needed in our main construction and
in the proofs of the results of this paper. First of all, the subdivision graph S(G) of G is
the graph obtained by inserting an additional vertex to each edge of G, in other words, by
replacing each edge of G by a path of length 2, [23, 26, 27]. Secondly, R(G) is the graph
derived from G by adding a new vertex not on any edge of G corresponding to each edge
of G and by connecting this new vertex to both vertices of the corresponding edge, see for
instance, [28].

e
e
e
ee

e
e
e
ee

r t

r r
r r

s r
r

G H S = S(G,H)

a1 a1
x1

a2a3

x1 x2

Figure 1. A splice of G and H by vertices a1 and x1

In [8], De presented several types of corona products of these two derived graph types.
Motivated by this study and by [29], in this paper, we will first introduce different types
of splice graphs such as R-vertex and S-vertex splice, R-edge and S-edge splice, R-vertex
neighborhood and S-vertex neighborhood splice, R-edge neighborhood and S-edge neigh-
borhood splice, and then we will give the explicit expressions of F -index for these new
kinds of splice graphs.

2. Main results

Our results will be given in different subsections by presenting the related definition
at first. For a graph G, we let ∆G and δG represent the maximum and minimum vertex
degrees, respectively, and let nG and eG denote the number of vertices and edges as usual.

2.1. S-vertex and R-vertex splice. In this section, we first introduce S-vertex and R-
vertex splices. Let G and H be two vertex disjoint graphs. Let a1 ∈ V (G) and x1 ∈ V (H).
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Definition 2.1. The S-vertex splice Sv (or the R-vertex splice SvR) of G and H is obtained
from S(G) (or from R(G)) and one copy of H by identifying the vertices a1 and x1 in the
union of S(G) (or R(G)) and H.

e
e
ee

e
e
ee

e
e
ee

r s
s

r r
r r s

s
r

rr
r

G H

a1

a2a3

x1 x2

c c
cc c

c
S-vertex splice R-vertex splice

Figure 2. S- and R-vertex splices

In the following results, some upper and lower bounds for the F -index of S-vertex and
R-vertex splice graphs are given:

Theorem 2.1. A lower and an upper bound for the F -index of the S-vertex splice graph
Sv are given by

F (Sv) ≤ F (G) + F (H) + 8eG + 3∆G∆H

(
∆G + ∆H

)
and

F (Sv) ≥ F (G) + F (H) + 8eG + 3δGδH
(
δG + δH

)
.

Proof. By Eqn. (1), we can write

F (Sv) =

nG−1∑
i=1

(dG(ui))
3 +

nH−1∑
i=1

(dH(vi))
3 +

eG∑
i=1

23 + (dG(u) + dH(v))3 .

Then we have

F (Sv) =

nG−1∑
i=1

(dG(ui))
3 +

nH−1∑
i=1

(dH(vi))
3 +

eG∑
i=1

23 + (dG(u))3 + (dH(v))3

+3(dG(u))2dH(v) + 3dG(u)(dH(v))2

= F (G)− (dG(u))3 + F (H)− (dH(v))3 + 8eG + (dG(u))3

+(dH(v))3 + 3
(
dG(u)dH(v)

)(
dG(u) + dH(v)

)
= F (G) + F (H) + 8eG + 3

(
dG(u)dH(v)

)(
dG(u) + dH(v)

)
.

Note that for all vertices u in G, δG ≤ dG(u) ≤ ∆G with equalities hold if and only if G is
a regular graph. By replacing G by H, we obtain similar inequalities. Therefore, we have

F (Sv) ≤ F (G) + F (H) + 8eG + 3∆G∆H

(
∆G + ∆H

)
and analogously F (Sv) ≥ F (G) + F (H) + 8eG + 3δGδH

(
δG + δH

)
. Hence the result. �

Theorem 2.2. A lower and an upper bound for the F -index of the R-vertex splice SvR
are given by

F (SvR) ≤ 8F (G) + F (H) + 8eG + 6∆G∆H

(
2∆G + ∆H

)
and

F (SvR) ≥ 8F (G) + F (H) + 8eG + 6δGδH
(
2δG + δH

)
.
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Proof. By Eqn. (1), we have

F (SvR) =

nG−1∑
i=1

(2dG(ui))
3 +

nH−1∑
i=1

(dH(vi))
3 +

eG∑
i=1

23 + (2dG(u) + dH(v))3

= 8

nG−1∑
i=1

(dG(ui))
3 +

nH−1∑
i=1

(dH(vi))
3 + 8eG + 8(dG(u))3 + (dH(v))3

+6dG(u)dH(v)

(
2dG(u) + dH(v)

)
= 8F (G)− (2dG(u))3 + F (H)− (dH(v))3 + 8eG + (2dG(u))3 + (dH(v))3

+6
(
dG(u)dH(v)

)(
2dG(u) + dH(v)

)
= 8F (G) + F (H) + 8eG + 6

(
dG(u)dH(v)

)(
2dG(u) + dH(v)

)
.

