ECCENTRICITY BASED TOPOLOGICAL INDICES OF SOME GRAPHS

PADMAPRIYA P. ${ }^{1}$, VEENA MATHAD ${ }^{1}$, §

Abstract

Topological indices are real numbers that are presented as graph parameters introduced during studies conducted on the molecular graphs in chemistry and can describe some physical and chemical properties of molecules. In this paper we compute eccentricity based topological indices for crown graph, gear graph, friendship graph, helm graph flower graph and their line graphs.

Keywords: Distance, eccentricity, degree, line graph, topological index.
AMS Subject Classification: 05C90, 05C35, 05C12.

1. Introduction

All the graphs $G=(V, E)$ considered in this paper are simple, undirected and connected graphs. For any vertices $u, v \in V(G)$, the distance $d(u, v)$ is defined as the length of any shortest path connecting u and v in G. For any vertex v in G, the degree $\left(d_{v}\right)$ of v is the number of edges incident with v in G and the eccentricity $\left(e_{v}\right)$ of v is the largest distance between v and any other vertex of G. The line graph $L(G)$ of a graph G is the graph whose vertices are the edges of G, two vertices e and f are adjacent in $L(G)$ if and only if they have a common end vertex in $\mathrm{G}[2]$.

A topological index is a numerical parameter mathematically derived from the graph structure. It is a graph invariant, thus it does not depend on the labelling or pictorial representation of the graph. The topological indices of molecular graphs are widely used for establishing correlations between the structure of a molecular compound and its physicochemical properties or biological activity (e.g., pharmacology)[6]. There exist several types of such indices. In Table 1, we describe some eccentricity based topological indices.

[^0]| SI.No. | Introduced by | Index Name | Notation | Formula |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Sharma et al.[13] | Eccentric connectivity index | $\xi(G)$ | $\sum_{v \in V(G)} d_{v} e_{v}$ |
| 2 | M. Alaeiyan et al.[8] | Eccentric connectivity
 polynomial | $E C P(G, x)$ | $\sum_{v \in V(G)} d_{v} x^{e_{v}}$ |
| 3 | R. Farooq et al. [12] | Total eccentricity index | $\zeta(G)$ | $\sum_{v \in V(G)} e_{v}$ |
| 4 | F. Bukley et al.[3] | Average eccentricity | $\operatorname{avec}(G)$ | $\frac{1}{n} \sum_{v \in V(G)} e_{v}$ |
| 5 | D. Vukičević et al.[15] and M. Ghorbani et al.[4] | First Zagreb eccentric index | $M_{1}^{*}(G)$ | $\sum_{u v \in E(G)}\left[e_{u}+e_{v}\right]$ |
| | | Second Zagreb eccentric index | $M_{1}^{* *}(G)$ | $\sum_{v \in V(G)} e_{v}^{2}$ |
| | | Third Zagreb eccentric index | $M_{2}^{*}(G)$ | $\sum_{u v \in E(G)} e_{u} e_{v}$ |
| 6 | M. Ghorbani et al. [5] | Fourth Geometric-arithmetic index | $G A_{4}(G)$ | $\sum_{u v \in E(G)} \frac{2 \sqrt{e_{u} e_{v}}}{e_{u}+e_{v}}$ |
| 7 | Padmapriya P. et al.[10] | First Zagreb degree eccentricity index | $D E_{1}(G)$ | $\sum_{v \in V(G)}\left[e_{v}+d_{v}\right]^{2}$ |
| | | Second Zagreb degree
 eccentricity index | $D E_{2}(G)$ | $\sum_{u v \in E(G)}\left(e_{u}+d_{u}\right)\left(e_{v}+d_{v}\right)$ |

Table 1: Eccentricity based topological indices
The aim of this paper is to compute the above described eccentricity based topological indices for crown graph, gear graph, friendship graph, helm graph flower graph and their line graphs.

