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AN INTEGRAL EQUATION INVOLVING SAIGO-MAEDA OPERATOR

E. MITTAL1, S. JOSHI2, G. AGGARWAL2, §

Abstract. The aim of this paper is to obtain a solution of integral equation of the
Saigo- Maeda operator which contain Appell-hypergeometric function as a kernel. The
integral equation and its solution gives new form of generalised fractional integral and
generalised fractional derivative. Further various consequences also investigated.
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1. Introduction

The Appell hypergeometric function of the third type F3(−) as [8]

F3(a, a′, b, b′; c;x, y) =

∞∑
m,n=0

(a)m(a′)n(b)m(b′)n
(c)m+n

xm

m!

yn

n!
, (|x| < 1, |y| < 1). (1)

Which is also written as

F3(a, a′, b, b′; c;x, y) =
∞∑
n=0

(a′)n(b′)n
(c)n

2F1(a, b; c+ n;x)
yn

n!
, (2)

where 2F1(-) is the Gauss hypergeometric function defined as

2F1(a, b; c;x) =

∞∑
m=0

(a)m(b)m
(c)m

xm

m!
, (3)

where (|x| < 1) and c 6= 0 or negative integer and (a)m is the pochhammer symbol such
as

(a)m = a(a+ 1)...(a+m− 1), (a)0 = 1, where a ∈ C m ∈ N. (4)
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The function F3(-) in (1) is reduces to the Gauss hypergeometric function

F3(a, a′, b, b′; c;x, y) = F3(a, a′, b, b′; c;x, 0) = F3(a, a′, b, 0; c;x, y)

= F3(a, 0, b, b′; c;x, y) = 2F1(a, b; c;x) = F (a, b; c;x)
(5)

and F3(a, a′, b, b′; c;x, y) = (1− x)a
′
F (b, a+ a′; c;x),

F (a, b; c;x) = (1− x)−aF (a, c− b; c; x

(1− x)
)

 (6)

Definition 1.1. Let α, α′, β, β′ ∈ C and γ ∈ R+ and ( 0 < γ < 1 ), Here C is the
class of analytic function f(z)in a simply-connected region containing the origin and if the

multiplicity of (t− x)(γ−1) to be real x < t.
Then consider the following integral equation(
I
α,α′,β,β′,γ

)
f (x) =

x−α
′

Γ (γ)

∫ ∞
x

(t− x)γ−1t−αF3

(
α, α′, β, β′, γ; 1− t− x

t
,
x− t
x

)
f(t)dt.

(7)

2. Main Result

In this paper, we obtain a formal solution of integral equation (7) involving the Appell
hypergeometric function in the kernel. The integral equations with the F3 kernel used by
Higgins [2] and Maricev [4] and applied the method for obtaining the solution follows sim-
ilar works of studying analogous. These references are similar as well as the book written
by Srivastava and Buschman [7] and these describe in a comprehensive manner, which are
useful in various application such as theory of convolution type integral equations.
To obtain the solution of integral equation (7) formally, let

(
I
α,α′,β,β′,γ

)
f (x) =

x−α
′

Γ (γ)

∫ ∞
x

(t− x)γ−1t−αF3

(
α, α′, β, β′, γ; 1− t− x

t
, 1− x− t

x

)
f(t)dt

= g(x).
(8)

Using equation (2) in (8), we have

g(x) =
x−α

′

Γ (γ)

∫ ∞
x

(t− x)γ+r−1t−α−r
∞∑
r=0

(α)r(β)r
(γ)rr!

F

(
α, α′, β, β′, γ + r;

x− t
x

)
f(t)dt (9)

Replacing x by t and t by p in equation (9), we have

g(t) =
t−α

′

Γ (γ)

∫ ∞
t

(p− t)γ+r−1p−α−r
∞∑
r=0

(α)r(β)r
(γ)rr!

F

(
α, α′, β, β′, γ + r;

t− p
x

)
f(p)dp (10)

Now multiplying both the sides by

(t− x)m−γ−1t−α
′
F3

(
−α′,−α,−β′,m− β;m− γ; t−xt ,

x−t
x

)
where m ∈ N , then the above expression is equivalent to

(t− x)m−γ−1tα
′∑∞

s=0
(α)s(m−β)s

(m−γ)ss!

(
x−t
x
q)
F
(
−α′,−β′,m− γ + s; t−xt

)



1130 TWMS J. APP. ENG. MATH. V.10, N.4, 2020

Using equation (6) in above expression, we have

=
∞∑
s=0

(t− x)m−γ+s−1tα
′ x−s(−1)s(−α)s(m− β)s

(m− γ)ss!

×
[
1− (t− x)

t

]α′
F

(
−α′,m− γ + s+ β′;m− γ + s;

t− x
x

)
(11)

using equation (11) in equation (10) and integrate both side from x to ∞.

∫ ∞
x

∞∑
s=0

(t− x)m−γ+s−1x
α′−s(−1)s(−α)s(m− β)s

(m− γ)ss!

