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ON A NEW CLASS OF INTEGRALS INVOLVING GENERALIZED

HYPERGEOMETRIC FUNCTION 4F3

INSUK KIM, §

Abstract. The main aim of this research paper is to evaluate a general integral of the
form ∫ 1

0

xd−1(1− x)d+` [1 + αx+ β(1− x)]−2d−`−1

× 4F3

[
a, b, 2d+ `+ 1, c

1
2
(a+ b+ i+ 1), d, 2c+ j

;
(1 + α)x

1 + αx+ β(1− x)

]
dx

in the most general form for any ` ∈ Z and i, j = 0,±1,±2. The results are established
with the help of generalized Watson’s summation theorem due to Lavoie, et al. More
than fifty interesting general integrals have also been obtained as special cases of our
main findings.
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1. Introduction

The generalization of well known Gauss’s hypergeometric function 2F1 known as the
generalized hypergeometric function pFq with p numerator parameters and q denominator
parameters is defined as [1, 2]

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
= pFq [a1, · · · , ap; b1, · · · , bq; z] (1)

=
∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!

where (a)n is the well known Pochhammer’s symbol (or the shifted or raised factorial)
defined for every complex number a by

(a)n =

{
a(a+ 1) . . . (a+ n− 1), n ∈ N
1, n = 0.

(2)
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Regarding the convergence of the series (1), we refer [1, 10].
It is interesting to mention here that whenever hypergeometric function 2F1 and gener-

alized hypergeometric functions pFq expressed in terms of gamma function, the results are
very important from the application point of view. Thus the classical summation theorem
such as those of Gauss, Gauss’s second, Kummer, and Bailey for the series 2F1, Watson,
Dixon, and Whipple for the series 3F2 and others play an important role.

During 1992-1996, in a series of three interesting research papers, Lavoie, et al. [6, 7, 8]
have generalized the above mentioned classical summation theorems.

However, in our present investigation, we are interested in the following classical Wat-
son’s summation theorem [1, 2, 10]

3F2

[
a, b, c

1
2 (a+ b+ 1) , 2c

; 1

]
(3)

=

√
π Γ
(
1
2 + c

)
Γ
(
a+b+1

2

)
Γ
(
c+ 1−a−b

2

)
Γ
(
1+a
2

)
Γ
(
1+b
2

)
Γ
(
c+ 1−a

2

)
Γ
(
c+ 1−b

2

)
provided Re(2c− a− b) > −1 and its following generalization due to Lavoie, et al. [6]

3F2

[
a, b, c

1
2(a+ b+ i+ 1), 2c+ j

; 1

]
= Ai,j 2a+b+i−2 (4)

×
Γ
(
1
2a+ 1

2b+ 1
2 i+ 1

2

)
Γ
(
c+

[
j
2

]
+ 1

2

)
Γ
(
c− 1

2 (a+ b+ |i+ j| − j − 1)
)

Γ
(
1
2

)
Γ(a) Γ(b)

×

 Bi,j Γ
(
a
2 + 1

4

(
1− (−1)i

))
Γ
(
b
2

)
Γ
(
c− a

2 +
[
j
2

]
+ 1

2 −
(−1)j

4 (1− (−1)i)
)

Γ
(
c− b

2 +
[
j
2

]
+ 1

2

)
+

Ci,j Γ
(
a
2 + 1

4

(
1 + (−1)i

))
Γ
(
1
2b+ 1

2

)
Γ
(
c− a

2 +
[
j+1
2

]
+ (−1)j

4 (1− (−1)i)
)

Γ
(
c− b

2 +
[
j+1
2

])


= Ωi,j

for i, j = 0,±1,±2, where Ai,j , Bi,j and Ci,j are same as given in the paper [6].
Here, [x] denotes the greatest integer less than or equal to x and it’s modulus is denoted

by |x|.
For i = j = 0, the result (4) reduce to classical Watson’s summation theorem (3).
In addition to this, we also require the following interesting integral due to MacRobert

[9] ∫ 1

0
xa−1(1− x)b−1 [1 + αx+ β(1− x)]−a−b dx (5)

=
Γ(a) Γ(b)