Remark 1.1. [7] $\xi(G)=\sum_{v \in V(G)} d_{v} e_{v}=\sum_{u v \in E(G)}\left[e_{u}+e_{v}\right]$

2. Crown Graph

The graph $C W_{n}=C_{n} \circ K_{1}$ is called a crown graph[11]. The graph $C W_{8}$ and its line graph $L\left(C W_{8}\right)$ are shown in Fig. 1.

Fig. 1: The crown graph $C W_{8}$ and its line graph $L\left(C W_{8}\right)$

Number of vertices	d_{u}	e_{u}	Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
n	1	$\frac{n}{2}+2$	n	$(3,3)$	$\left(\frac{n}{2}+1, \frac{n}{2}+1\right)$
n	3	$\frac{n}{2}+1$	n	$(1,3)$	$\left(\frac{n}{2}+2, \frac{n}{2}+1\right)$

Table 2: Vertex and edge partition of $C W_{n}$, if n is even

Number of vertices	d_{u}	e_{u}	Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
n	1	$\frac{n-1}{2}+2$	n	$(3,3)$	$\left(\frac{n-1}{2}+1, \frac{n-1}{2}+1\right)$
n	3	$\frac{n-1}{2}+1$	n	$(1,3)$	$\left(\frac{n-1}{2}+2, \frac{n-1}{2}+1\right)$

Table 3: Vertex and edge partition of $C W_{n}$, if n is odd

Number of vertices	d_{u}	e_{u}	Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
n	2	$\frac{n}{2}+1$	2 n	$(2,4)$	$\left(\frac{n}{2}+1, \frac{n}{2}\right)$
n	4	$\frac{n}{2}$	n	$(4,4)$	$\left(\frac{n}{2}, \frac{n}{2}\right)$

Table 4: Vertex and edge partition of $L\left(C W_{n}\right)$, if n is even

Number of vertices	d_{u}	e_{u}	Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
n	2	$\frac{n+1}{2}$	2 n	$(2,4)$	$\left(\frac{n+1}{2}, \frac{n+1}{2}\right)$
n	4	$\frac{n+1}{2}$	n	$(4,4)$	$\left(\frac{n+1}{2}, \frac{n+1}{2}\right)$

Table 5: Vertex and edge partition of $L\left(C W_{n}\right)$, if n is odd
Theorem 2.1. Let $G=C W_{n}$ be the crown graph. Then
(i) If n is even
(1) $\xi(G)=2 n^{2}+5 n$
(2) $E C P(G, x)=n x^{\frac{n+4}{2}}+3 n x^{\frac{n+2}{2}}$
(3) $\zeta(G)=n^{2}+3 n$
(4) $\operatorname{avec}(G)=\frac{1}{2}(n+3)$
(5) $M_{1}^{*}(G)=2 n^{2}+5 n$
(6) $M_{1}^{* *}(G)=\frac{n^{3}}{2}+3 n^{2}+5 n$
(7) $M_{2}^{*}(G)=\frac{n}{2}\left[n^{2}+7 n+6\right]$
(8) $G A_{4}(G)=n+\frac{n \sqrt{n^{2}+6 n+8}}{n+3}$
(9) $D E_{1}(G)=\frac{n^{3}}{2}+7 n^{2}+25 n$
(10) $D E_{2}(G)=\frac{n^{3}}{2}+\frac{15}{2} n^{2}+28 n$
(ii) If n is odd
(1) $\xi(G)=2 n^{2}+3 n$
(2) $E C P(G, x)=n x^{\frac{n+3}{2}}+3 n x^{\frac{n+1}{2}}$
(3) $\zeta(G)=n^{2}+2 n$
(4) $\operatorname{avec}(G)=\frac{1}{2}(n+2)$
(5) $M_{1}^{*}(G)=2 n^{2}+3 n$
(6) $M_{1}^{* *}(G)=\frac{n^{3}}{2}+2 n^{2}+\frac{5}{2} n$
(7) $M_{2}^{*}(G)=\frac{n}{2}\left[n^{2}+3 n+2\right]$
(8) $G A_{4}(G)=n+\frac{n \sqrt{n^{2}+4 n+3}}{n+2}$
(9) $D E_{1}(G)=\frac{n^{3}}{2}+6 n^{2}+\frac{37}{2} n$
(10) $D E_{2}(G)=\frac{n^{3}}{2}+\frac{13}{2} n^{2}+24 n$