×F
(
−α′,m− γ + s+ β′;m− γ + s;

(t− x)

x

)
g (t) dt

=

∫ ∞
x

∞∑
s=0

(t− x)m−γ+s−1x
α′−s(−1)s(−α)s(m− β)s

(m− γ)ss!

F

(
−α′,m− γ + s+ β′;m− γ + s;

(t− x)

x

)

× t−α
′

Γ (γ)

∫ ∞
t

(p− t)γ+r−1p−α−r
∞∑
r=0

(α)r(β)r
(γ)rr!

F

(
α′, β′, γ + r;

t− p
t

)
f(p)dpdt (12)

Let us consider the right hand side of equation (12), and changing order of integration,
we have

∞∑
r=0

∞∑
s=0

(α)r(β)r
(γ)rr!

xα
′−s(−1)s(−α)s(m− β)s

Γ (γ) (m− γ)ss!

×
∫ ∞
x

∫ p

x
(p− t)γ+r−1p−α−rt−α

′
(t− x)m−γ+s−1F

(
α′, β′, γ + r;

t− p
t

)

×F
(
−α′,m− γ + s+ β′;m− γ + s;

(t− x)

x

)
f (p) dt dp

=

∞∑
r=0

∞∑
s=0

(α)r(β)r
(γ)rr!

xα
′−s(−1)s(−α)s(m− β)s

Γ (γ) (m− γ)ss!

∫ ∞
x

p−α−rf (p) dp

×
∫ p

x
(p− t)γ+r−1t−α

′
(t− x)m−γ+s−1F

(
α′, β′, γ + r;

t− p
t

)

×F
(
−α′,m− γ + s+ β′;m− γ + s;

(t− x)

x

)
dt (13)
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Put t = p+ (1− y)(x− p) in equation (13) in right hand side, we have

=
∞∑
r=0

∞∑
s=0

(α)r(β)r
(γ)rr!

xα
′−s(−1)s(−α)s(m− β)s

Γ (γ) (m− γ)ss!

∫ ∞
x

p−α−rf (p) dp

×
∫ 1

0
(1− y)γ+r−1(s− x)m+r+s−1(x)−α

′
(y)m+γ+s−1

(
1− y (x− s)

x

)−α′

×F

(
α′, β′, γ + r;

(1−y)(x−p)
x

1− y(x−p)
x

)
F

(
−α′,m− γ + s+ β′;m− γ + s;

y (p− x)

x

)
dy (14)

Using the following know formula [1].

F (a, b; c;x) = Γ(c)
Γ(λ)Γ(c−λ)

∫ 1
0 s

λ−1 (1− s)c−λ−1 (1− sx)a
′
F (a− a′, b;λ; sx)

× F
(
a′, b− λ; c− λ; x(1−s)

1−sx

)
dx

in (14), we obtain

=

∞∑
r=0

∞∑
s=0

(α)r(β)r
(γ)rr!

x−s(−1)s(−α)s(m− β)s
Γ (γ) (m− γ)ss!

Γ (m− γ + s) Γ (γ + r)

Γ (m+ r + s)

∫ ∞
x

p−α−r (p− x)m+r+s−1 f (p)F

(
−0,m− γ + q + β′;m+ q + p;

(x− s)
x

)
dp

=

∞∑
r=0

∞∑
s=0

(α)r(β)r
r!

x−s(−1)s(−α)s(m− β)s
(m)r+s s!

Γ (m− γ)

Γ (m)

∫ ∞
x

p−α−r (p− x)m+r+s−1 f (p) dp

=
Γ (m− γ)

Γ (m)

∫ ∞
x

p−α (p− x)m+r+s−1 F3

(
α,−α, β,m− β;m;

p− x
p

,
x− p
x

)
f (p) dp

(15)

Using equation (6) in equation (15), we obtain

=
Γ (m− γ)

Γ (m)
x−α

∫ ∞
x

(p− x)m−1 f (p) dp (16)

Using equation (16) in equation (12), we have

∫ ∞
x

∞∑
s=0

(t− x)m−γ+s−1x
α′−s(−1)s(−α)s(m− β)s

(m− γ)ss!

×F
(
−α′,m− γ + s+ β′;m− γ + s; (t−x)

x

)
g (t) dt

=
Γ (m− γ)

Γ (m)
x−α

∫ ∞
x

(p− x)m−1 f (p) dp
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Which also gives as

xα

Γ (m− γ)

∫ ∞
x

∞∑
s=0

(t− x)m−γ+s−1x
α′−s(−1)s(−α)s(m− β)s

(m− γ)ss!

× F

(
−α′,m− γ + s+ β′;m− γ + s;

(t− x)

x

)
g (t) dt

=
1

(m− 1)!

