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BOTH A GRAPH AND ITS COMPLEMENT ARE SELF-CENTERED

WITH IDENTICAL RADIUS

A. CHELLARAM MALARAVAN 1, A. WILSON BASKAR 2, §

Abstract. We show that a graph and its complement are self-centered with identical
radius r only when r = 2. Further, we provide a construction of such a graph for any
given order at least eight.
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1. Introduction

In this paper we restrict ourselves to simple and non-trivial graphs. We follow the
notation of [11, 14], where definitions not included here may be found. Let G be a graph
with vertex set V (G) and edge set E(G). The number of vertices in G is denoted by p.
The neighborhood of a vertex v ∈ V (G), denoted NG(v), is the set of vertices adjacent
to v in G. The degree degG(v) of vertex v is the number of vertices adjacent to v in G.
If NG(v) = V (G), then v is called a full degree vertex. If NG(v) = ∅, then v is called an
isolate. The distance dG(u, v) between two vertices u and v is the length of a shortest
path between u and v if any exists; otherwise dG(u, v) =∞. The eccentricity of the vertex
v ∈ V (G), denoted eG(v), is the maximum distance from v to any vertex in G. The radius
rad(G) (diameter diam(G)) of G is the minimum (maximum) among the eccentricities.
If eG(v) = rad(G) for all v ∈ V (G), then G is called a self-centered graph with radius
rad(G). For detailed study of self-centered graphs readers are refer to [1, 9, 10, 15, 16].
The complement of a graph G is denoted by Ḡ. A vertex v in a graph G is called an
a1 − vertex if there is a vertex u ∈ NG(v) such that NG(v) ∪ NG(u) = V (G); otherwise
called an a2 − vertex. Note that any full degree vertex is an a1 − vertex in G; while any
isolate is an a2 − vertex in G, see [12].

The study of common properties of both a graph and its complement attracts re-
searchers, see [2–8, 13]. In [13], we proved that in case of identical radius the radius
of the graph is 2, see Theorem 1.1; while the diameter is 2 or 3 in the case of identical
diameter, see Theorem 1.2. And in case of identical center (resp. periphery) the center
(resp. periphery) is whole vertex set. At this juncture, one can see that there are self-
centered graphs for which their corresponding complements are self-centered with different
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radii. For example, the cycle graph Cp with p 6= 5 is self-centered with radius bp2c but its

complement C̄p is self-centered with radius ∞ if p = 3, 4; radius 2 otherwise. Here, we in-
tend to show that both a graph and its complement are self-centered with identical radius
if and only if both are self-centered with radius 2. Further, we provide a construction of
such a graph for a given order p ≥ 8 in the next section. To this end we need the following
results.

Theorem 1.1. [13] Let G be a graph. If the graph G and its complement Ḡ have same
radius, then radius of the graph G is 2.

Theorem 1.2. [13] Let G be a graph. Then, diam(G) = diam(Ḡ) implies diam(G) ∈
{2, 3}.

The Theorems 1.1 and 1.2 ascertain that if both a graph and its complement are self-
centered with identical radius then each of the graphs has radius 2. This leads us to the
following theorem.

Theorem 1.3. Let G and Ḡ be self-centered graphs. Then, rad(G) equals rad(Ḡ) if and
only if rad(G) = rad(Ḡ) = 2.

Theorem 1.4. [13] Let G be a graph. If the vertex u is an a2 − vertex in G with
eccentricity 2, then u is an a2 − vertex in Ḡ with eccentricity 2.

As a consequence, if all the vertices of a graph G are a2 − vertices of eccentricity
2, then both G and Ḡ are self-centered with radius 2. Akiyama [1] et al. obtained the
following structural characterization of self-centered graph of radius 2 on order at least 5
with minimum number of edges.