Proof. The crown graph has $2 n$ vertices and $2 n$ edges. Based on the degree and eccentricity of vertices of $C W_{n}$ we partition $V\left(C W_{n}\right)$ into subsets and also we partition $E\left(C W_{n}\right)$ based on the degree and eccentricity of end vertices of edges in $C W_{n}$ as shown in Tables 2 and 3. Using the information in these tables, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

Theorem 2.2. Let $H=L\left(C W_{n}\right)$ be the line graph of crown graph $C W_{n}$. Then (i) If n is even
(1) $\xi(H)=n(3 n+2)$
(2) $E C P(H, x)=2 n\left[x^{\frac{n+2}{2}}+2 x^{\frac{n}{2}}\right]$
(3) $\zeta(H)=n(n+1)$
(4) $\operatorname{avec}(H)=\frac{1}{2}(n+1)$
(5) $M_{1}^{*}(H)=n(3 n+2)$
(6) $M_{1}^{* *}(H)=n\left[\frac{n^{2}}{2}+n+1\right]$
(7) $M_{2}^{*}(H)=n^{2}\left[\frac{3}{2} n+1\right]$
(8) $G A_{4}(H)=n+\frac{2 n \sqrt{n(n+2)}}{n+1}$
(9) $D E_{1}(H)=\frac{n^{3}}{2}+7 n^{2}+25 n$
(10) $D E_{2}(H)=\frac{3}{4} n^{3}+11 n^{2}+40 n$
(ii) If n is odd
(1) $\xi(H)=3 n(n+1)$
(2) $\operatorname{ECP}(H, x)=6 n x^{\frac{n+1}{2}}$
(3) $\zeta(H)=n(n+1)$
(4) $\operatorname{avec}(H)=\frac{1}{2}(n+1)$
(5) $M_{1}^{*}(H)=3 n(n+1)$
(6) $M_{1}^{* *}(H)=n\left[\frac{n^{2}}{2}+n+\frac{1}{2}\right]$
(7) $M_{2}^{*}(H)=\frac{3 n}{4}\left[n^{2}+2 n+1\right]$
(8) $G A_{4}(H)=3 n$
(9) $D E_{1}(H)=\frac{n^{3}}{2}+7 n^{2}+\frac{53}{2} n$
(10) $D E_{2}(H)=\frac{3}{4} n^{3}+\frac{23}{2} n^{2}+\frac{179}{4} n$

Proof. The line graph H of crown graph $C W_{n}$ has $2 n$ vertices and $3 n$ edges. Based on the degree and eccentricity of vertices of H we partition $V(H)$ into subsets and also we partition $E(H)$ based on the degree and eccentricity of end vertices of edges in $L(H)$ as shown in Tables 4 and 5. Using the information in these tables, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

3. Gear graph

The gear graph G_{n} is obtained from the wheel W_{n+1} by adding a vertex between every pair of adjacent vertices of the cycle $C_{n}[1]$. The graph G_{6} and its line graph $L\left(G_{6}\right)$ are shown in Fig. 2.