∫ ∞
x

(p− x)m−1 f (p) dp (17)

Differentiate m times, we obtain

f(x) =
dm

dxm

(
xα

Γ (m− γ)

∫ ∞
x

(t− x)m−γ−1tα
′
)

×
(
F3

(
−α′,−α,−β′,m− β,m− γ;

(t− x)

t
,
(x− t)
x

)
g (t) dt

)
(18)

FRACTIONAL CALCULUS OPERATOR ASSOCIATED WITH F3

FUNCTION

The pair of integral equations (7) and (18) permits us to define new forms of generalised
fractional calculus operator involving the third Appell function defined by (1). In view of

equation (7), the generalised fractional integral operator
(
I
α,α′,β,β′,γ
x,∞

)
of a function f(x) is

defined as
Let α, α′, β, β′ ∈ C and γ ∈ R+ and ( 0 < γ < 1 ), (R+ (γ) > 0)

I
α,α′,β,β′,γ
x,∞ f(x) =

x−α
′

Γγ

∫ ∞
x

(t− x)γ−1tαF3

(
α′, α, β, β′, γ;

(t− x)

t
,
(x− t)
x

)
f (t) dt. (19)

where
(
I
α,α′,β,β′,γ
x,∞

)
=
(
I
α,α′,β,β′,γ

)
and

I
α,α′,β,β′,γ
x,∞ f(x) =

(
−d
dx

)m (
I
α,α′,β,β′+m,γ+m
x,∞

)
f(x), (R+ (γ) ≤ 0,m = [−R+ (γ) + 1]) .

(20)

Based upon the solution (18) of the integral equation (7), the generalised fractional

derivative
(
D
α,α′,β,β′,γ
x,∞

)
of a function f(x) can be defined by operator

D
α,α′,β,β′,γ
x,∞ f(x) =

(
− d
dx

)m (
I
α,α′,β,β′+m,m−γ
x,∞

)
f(x);

(R+ (γ) > 0, (m− 1) ≤ γ ≤ m;m = [R+ (γ) + 1] ,m ∈ N)

=
dm

dxm
xα

Γ (m− γ)

(∫ ∞
x

(t− x)m−γ−1tα
′
)

×
(
F3

(
−α′,−α,−β′,m− β,m− γ;

(t− x)

t
,
(x− t)
x

)
g (t) dt

)
(21)

were earlier defined by Saigo and Maeda [6] and Kiryakova [3] as the generalised operators
of fractional integral and fractional derivative of a function f(x) involving the third Appell
function, respectively.
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The power function xρ under The Saigo-Maeda operators (20) and (21) are given by [6]:

I
α,α′,β,β′,γ
x,∞ xρ−1 =

Γ (1− β − ρ) Γ (1 + α+ α′ − γ − ρ) Γ (1 + α+ β′ − γ − ρ)

Γ (1 + α+ α′ + β′ − γ − ρ) Γ (1 + α− β − ρ) Γ (1− ρ)
x(ρ−α−α′+γ−1),

(22)

R+ (γ) > 0, R+ (ρ) < 1 +min
[
0,R+ (−β) ,R+

(
α+ α′ − γ

)
,R+

(
α+ β′ − γ

)]
.

and I
α,α′,β,β′,γ
x,∞ (x)ρ−1 =

(
− d
dx

)m (
I
α,α′,β,β′+m,γ+m
x,∞

)
(x)ρ−1

=
Γ (1− β − ρ) Γ (1 + α+ α′ − γ − ρ) Γ (1 + α+ β′ − γ − ρ)

Γ (1 + α+ α′ + β′ − γ − ρ) Γ (1 + α− β − ρ) Γ (1− ρ)
x(ρ−α−α′+γ−1), (23)(

R+ (γ) > 0, R+ (ρ) < 1 +min
[
0,R+ (−β) ,R+

(
α+ α′ − γ

)
,R+

(
α+ β′ − γ

)])
On the other hand, it is worth nothing here that our generalised fractional derivative
operator (21) gives the following image formula for the power function (x)ρ−1.

If ((m− 1) ≤ γ ≤ m;m = [R+ (γ) + 1] ,m ∈ N) ,

D
α,α′,β,β′,γ
x,∞ f(x) =

(
−d
dx

)m (
I
α,α′,β,β′+m,m−γ
x,∞

)
f(x)

=
Γ (1− β′ − ρ) Γ (1− α− α′ + γ − ρ) Γ (1− α′ − β + γ − ρ)

Γ (1− α− α′ − β + γ − ρ) Γ (1− α′ + β′ − ρ) Γ (1− ρ)
x(ρ−α−α′+γ−1) (24)

R+ (γ) > 0, R+ (ρ) < 1 +min
[
0,R+

(
−β′

)
,R+

(
−α− α′ + γ

)
,R+

(
−α′ − β + γ

)]
.

The operator (19) and (21) satisfy the following relationship(
I
α,α′,β,β′,γ
x,∞

)−1

= D
α,α′,β,β′,γ
x,∞ = I

−α′,−α,−β′,−β,−γ
x,∞ (25)

Which provide improvement to similar type of operational relationship given in [5]. It
may be observed that when α′ = 0 in equation (25), we get the following Saigo type
fractional integral and differential operators relationship [6].
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