As in the proof of Theorem 2.1 in above, δG ≤ dG(u) ≤ ∆G and δH ≤ dH(u) ≤ ∆H such
that equalities hold if and only if G (or H) is a regular graph. Then we get the bounds as
indicated in the statement of theorem. �

2.2. S-edge and R-edge splice. As in the previous section, let us first define the S- and
R-edge splice graphs to obtain the definite expressions of F -index of them. Thus, assume
that G and H are two vertex disjoint graphs.

Definition 2.2. Let I(G) = {p1, p2, p3} and A(G) = {q1, q2, q3}. Let p1 be the inserted
vertex in an edge of the subdivision graph S(G), let q1 be the added vertex in R(G) and
let x1 ∈ V (H). Then the S-edge splice (correspondingly the R-edge splice) of G and H is
denoted by Se (correspondingly SeR) that is obtained from S(G) (correspondingly R(G))
and one copy of H by identifying the vertices p1 (correspondingly q1) and x1 of S(G)
(correspondingly R(G)) and H.
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Figure 3. S-edge and R-edge splice graphs

Theorem 2.3. The bounds for the F -index of S-edge splice are

F (Se) ≤ F (G) + F (H) + 8eG + 6∆H

(
∆H + 2

)
and

F (Se) ≥ F (G) + F (H) + 8eG + 6δH
(
δH + 2

)
.
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Proof. By Eqn. (1), we obtain

F (Se) =

nG∑
i=1

(dG(ui))
3 +

nH−1∑
i=1

(dH(vi)
3 +

eG−1∑
i=1

23 + (dH(v) + 2)3

= F (G) + F (H)− (dH(v))3 + 8(eG − 1) + (dH(v))3 + 8 + 6dH(v)(dH(v) + 2)

= F (G) + F (H) + 8(eG − 1) + 8 + 6dH(v)(dH(v) + 2)

= F (G) + F (H) + 8eG + 6dH(v)(dH(v) + 2)

such that δG ≤ dG(u) ≤ ∆G. These imply the bounds in theorem, as required. �

On the other hand, again by Eqn. (1), we have the following result:

Theorem 2.4. The bounds for the F -index of the R-edge splice SeR are given by

F (SeR) ≤ 8F (G) + F (H) + 8eG + 6∆H

(
2 + ∆H

)
and

F (SeR) ≥ 8F (G) + F (H) + 8eG + 6δH
(
2 + δH

)
.

Proof.

F (SeR) =

nG∑
i=1

2(dG(ui))
3 +

eG−1∑
i=1

23 +

nH−1∑
j=1

(dH(vj))
3 + (dH(v) + 2)3

= 8F (G) + 8(eG − 1) + F (H)− (dH(v))3 + (dH(v))3 + 8

+6dH(v)
(
dH(v) + 2

)
= 8F (G) + F (H) + 8eG + 6dH(v)

(
2 + dH(v)

)
which implies that F (SeR) ≤ 8F (G) + F (H) + 8eG + 6∆H

(
2 + ∆H

)
. With a similar idea,

we can also get the lower bound F (SeR) ≥ 8F (G) + F (H) + 8eG + 6δH
(
2 + δH

)
. Hence

the result. �

2.3. S-vertex (-edge) neighborhood and R-vertex (-edge) neighborhood splices.
By using same construction and proof techniques as in the previous two sections, in this
final part, we find the certain expressions for F -index of S-vertex neighborhood and R-
vertex neighborhood splice graphs, and for F -index of S-edge neighborhood and R-edge
neighborhood splice graphs, separately. Therefore we shall consider two vertex disjoint
graphs G and H.

Definition 2.3. Let a1 ∈ V (G) and x1 ∈ V (H). The S-vertex neighborhood Snv (corre-
spondingly R-vertex neighborhood SnvR) splice (NS) of G and H is obtained from S(G)
(correspondingly R(G)) and d(a1) copies of H by identifying the neighborhood vertices a1
and x1, (see Fig. 4).

Let p1 ∈ I(G) be the inserted vertex of S(G), let q1 ∈ A(G) be the added vertex of R(G)
and let x1 ∈ V (H). Then the S-edge neighborhood splice (correspondingly the R-edge
neighborhood splice) of G and H is denoted by Sne (correspondingly SneR) and is obtained
from S(G) (correspondingly R(G)) and two copies of H by identifying the vertices p1
(correspondingly q1) and x1, (see Fig. 5).