Fig. 2: The graph G_{6} and its line graph $L\left(G_{6}\right)$

Number of vertices	d_{u}	e_{u}
n	3	3
n	2	4
1	n	2

Table 6: Vertex partition of G_{n}

Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
2 n	$(2,3)$	$(4,3)$
n	$(3, \mathrm{n})$	$(3,2)$

Table 7: Edge partition of G_{n}

Number of vertices	d_{u}	e_{u}
n	$\mathrm{n}+1$	2
2 n	3	3

Table 8: Vertex partition of $L\left(G_{n}\right)$

Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
2 n	$(3,3)$	$(3,3)$
2 n	$(3, \mathrm{n}+1)$	$(3,2)$
$\frac{n(n-1)}{2}$	$(\mathrm{n}+1, \mathrm{n}+1)$	$(2,2)$

Table 9: Edge partition of $L\left(G_{n}\right)$
Theorem 3.1. Let $G=G_{n}$ be the gear graph. Then
(1) $\xi(G)=19 n$
(2) $E C P(G, x)=n\left[2 x^{4}+3 x^{3}+x^{2}\right]$
(3) $\zeta(G)=7 n+2$
(4) $\operatorname{avec}(G)=2+\frac{3 n}{2 n+1}$
(5) $M_{1}^{*}(G)=19 n$
(6) $M_{1}^{* *}(G)=25 n+4$
(7) $M_{2}^{*}(G)=30 n$
(8) $G A_{4}(G)=2 n\left[\frac{4 \sqrt{3}}{7}+\frac{\sqrt{6}}{5}\right]$
(9) $D E_{1}(G)=n^{2}+76 n+4$
(10) $D E_{2}(G)=6 n(n+14)$

Proof. The gear graph has $2 n+1$ vertices and $3 n$ edges. Based on the degree and eccentricity of vertices of G_{n} we partition $V\left(G_{n}\right)$ into subsets as shown in Table 6 and also we partition $E\left(G_{n}\right)$ based on the degree and eccentricity of end vertices of edges in G_{n} as shown in Table 7. Using the information in these tables, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

Theorem 3.2. Let $H=L\left(G_{n}\right)$ be the line graph of gear graph G_{n}. Then
(1) $\xi(H)=2 n(n+10)$
(2) $\operatorname{ECP}(H, x)=n\left[6 x^{3}+(n+1) x^{2}\right]$
(3) $\zeta(H)=8 n$
(4) $\operatorname{avec}(H)=\frac{8}{3}$
(5) $M_{1}^{*}(H)=2 n(n+10)$
(6) $M_{1}^{* *}(H)=22 n$
(7) $M_{2}^{*}(H)=2 n(n+14)$
(8) $G A_{4}(H)=\frac{n^{2}}{2}+\left(\frac{15+8 \sqrt{6}}{10}\right) n$
(9) $D E_{1}(H)=n^{3}+6 n^{2}+81 n$
(10) $D E_{2}(H)=\frac{n}{2}\left[n^{3}+5 n^{2}+27 n+129\right]$

Proof. The line graph H of gear graph G_{n} has $3 n$ vertices and $\frac{n^{2}+7 n}{2}$ edges. Based on the degree and eccentricity of vertices of H we partition $V(H)$ into subsets as shown in Table 8 and also we partition $E(H)$ based on the degree and eccentricity of end vertices of edges in H as shown in Table 9. Using the information in these tables, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

4. Friendship Graph

Let C_{t}^{n} denote the graph obtained by identifying one vertex of each of n copies of C_{t}, $t \geq 3$. The graph $C_{3}^{n}, n \geq 2$ is called friendship graph. The graph C_{3}^{4} and its line graph $L\left(C_{3}^{4}\right)$ are shown in Fig. 3.

Fig. 3: The friendship graph C_{3}^{4} and its line graph $L\left(C_{3}^{4}\right)$

Number of vertices	d_{u}	e_{u}	Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
2 n	2	2	2 n	$(2,2 \mathrm{n})$	$(2,1)$
1	2 n	1	n	$(2,2)$	$(2,2)$

Table 10: Vertex and edge partition of C_{3}^{n}

Number of vertices	d_{u}	e_{u}	Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
2 n	2 n	2	2 n	$(2,2 \mathrm{n})$	$(3,2)$
n	2	3	$\mathrm{n}(2 \mathrm{n}-1)$	$(2 \mathrm{n}, 2 \mathrm{n})$	$(2,2)$