Theorem 1.5. [10] Let G be a self-centered graph with p ≥ 5 vertices and diameter 2,
having as few edges as possible among such graphs. Then, G is one of the following (refer
Figure 1)

a) The Petersen graph.
b) The graph formed from Sa,b by adding an additional vertex v and joining v to each

vertex of degree 1 in Sa,b.
c) The graph formed from K3(a, b, c) by adding a new vertex w and joining w to each

vertex of degree 1 in K3(a, b, c); a + b + c = p− 4 and a, b, c ≥ 1.q qq
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Figure 1. Graphs described in part a,b and c, respectively

One can easily verify that all the vertices of the graph described in part b of the theorem
above are a2 − vertices of eccentricity 2. In view of Theorem 1.4, the corresponding
complement is self-centered with radius 2 as well. Thus, we get a family of graphs for
which graphs and its complements are self-centered with radius 2. Similarly, the family
of graphs constructed in part c is such a family. In the next section we construct a new
family of graphs for which each of its member and associated complement are self-centered
with radius 2.
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2. Construction

One can easily verify that there is no graph of fewer order than five such that the graph
and its complement are self-centered with same radius. Now, for a given order p with
p ≥ 8 we construct a family of graphs called Quotient Modulo-4 graph (QM-4 graph) as
follows:

Let v1, v2, . . . , vp be the vertices and put

Di,j = min{|j − i|, p− |j − i|} for i, j ∈ {1, 2, . . . , p}.
Note that Di,j = Dj,i and Di,j ≤ bp2c. Join the vertices vi and vj if

dp4e+ 1 ≤ Di,j ≤ bp2c or Di,j = 1 for p ≡ 1, 2 (mod 4);
dp4e+ 1 ≤ Di,j ≤ bp2c for p ≡ 3, 0 (mod 4).

(1)

We note that two vertices vi and vj are non-adjacent if

2 ≤ Di,j ≤ dp4e for p ≡ 1, 2 (mod 4);
1 ≤ Di,j ≤ dp4e for p ≡ 3, 0 (mod 4).

(2)

Thus, for v ∈ V (G)

degG(v) =

{
(p− 1)− 2dp4e+ 2 if p ≡ 1, 2 (mod 4)

(p− 1)− 2dp4e if p ≡ 3, 0 (mod 4)

=

{
p− 2dp4e+ 1 if p ≡ 1, 2 (mod 4)

p− 2dp4e − 1 if p ≡ 3, 0 (mod 4),

and so G is regular. We see that

p = 2bp2c+ 1 = 4dp4e − 3 if p ≡ 1 (mod 4);
p = 2bp2c = 4dp4e − 2 if p ≡ 2 (mod 4);
p = 2bp2c+ 1 = 4dp4e − 1 if p ≡ 3 (mod 4);
p = 2bp2c = 4dp4e if p ≡ 0 (mod 4).

(3)

Based on this construction, graphs of order 9, 10, 11, and 8 are constructed in Figure 2.q q
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Figure 2. QM-4 graph of order 9,10,11 and 8

In the next section we prove that both QM-4 graph and its complement are self-centered
with radius 2.

3. Proof

Let G be a QM-4 graph. In view of Theorem 1.4, it suffices to prove that each vertex is
an a2 − vertex in G with eccentricity 2. Consider the following two cases:
Case i: p ≡ 3, 0 (mod 4)

We first claim that each vertex is an a2 − vertex. Let vi be an arbitrary vertex and let
vj ∈ NG(vi). Then, Di,j ≥ dp4e+ 1. Without loss of generality we may assume that i < j.
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Consider the following two cases.
Case 1: j − i ≤ bp2c
Consider the vertex v

j−dp4 e
. Obviously D

j,j−dp4 e
= dp4e. Further, j − i ≤ bp2c implies that

(j − dp4e)− i ≤ bp2c − d
p
4e

=

{
(2dp4e − 1)− dp4e if p ≡ 3 (mod 4)

2dp4e − d
p
4e if p ≡ 3 (mod 4)

≤ dp4e,

and D
i,j−dp4 e

= (j − dp4e)− i ≤ dp4e. Therefore, (2) implies that v
j−dp4 e

is non-adjacent to

both vi and vj , and so vi is an a2 − vertex.
Case 2: j − i > bp2c
If j + dp4e ≤ p, it is readily seen that D

j,j+dp4 e
= dp4e, and

D
i,j+dp4 e

= min{j + dp4e − i, p− (j + dp4e − i)}

= min{(j − i) + dp4e, p−
(
(j − i) + dp4e

)
}.