We have the following results:
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Theorem 2.5. The bounds for the F -index of Snv and Sne are given by

F (Snv) ≤ F (G) + ∆GF (H) + 8∆G + 6∆G∆H

(
∆H + 2

)
+ 8eG − 2

F (Snv) ≥ F (G) + δGF (H) + 8δG + 6δGδH
(
δH + 2

)
+ 8eG − 2

}
(2)

and
F (Sne) ≤ F (G) + 2F (H) + 8eG + 6∆G∆H

(
∆G + ∆H

)
F (Sne) ≥ F (G) + 2F (H) + 8eG + 6δGδH

(
δG + δH

) }
, (3)

respectively.

Proof. The proof is based on Eqn. (1) as in above results.

F (Snv) =

nG∑
i=1

(dG(ui))
3 + dG(a1)

nH−1∑
j=1

(dH(vj))
3 + dG(a1)(dH(v) + 2)3 +

eG−2∑
i=1

(2)3

= F (G) + dG(a1)F (H)− dG(a1)(dH(v))3 + dG(a1)(dH(v))3

+ 8dG(a1) + 6dG(a1)dH(v)

(
dH(v) + 2

)
+ 8(eG − 2)

≤ F (G) + ∆GF (H) + 8∆G + 6∆G∆H

(
∆H + 2

)
+ 8eG − 2

since dG(a1) ≤ ∆G and dH(v) ≤ ∆H which gives the upper bound of (2). On the other
hand,

F (Sne) =

nG−2∑
i=1

(dG(ui))
3 +

eG∑
i=1

(2)3 + 2

nH−1∑
j=1

(dH(vj))
3 + 2(dG(u) + dH(v)))3

= F (G)− 2(dG(u))3 + 8eG + 2F (H)− 2(dH(v))3 + 2(dG(u))3

+ 2(dH(v))3 + 3dG(u)dH(v)
(
dG(u) + dH(v)

)
= F (G) + 2F (H) + 8eG + 6(dG(u)dH(v))

(
dG(u) + dH(v)

)
≤ F (G) + 2F (H) + 8eG + 6∆G∆H

(
∆G + ∆H

)
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since dG(a1) ≤ ∆G and dH(v) ≤ ∆H which gives the upper bound of (3).

Besides, the lower bounds indicated in (2) and (3) can be obtained easily again by Eqn.
(1) and by the inequalities dG(a1) ≥ δG and dH(v) ≥ ∆H . Hence the result. �

Additionally, we also have the following lower and upper bounds for SnvR and SneR:

Theorem 2.6. The bounds for the F -index of SnvR and SneR are given by

F (SnvR) ≤ 8F (G) + 2∆GF (H) + ∆G∆3
H + 6∆2

G∆H

(
2∆G + ∆H

)
− 2∆G∆3

H

+∆G

(
2 + ∆H

)3
+ 8
(
eG −∆G

)
F (SnvR) ≥ 8F (G) + 2δGF (H) + δGδ

3
H + 6δ2GδH

(
2δG + δH

)
− 2δGδ

3
H

+δG
(
2 + δH

)3
+ 8
(
eG − δG

)
 (4)

and

F (SneR) ≤ 8F (G) + 2F (H)) + 8eG + 12∆G∆H

(
2∆G + ∆H

)
F (SneR) ≥ 8F (G) + 2F (H)) + 8eG + 12∆G∆H

(
2∆G + ∆H

) } , (5)

respectively.

Proof. Since F (SnvR) can be written as

nG−dG(a1)∑
i=1

(2dG(ui))
3 + dG(a1)

(
2dG(u) + dH(v)

)3
+ 2dG(a1)

nH−1∑
j=1

(dH(vj))
3

+dG(a1)(2 + dH(v))3 +

eG−dG(a1)∑
i=1

(2)3,

we clearly have

F (SnvR) = 8F (G)− 8dG(a1)(dG(u))3 + 8dG(a1)(dG(u))3 + dG(a1)(dH(v))3

+6dG(a1)dG(u)dH(v)(2dG(u) + dH(v)) + 2dG(a1)F (G)− 2dG(a1)(dH(v))3

+dG(a1)(2 + dH(v))3 + 8(eG − dG(a1))

= 8F (G) + dG(a1)(dH(v))3 + 6dG(a1)dG(u)dH(v)(2dG(u) + dH(v))

+2dG(a1)F (G)− 2dG(a1)(dH(v))3 + dG(a1)(2 + dH(v))3 + 8(eG − dG(a1)).

Thus, by taking into account dG(a1) ≤ ∆G and dH(v) ≤ ∆H , we obtain the first part of
(4), and considering dG(a1) ≥ δG and dH(v) ≥ δH we obtain the second part of (4).

By replacing the above calculations for SneR, and also considering same inequalities
again, we get both the first and second part of Eqn. (5). Hence the result. �

Conclusion. In this paper, one of the graph operations which is related to RNA
sequencing is studied and their forgotten index is calculated.
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