Table 11: Vertex and edge partition of $L\left(C_{3}^{n}\right)$
Theorem 4.1. Let $G=C_{3}^{n}$ be the friendship graph. Then
(1) $\xi(G)=10 n$
(2) $E C P(G, x)=2 n\left(2 x^{2}+x\right)$
(3) $\zeta(G)=4 n+1$
(4) $\operatorname{avec}(G)=\frac{4 n+1}{2 n+1}$
(5) $M_{1}^{*}(G)=10 n$
(6) $M_{1}^{* *}(G)=8 n+1$
(7) $M_{2}^{*}(G)=8 n$
(8) $G A_{4}(G)=n\left(\frac{4 \sqrt{2}}{3}+1\right)$
(9) $D E_{1}(G)=4 n^{2}+12 n+1$
(10) $D E_{2}(G)=8 n(2 n+3)$

Proof. The friendship graph has $2 n+1$ vertices and $3 n$ edges. Based on the degree and eccentricity of vertices of C_{3}^{n} we partition $V\left(C_{3}^{n}\right)$ into subsets and also we partition $E\left(C_{3}^{n}\right)$ based on the degree and eccentricity of end vertices of edges in C_{3}^{n} as shown in Table 10. Using the information in Table 10, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

Theorem 4.2. Let $H=L\left(C_{3}^{n}\right)$ be the line graph of Friendship graph C_{3}^{n}. Then
(1) $\xi(H)=2 n(4 n+3)$
(2) $E C P(H, x)=2 n\left[x^{3}+2 n x^{2}\right]$
(3) $\zeta(H)=7 n$
(4) $\operatorname{avec}(H)=\frac{7}{3}$
(5) $M_{1}^{*}(H)=2 n(4 n+3)$
(6) $M_{1}^{* *}(H)=17 n$
(7) $M_{2}^{*}(H)=8 n(n+1)$
(8) $G A_{4}(H)=2 n^{2}+\left(\frac{4 \sqrt{6}-5}{5}\right) n$
(9) $D E_{1}(H)=8 n^{3}+16 n^{2}+33 n$
(10) $D E_{2}(H)=4 n\left[2 n^{3}+3 n^{2}+5 n+4\right]$

Proof. The line graph H of friendship graph C_{3}^{n} has $3 n$ vertices and $n(2 n+1)$ edges. Based on the degree and eccentricity of vertices of H we partition $V(H)$ into subsets and also we partition $E(H)$ based on the degree and eccentricity of end vertices of edges in h as shown in table 11. Using the information in Table 11, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

5. Helm Graph

The Helm Graph H_{n} is the graph obtained from a wheel graph W_{n+1} by adjoining a pendant edge at each vertex of the cycle[14]. The graph H_{6} and its line graph $L\left(H_{6}\right)$ are shown in Fig. 4.

Fig. 4: The helm graph H_{6} and its line graph $L\left(H_{6}\right)$

Number of vertices	d_{u}	e_{u}
n	4	3
n	1	4
1	n	2

Table 12: Vertex partition of H_{n}

Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
n	$(1,4)$	$(4,3)$
n	$(4,4)$	$(3,3)$
n	$(\mathrm{n}, 4)$	$(2,3)$

Table 13: Edge partition of H_{n}

Number of vertices	d_{u}	e_{u}
n	$\mathrm{n}+2$	2
n	6	3
n	3	3

Table 14: Vertex partition of $L\left(H_{n}\right)$

Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
$\frac{n(n-1)}{2}$	$(\mathrm{n}+2, \mathrm{n}+2)$	$(2,2)$
2 n	$(\mathrm{n}+2,6)$	$(2,3)$
2 n	$(6,3)$	$(3,3)$
n	$(\mathrm{n}+2,3)$	$(2,3)$
n	$(6,6)$	$(3,3)$

