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WEIGHTED STATISTICAL CONVERGENCE OF ORDER α IN

PARANORMED SPACES
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Abstract. In this study, we introduce and examine the concept of weighted statistical

convergence of order α in paranormed spaces. Also some relations between weighted

statistical convergence of order α and
[(
N, pn

)
, g
]α
r
−summability are given.
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1. Introduction

The idea of statistical convergence was given by Zygmund [26] in the first edition of his

monograph published in Warsaw in 1935. The concept of statistical convergence was intro-

duced by Steinhaus [25] and Fast [13] and then reintroduced independently by Schoenberg

[23]. Over the years and under different names, statistical convergence has been discussed

in the Theory of Fourier Analysis, Ergodic Theory, Number Theory, Measure Theory,

Trigonometric Series, Turnpike Theory and Banach Spaces. Later on it was further in-

vestigated from the sequence spaces point of view and linked with summability theory by

Cinar et al. [5], Colak [6], Connor [7], Et et al. ([10],[11],[12],[22]), Fridy [14], Işık et al.

([16],[17]), Mursaleen [19], Salat [21], Srivastava and Et [24] and many others. For some

more fundamental and current topics, please refer to [4, 8].

Let N be the set of all natural numbers and K ⊆ N and K (n) = {k ≤ n : k ∈ K} . The

natural density of K is defined by δ (K) = lim
n

1
n |K (n)| if limit exists. The vertical bars

indicate the number of the elements in enclosed set.
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The number sequence x = (xk) is said to be statistically convergent to L if for every

ε > 0 the set K (ε) = {k ≤ n : |xk − L| ≥ ε} has natural density zero.

Weighted statistical convergence was first defined by Karakaya and Chishti [18] and

the concept was modified by Mursaleen et al. [20]. Recently Ghosal [15] was revised the

definition of weighted statistical convergence as follows.

Let (pn) be a sequence of real numbers such that lim inf pn > 0 and Pn = p1 +p2 +p3 +

...+ pn for all n ∈ N. A sequence x = (xn) is said to be weighted statistically convergent

of order α (where 0 < α ≤ 1) to L if for every ε > 0

lim
n→∞

1

Pαn
|{k ≤ Pn : pk |xk − L| ≥ ε}| = 0.

In this case we write Sα
N
− limx = L. By Sα

N
, we denote the set of all weighted statistically

convergent sequences of order α.

Alotaibi and Alroqi [1] was defined g−convergence and g−statistical convergence in

paranormed spaces and later on it was further investigated by Alghamdi and Mursaleen

[2], Arani et al. [3] and Ercan [9].

2. Main results

In this section we give the main results of this article.

Definition 1 Let (pn) be a sequence of real numbers such that lim inf pn > 0 and

Pn = p1 + p2 + p3 + ... + pn for all n ∈ N. A sequence x = (xn) is said to be weighted

statistically convergent of order α (0 < α ≤ 1) ( or Sα
N

(g)−statistically convergent ) to L

in (X, g), if for every ε > 0

lim
n→∞

1

Pαn
|{k ≤ Pn : pkg (xk − L) ≥ ε}| = 0,

where Pαn = (Pn)α. In this case we write Sα
N

(g) − limx = L or xk → L
(
Sα
N

(g)
)
. We

denote the set of all weighted statistically convergent sequences of order α by Sα
N

(g) . If

we take α = 1, we write SN (g) instead of Sα
N

(g) . Here and in what follows, (X, g) will

denote a paranormed space with paranorm g.

Definition 2 Let (pk) be a sequence of nonnegative real numbers such that p1 > 0 and

Pn =
n∑
k=1

pk → ∞ as n → ∞, r > 0 be a real number. A sequence x = (xn) is said to be

weighted
(
N, pn

)
−summable of order α (0 < α ≤ 1) ( or

[(
N, pn

)
, g
]α
r
−summable ) to

L in (X, g) , if

lim
n→∞

1

Pαn

n∑
k=0

pkg (xk − L)r = 0

and we write xk → L
([(

N, pn
)
, g
]α
r

)
.We denote the set of all weighted

(
N, pn

)
−summable

sequences of order α by
[(
N, pn

)
, g
]α
r
. If we take α = 1, we write

[(
N, pn

)
, g
]
r

instead of[(
N, pn

)
, g
]α
r

and r = 1, we write
[(
N, pn

)
, g
]α

instead of
[(
N, pn

)
, g
]α
r
. In the special

cases r = 1 and α = 1 we write
[(
N, pn

)
, g
]

instead of
[(
N, pn

)
, g
]α
r
.

The proof of each of the following results is straightforward, so we choose to state these

results without proof.
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Theorem 3 If a sequence x = (xk) is weighted statistical convergence of order α in

(X, g) , then Sα
N

(g)−limit is unique.

Theorem 4 Let Sα
N

(g)− limx = L1 and Sα
N

(g)− lim y = L2. Then

i) Sα
N

(g)− lim (x± y) = L1 ± L2

ii) Sα
N

(g)− lim cx = cL, c ∈ R.

Theorem 5 Let x be a
[(
N, pn

)
, g
]α
r
−summable sequence to L. If the following asser-

tions hold, then x is Sα
N

(g)−statistically convergent to L.

i) 0 < r < 1 and 0 ≤ g (xk − L) < 1,

ii) 1 ≤ r <∞ and 1 ≤ g (xk − L) <∞.