(1 + α)a (1 + β)b Γ(a+ b)

provided Re(a) > 0, Re(b) > 0 and α, β are the constants such that none of the expressions
1 + α, 1 + β and 1 + αx+ β(1− x), where 0 ≤ x ≤ 1 is zero.
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The main aim of this research paper is to evaluate a general integral of the form∫ 1

0
xd−1(1− x)d+` [1 + αx+ β(1− x)]−2d−`−1

× 4F3

[
a, b, 2d+ `+ 1, c

1
2(a+ b+ i+ 1), d, 2c+ j

;
(1 + α)x

1 + αx+ β(1− x)

]
dx

in the most general form for any ` ∈ Z and i, j = 0,±1,±2. The results are established
with the help of generalized Watson’s summation theorem (4) due to Lavoie, et al. More
than fifty interesting general integrals have also been obtained as special cases of our main
findings.

2. Main integral formula

In this section, we present a class of integral formulas involving the generalized hyper-
geometric functions 4F3, which is asserted by the following theorem.

Theorem 2.1. The following general integral formula containing twenty-five results holds
true: ∫ 1

0
xd−1(1− x)d+` [1 + αx+ β(1− x)]−2d−`−1 (6)

× 4F3

[
a, b, 2d+ `+ 1, c

1
2(a+ b+ i+ 1), d, 2c+ j

;
(1 + α)x

1 + αx+ β(1− x)

]
dx

=
Γ(d) Γ(d+ `+ 1)

(1 + α)d (1 + β)d+`+1 Γ(2d+ `+ 1)
Ωi,j

where Ωi,j is given in (4), ` ∈ Z, i, j = 0, ±1, ±2 and Re(d) > 0 for ` = 0, 1, 2, . . .;
Re(d) > −`, for ` = −1,−2, . . . and Re(2d−a−b+ i+2j+1) > 0. The coefficients α and
β are the constants such that none of the expressions 1 + α, 1 + β and 1 + αx+ β(1− x),
where 0 ≤ x ≤ 1 is zero.

Proof. The proof of our theorem is quite straight forward. For this, we proceed as follows.
Denoting the left-hand side of (6) by I, expressing the 4F3 function as a series, changing
the order of integration and summation which is easily seen to be justified due to the
uniform convergence of the series in the interval (0,1), we have

I =

∞∑
n=0

(a)n (b)n (2d+ `+ 1)n (c)n(
1
2(a+ b+ i+ 1)

)
n

(2c+ j)n (d)n n!

×
∫ 1

0
xd+n−1 (1− x)d+` [1 + αx+ β(1− x)]−2d−`−n−1 dx.

Evaluating the integral and after some simplification, we have

I =
Γ(d) Γ(d+ `+ 1)

(1 + α)d (1 + β)d+`+1 Γ(2d+ `+ 1)

×
∞∑
n=0

(a)n (b)n (c)n(
1
2(a+ b+ i+ 1)

)
n

(2c+ j)n n!
.
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Summing up the series, we have

I =
Γ(d) Γ(d+ `+ 1)

(1 + α)d (1 + β)d+`+1 Γ(2d+ `+ 1)

× 3F2

[
a, b, c

1
2(a+ b+ i+ 1), 2c+ j

; 1

]
.

Finally, evaluating 3F2 using (4), we are led to the right-hand side of (6). This completes
the proof of (6). �

We conclude this section by remarking that more than fifty interesting special cases in
the form of two corollaries and some other known results will be given in the next section.

3. Special Cases

In this section, we shall mention more than fifty interesting special cases in the form of
two integrals, which are also general in nature.

In (6), let b = −2n and replace a by a+2n or let b = −2n−1 and replace a by a+2n+1,
where n is zero or a positive integer. In each case, one of the two terms appearing on the
right-hand sides of (6) will vanish and under the same conditions of convergence, we get
fifty interesting special cases, which are given below in the form of two corollaries.