Table 15: Edge partition of $L\left(H_{n}\right)$

Theorem 5.1. Let $G=H_{n}$ be the helm graph. Then
(1) $\xi(G)=18 n$
(2) $E C P(G, x)=n\left[x^{4}+4 x^{3}+x^{2}\right]$
(3) $\zeta(G)=7 n+2$
(4) $\operatorname{avec}(G)=\frac{7 n+2}{2 n+1}$
(5) $M_{1}^{*}(G)=18 n$
(6) $M_{1}^{* *}(G)=25 n+4$
(7) $M_{2}^{*}(G)=27 n$
(8) $G A_{4}(G)=n\left[1+\frac{4 \sqrt{3}}{7}+\frac{2 \sqrt{6}}{5}\right]$
(9) $D E_{1}(G)=n^{2}+78 n+4$
(10) $D E_{2}(G)=7 n(n+14)$

Proof. The helm graph has $2 n+1$ vertices and $3 n$ edges. Based on the degree and eccentricity of vertices of H_{n} we partition $V\left(H_{n}\right)$ into subsets as shown in Table 12 and also we partition $E\left(H_{n}\right)$ based on the degree and eccentricity of end vertices of edges in H_{n} as shown in Table 13. Using the information in these tables, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

Theorem 5.2. Let $H=L\left(H_{n}\right)$ be the line graph of helm graph H_{n}. Then
(1) $\xi(H)=n(2 n+31)$
(2) $E C P(H, x)=n\left[9 x^{3}+(n+2) x^{2}\right]$
(3) $\zeta(H)=8 n$
(4) $\operatorname{avec}(H)=\frac{8}{3}$
(5) $M_{1}^{*}(H)=n(2 n+31)$
(6) $M_{1}^{* *}(H)=22 n$
(7) $M_{2}^{*}(H)=n(2 n+43)$
(8) $G A_{4}(H)=n\left[\frac{n+5}{2}+\frac{6 \sqrt{6}}{5}\right]$
(9) $D E_{1}(H)=n^{3}+8 n^{2}+133 n$
(10) $D E_{2}(H)=\frac{n^{3}}{2}(n+9)+36 n^{2}+293 n$

Proof. The line graph H of helm graph H_{n} has $3 n$ vertices and $\frac{n^{2}+11 n}{2}$ edges. Based on the degree and eccentricity of vertices of H we partition $V(H)$ into subsets as shown in Table 14 and also we partition $E(H)$ based on the degree and eccentricity of end vertices of edges in H as shown in Table 15. Using the information in these tables, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

6. Flower Graph

A flower graph F_{n} is the graph obtained from a helm graph by joining each pendant vertex to the central vertex of the helm graph[9]. The graph F_{6} and its line graph $L\left(F_{6}\right)$ are shown in Fig. 5.

Fig. 5: The flower graph F_{6} and its line graph $L\left(F_{6}\right)$

Number of vertices	d_{u}	e_{u}
n	4	2
n	2	2
1	2 n	1

Table 16: Vertex partition of F_{n}

Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
n	$(4,4)$	$(2,2)$
n	$(2 \mathrm{n}, 4)$	$(1,2)$
n	$(4,2)$	$(2,2)$
n	$(2 \mathrm{n}, 2)$	$(1,2)$

Table 17: Edge partition of F_{n}

Number of vertices	d_{u}	e_{u}
n	$2 \mathrm{n}+2$	2
n	2 n	2
n	4	3
n	6	3

Table 18: Vertex partition of $L\left(F_{n}\right)$

Number of edges	$\left(d_{u}, d_{v}\right)$	$\left(e_{u}, e_{v}\right)$
$\frac{n(n-1)}{2}$	$(2 \mathrm{n}, 2 \mathrm{n})$	$(2,2)$
$\frac{n(n-1)}{2}$	$(2 \mathrm{n}+2,2 \mathrm{n}+2)$	$(2,2)$
n^{2}	$(2 \mathrm{n}, 2 \mathrm{n}+2)$	$(2,2)$
n	$(2 \mathrm{n}+2,4)$	$(2,3)$
2 n	$(2 \mathrm{n}+2,6)$	$(2,3)$
n	$(2 \mathrm{n}, 4)$	$(2,3)$
2 n	$(4,6)$	$(3,3)$
n	$(6,6)$	$(3,3)$