Proof. Since x = (xk) is
[(
N, pn

)
, g
]α
r
−summable to L we have

1

Pαn

n∑
k=1

pkg (xk − L)r = 0.

From (i) and (ii) we can write

pkg (xk − L)r ≥ pkg (xk − L) .

For any sequence (xk) in (X, g) and ε > 0 we have
n∑
k=1

pkg (xk − L)r ≥
n∑
k=1

pkg (xk − L)

≥ |{k ≤ Pn : pkg (xk − L) ≥ ε}| ε

and so that

1

Pαn
|{k ≤ Pn : pkg (xk − L) ≥ ε}| ε ≤ 1

Pαn

n∑
k=1

pkg (xk − L)r → 0.

This means that x = (xk) is Sα
N

(g)−statistically convergent to L.

Theorem 6 Let x be a SN (g)−statistically convergent sequence and pkg (xk − L) ≤M.

If the following assertions hold, then x is
[(
N, pn

)
, g
]α
r
−summable sequence to L.

i) 0 < r < 1 and 1 ≤M <∞,
ii) 1 ≤ r <∞ and 0 ≤M < 1.

Proof. Suppose that x = (xk) is a SN (g)−statistically convergent sequence to L. Then

for every ε > 0 we have δN̄ (K (ε)) = 0, where K (ε) = {k ∈ N : pkg (xk − L) ≥ ε} . Write

KPn (ε) = {k ≤ Pn : pkg (xk − L) ≥ ε} . Since pkg (xk − L) ≤M (k = 1, 2, ...) we have

1

Pn

n∑
k=1

pkg (xk − L)r =
1

Pn

n∑
k=1

k/∈KPn (ε)

pkg (xk − L)r +
1

Pn

n∑
k=1

k∈KPn (ε)

pkg (xk − L)r

≤ ε+M
KPn (ε)

Pn
→ 0.

Hence xk → L
([(

N, pn
)
, g
]
r

)
.

Theorem 7 Let lim
n→∞

pn+1

Pαn
= 0 and Sα

N
(g)− limx = L, then Sα (g)− limx = L.
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Proof. Let Sα
N

(g)− limx = L, lim inf pn > c > 0 and n be a sufficiently large number,

then there exists a positive integer m such that Pm < n ≤ Pm+1. Then for ε > 0,

1

nα
|{k ≤ n : g (xk − L) ≥ ε}|

≤ 1

Pαm
|{k ≤ Pm+1 : pkg (xk − L) ≥ cε}|

=
1

Pαm
|{k ≤ Pm : pkg (xk − L) ≥ cε}|+ pm+1

Pαm

Consequently Sα (g)− limx = L.

The following example shows that in general the converse of Theorem 7 is not true.

Example 8 Let g (x) = |x| and define a sequence x = (xn) by

xn =

{
1, n = k2

1√
n
, otherwise

, k ∈ N.

It is clear that x is statistically convergent sequence of order α to 0, but not weighted

statistically convergent sequence of order α to 0 (If we take pn = n for all n ∈ N and
1
2 < α ≤ 1).

Theorem 9 Let α and β are fixed real numbers such that 0 < α ≤ β ≤ 1. Then the

inclusion Sα
N

(g) ⊆ Sβ
N

(g) is strict for some α and β such that α < β.

Proof. The inclusion part of the proof follows from the following inequality:

1

P βn
|{k ≤ Pn : pkg (xk − L) ≥ ε}| ≤ 1

Pαn
|{k ≤ Pn : pkg (xk − L) ≥ ε}| .

To prove that the inclusions is strict, consider a paranormed space X with paranorm

g (x) = |x| , pn = n for all n ∈ N and also choose a sequence x = (xn) defined by

xn =

{
1 n = k2

1√
n

n 6= k2 , k ∈ N.

Then we have

g (xn) =

{
1 n = k2

1√
n

n 6= k2 , k ∈ N.

Hence x ∈ Sβ
N

(g) for 1
2 < β ≤ 1, but x /∈ Sα

N
(g) for 0 < α ≤ 1

2 .

Corollary 10 If we take β = 1 then Sα
N

(g) ⊆ SN (g) strictly holds.

Theorem 11 Let α and β are fixed real numbers such that 0 < α ≤ β ≤ 1. Then the

inclusion
[(
N, pn

)
, g
]α
r
⊆
[(
N, pn

)
, g
]β
r

is strict for some α and β such that α < β.

Proof. The inclusion part of the proof follows from the following inequality:

1

P βn

n∑
k=0

pkg (xk − L)r ≤ 1

Pαn

n∑
k=0

pkg (xk − L)r
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To show that the inclusion is strict, choose g (x) = |x| , pn = 1 for all n ∈ N and define a

sequence x = (xk) such that

xk =

{
1, if k is square

0, otherwise
.

Then x ∈
[(
N, pn

)
, g
]β
r
for 1

2 < β ≤ 1 but x /∈
[(
N, pn

)
, g
]α
r

for 0 < α ≤ 1
2 .

3. Conclusion

The concept of weighted statistical convergence was introduced and studied by Karakaya

and Chishti [18] in 2009 and then this concept was improved by Mursaleen et al. [20] in

2012. Later, Ghosal [15] redefined the concept of weighted statistical convergence in

2016. Usin generalized difference operator ∆m, where m ∈ N, the set of positve integers,

researchers who are working in this area can study the concepts of ∆m−weighted statistical

convergenc and ∆m−weighted
(
N, pn

)
−summability of orderα, where 0 < α ≤ 1.
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