Corollary 3.1. For ` ∈ Z and i, j = 0,±1,±2, the following 25 results hold true.∫ 1

0
xd−1 (1− x)d+` [1 + αx+ β(1− x)]−2d−`−1 (7)

× 4F3

[
−2n, a+ 2n, 2d+ `+ 1, c

1
2(a+ i+ 1), d, 2c+ j

;
(1 + α)x

1 + αx+ β(1− x)

]
dx

=
Di,j

(1 + α)d (1 + β)d+`+1

Γ(d) Γ(d+ `+ 1)

Γ(2d+ `+ 1)

×

(
1
2

)
n

(
1
2a− c+ 3

4 −
(−1)i

4 −
[
j
2 + 1

4(1− (−1)i)
])

n(
c+ 1

2 +
[
j
2

])
n

(
1
2a+ 1

4 (1 + (−1)i)
)
n

,

where the coefficients, Di,j are same as given in the paper [6].

Corollary 3.2. For ` ∈ Z and i, j = 0,±1,±2, the following 25 results hold true.∫ 1

0
xd−1 (1− x)d+` [1 + αx+ β(1− x)]−2d−`−1 (8)

× 4F3

[
−2n− 1, a+ 2n+ 1, 2d+ `+ 1, c

1
2(a+ i+ 1), d, 2c+ j

;
(1 + α)x

1 + αx+ β(1− x)

]
dx

=
Ei,j

(1 + α)d (1 + β)d+`+1

Γ(d) Γ(d+ `+ 1)

Γ(2d+ `+ 1)

×

(
3
2

)
n

(
1
2a− c+ 5

4 + (−1)i
4 −

[
j
2 + 1

4(1 + (−1)i)
])

n(
c+ 1

2 +
[
j+1
2

])
n

(
1
2a+ 1

4 (3− (−1)i)
)
n

,

where the coefficients, Ei,j are are same as given in the paper [6].
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In particular, in (7), if we take i = j = 0, we get the following result.∫ 1

0
xd−1 (1− x)d+` [1 + αx+ β(1− x)]−2d−`−1 (9)

× 4F3

[
−2n, a+ 2n, 2d+ `+ 1, c

1
2(a+ 1), d, 2c

;
(1 + α)x

1 + αx+ β(1− x)

]
dx

=
Γ(d) Γ(d+ `+ 1)

(1 + α)d (1 + β)d+`+1 Γ(2d+ `+ 1)

(
1
2

)
n

(
1
2a− c+ 1

2

)
n(

c+ 1
2

)
n

(
1
2a+ 1

2

)
n

.

Further, if we take ` = −1, it reduces to∫ 1

0
xd−1 (1− x)d−1 [1 + αx+ β(1− x)]−2d (10)

× 4F3

[
−2n, a+ 2n, 2d, 2c

1
2(a+ 1), d, 2c

;
(1 + α)x

1 + αx+ β(1− x)

]
dx

=
Γ(d) Γ(d)

(1 + α)d (1 + β)d Γ(2d)

(
1
2

)
n

(
1
2a− c+ 1

2

)
n(

c+ 1
2

)
n

(
1
2a+ 1

2

)
n

.

Similarly, in (8), if we take i = j = 0, we get the following elegant result.∫ 1

0
xd−1 (1− x)d+` [1 + αx+ β(1− x)]−2d−`−1 (11)

× 4F3

[
−2n− 1, a+ 2n+ 1, 2d+ `+ 1, c

1
2(a+ 1), d, 2c

;
(1 + α)x

1 + αx+ β(1− x)

]
dx = 0.

We observe that the result (11) is interesting.

Corollary 3.3. (a) In (6), if we take d = c, we get results very recently obtained by Kim,
et al. [5].

(b) In (6), if we take β = α and d = c, we get results obtained by Choi and Rathie [3].

Remark. For double finite integrals of this type, see recent papers by Choi and Rathie
[4]

4. Conclusions

We evaluate a general integral of the form∫ 1

0
xd−1(1− x)d+` [1 + αx+ β(1− x)]−2d−`−1

× 4F3

[
a, b, 2d+ `+ 1, c

1
2(a+ b+ i+ 1), d, 2c+ j

;
(1 + α)x

1 + αx+ β(1− x)

]
dx

for any ` ∈ Z and i, j = 0,±1,±2. More than fifty interesting general integrals have also
been obtained as special cases of our main findings.
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