Table 19: Edge partition of $L\left(F_{n}\right)$
Theorem 6.1. Let $G=F_{n}$ be the flower graph. Then
(1) $\xi(G)=14 n$
(2) $E C P(G, x)=2 n\left[3 x^{2}+x\right]$
(3) $\zeta(G)=4 n+1$
(4) $\operatorname{avec}(G)=\frac{4 n+1}{2 n+1}$
(5) $M_{1}^{*}(G)=14 n$
(6) $M_{1}^{* *}(G)=8 n+1$
(7) $M_{2}^{*}(G)=12 n$
(8) $G A_{4}(G)=2 n\left[1+\frac{2 \sqrt{2}}{3}\right]$
(9) $D E_{1}(G)=4 n^{2}+56 n+1$
(10) $D E_{2}(G)=10 n(2 n+7)$

Proof. The flower graph has $2 n+1$ vertices and $4 n$ edges. Based on the degree and eccentricity of vertices of F_{n} we partition $V\left(F_{n}\right)$ into subsets as shown in Table 16 and also we partition $E\left(F_{n}\right)$ based on the degree and eccentricity of end vertices of edges in F_{n} as shown in Table 17. Using the information in these tables, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

Theorem 6.2. Let $H=L\left(F_{n}\right)$ be the line graph of flower graph F_{n}. Then
(1) $\xi(H)=2 n(4 n+17)$
(2) $E C P(H, x)=2 n\left[5 x^{3}(2 n+1) x^{2}\right]$
(3) $\zeta(H)=10 n$
(4) $\operatorname{avec}(H)=\frac{5}{2}$
(5) $M_{1}^{*}(H)=2 n(4 n+17)$
(6) $M_{1}^{* *}(H)=26 n$
(7) $M_{2}^{*}(H)=n(8 n+47)$
(8) $G A_{4}(H)=2 n\left[(n+1)+\frac{4 \sqrt{6}}{5}\right]$
(9) $D E_{1}(H)=n\left[8 n^{2}+24 n+150\right]$
(10) $D E_{2}(H)=8 n^{4}+20 n^{3}+70 n^{2}+311 n$

Proof. The line graph H of flower graph F_{n} has $4 n$ vertices and $2 n^{2}+6 n$ edges. Based on the degree and eccentricity of vertices of H we partition $V(H)$ into subsets as shown in Table 18 and also we partition $E(H)$ based on the degree and eccentricity of end vertices of edges in H as shown in Table 19. Using the information in these tables, formulae from Table 1 and by Remark 1.1 we obtain the desired results.

Observation 6.3. The average eccentricity of line graph of gear graph, friendship graph, helm graph and flower graph is constant.

7. Conclusions

In this paper eccentricity based topological indices for crown graph, gear graph, friendship graph, helm graph flower graph and their line graphs are computed.

Acknowledgments

The First author is thankful to the University Grants Commission, Government of India, for the financial support under the Basic Science Research Fellowship. UGC vide No.F. $25-1 / 2014-15(B S R) / 7-349 / 2012(B S R)$, January 2015. The second author is thankful to the University Grants Commission for financial assistance under No.F.510/12/DRS-II/2018(SAP-I).

References

[1] Andreas B., Van B. L. and Jeremy P. S., (1999), Graph Classess: A Survey, SIAM Monographs on Discrete Mathematics and Applications, Springer.
[2] Frank H., (1969), Graph Theory, Addison Wesley, Reading Mass.
[3] Fred B. and Frank H., (1990), Distance in Graphs, Addison Wesley, Redwood City, California.
[4] Ghorbani M. and Hosseinzadeh M. A., (2012), A new version of Zagreb indices, Filomat, 26, pp. 93-100.
[5] Ghorbani M. and Khaki A., (2010), A note on fourth version of geometric arithmetic index, Optoelectronics and Advanced Materials-Rapid Communications, 4, pp. 2212-2215.
[6] Joseph A. G., (2007), Dynamic Survey of Graph Labeling, Electronic J. Combinatorics, pp. 1-58.
[7] Kinkar C. D., (2016), Comparison Between Zagreb Eccentricity Indices and the Eccentric Connectivity Index, the Second Geometric-arithmetic Index and the Graovac-Ghorbani Index, Croat. Chem. Acta, 89, pp. 505-510.
[8] Mehdi A., Rasoul M., Jafar A., (2011), A new method for computing eccentric connectivity polynomial of an infinite family of linear Polycene parallelogram benzenod, Optoelectronics and Advanced Materials-Rapid Communications, 5, pp. 761-763.
[9] Murali B.J., Thirusangu K. and Balamurugan B.J., (2017), Combination Cordial Labeling of Flower Graphs and Corona Graph, International Journal of Pure and Applied Mathematics, 117 (11), pp. 45-51.
[10] Padmapriya P. and Veena M., Zagreb Degree Eccentricity Indices of Graphs, communicated.
[11] Prabha R. and Indra R., (2012), Rainbow Colouring of Crown Graphs, J. Comp. and Math. Sci., 3(3), 390-394.
[12] Rashid F. and Mehar A. M., (2015), On some eccentricity based topological indices of nanostar dendrimers, Optoelectron. Adv. Mater. Rapid Commun., 9, pp. 842-849.
[13] Sharma V., Goswami R. and Madan A. K., (1997), Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci., 37 pp. 273-282.
[14] Vaidya S. K. and Shukla M. S., (2014), The b-Chromatic Number of Helm and Closed Helm, International Journal of Mathematics and Scientific Computing, 4, pp. 43-47.
[15] Vukičević D. and Graovac A., (2010), Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov., 57, pp. 524-528.

Padmapriya P. graduated in Mathematics in 2009 and received her M.Sc. and M.Phil. degrees in Mathematics from the University of Mysore, India, in 2013 and 2014 respectively. Presently, she is working as a research scholar of Mathematics in the Department of studies in Mathematics at same University. Her research interests are topological indices, distance parameters in graphs and chemical graph theory.

Padmapriya P. graduated in Mathematics and received her M.Sc. and M.Phil. degrees in Mathematics from Karnatak University, Dharwad, India, in 1995 and 1996 respectively. She was awarded her Ph.D. in Mathematics in 2005 from the same university. Presently, she is working as an assistant professor of Mathematics in the Department of studies in Mathematics at University of Mysore, India. Her research interests are graph transformations, domination, hub and stability parameters in graphs, topological indices and distance parameters in graphs. She has published 57 research articles in reputed international and national journals.

[^0]: ${ }^{1}$ Department of Studies in Mathematics, University of Mysore, Manasagangotri, 570 006, India.
 e-mail: padmapriyap7@gmail.com; ORCID: https://orcid.org/0000-0003-1029-0809.
 e-mail: veena_mathad@rediffmail.com; ORCID: https://orcid.org/0000-0002-6621-9596.
 § Manuscript received: January 10, 2019; accepted: May 02, 2019.
 TWMS Journal of Applied and Engineering Mathematics, Vol.10, No. 4 (C) Işık University, Department of Mathematics, 2020; all rights reserved.
 The first author is supported by University Grants Commission, Government of India, for the financial support under the Basic Science Research Fellowship. UGC vide No.F. 25-1/2014-15, (BSR) /7-349/2012 (BSR), January, 2015.
 The Second author is partially supported by the University Grants Commission for financial assistance under No. F-510/12/DRS-II/2018(SAP-I).