Since (j − i) + dp4e −
(
p−

(
(j − i) + dp4e

))
= 2(j − i) + 2dp4e − p
> 2bp2c+ 2dp4e − p

=

{
(4dp4e − 2) + 2dp4e − (4dp4e − 1) if p ≡ 3 (mod 4)

4dp4e+ 2dp4e − 4dp4e if p ≡ 0 (mod 4)

=

{
2dp4e − 1 if p ≡ 3 (mod 4)

2dp4e if p ≡ 0 (mod 4)
> 0,

we have

D
i,j+dp4 e

= p−
(
(j − i) + dp4e

)
= p− (j − i)− dp4e
< p− bp2c − d

p
4e

=

{
(4dp4e − 1)− (2dp4e − 1)− dp4e if p ≡ 3 (mod 4)

4dp4e − 2dp4e − d
p
4e if p ≡ 0 (mod 4)

= dp4e.

Therefore, (2) implies that v
j+dp4 e

is non-adjacent with vi and vj . On the other hand, if

j + dp4e > p, consider the vertex v
j+dp4 e−p

. Now,

D
j,j+dp4 e−p

= min{j − (j + dp4e − p), p−
(
j − (j + dp4e − p)

)
}

= min{p− dp4e, d
p
4e}

= dp4e
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and

D
i,j+dp4 e−p

= min{i− (j + dp4e − p), p−
(
i− (j + dp4e − p)

)
}

= min{p−
(
(j − i) + dp4e

)
, (j − i) + dp4e}

< dp4e as in the calculation of D
i,j+dp4 e

.

It follows that, v
j+dp4 e−p

is non-adjacent with vi and vj , and so vi is an a2− vertex. Thus,

as we claimed each vertex of G is an a2 − vertex for p ≡ 0, 3 (mod 4).
We now claim that each vertex of the graph G is of eccentricity 2. Let vi be an arbitrary

vertex of G and let vj be any vertex non-adjacent to vi. With no loss of generality assume
that i < j. From inequalities (2), we have

1 ≤ Di,j ≤ dp4e.

That is,

1 ≤ min{j − i, p− (j − i)} ≤ dp4e.

This implies that

1 ≤ j − i ≤ dp4e or 1 ≤ p− (j − i) ≤ dp4e.

That is,

1 ≤ j − i ≤ dp4e or p− dp4e ≤ j − i ≤ p− 1.

Case 1: 1 ≤ j − i ≤ dp4e
If j + dp4e+ 1 ≤ p, then consider the vertex v

j+dp4 e+1
. It is clear that vj and v

j+dp4 e+1
are

adjacent. Now,

D
i,j+dp4 e+1

= min{j + dp4e+ 1− i, p− (j + dp4e+ 1− i)}

= min{(j − i) + dp4e+ 1, p− (j − i)− dp4e − 1}.

We see that (j − i) + dp4e+ 1 > dp4e+ 1 and

p− (j − i)− dp4e − 1 ≥ p− dp4e − d
p
4e − 1

= p− 2dp4e − 1

=

{
(4dp4e − 1)− 2dp4e − 1 if p ≡ 3 (mod 4)

4dp4e − 2dp4e − 1 if p ≡ 0 (mod 4)

=

{
2dp4e − 2 if p ≡ 3 (mod 4)

2dp4e − 1 if p ≡ 0 (mod 4).

Since dp4e ≥ 3 for p ≡ 3 (mod 4), and since dp4e ≥ 2 for p ≡ 0 (mod 4), we have

p− (j − i)− dp4e − 1 ≥ dp4e+ 1.

Thus,

D
i,j+dp4 e+1

≥ dp4e+ 1.

It follows that v
j+dp4 e+1

is adjacent to both vi and vj , so that eG(vi) = 2. On the other

hand, if j + dp4e + 1 > p then consider the vertex v
j+dp4 e+1−p. Clearly, D

j,j+dp4 e+1−p =
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dp4e+ 1. Now

D
i,j+dp4 e+1−p = min{i− (j + dp4e+ 1− p), p−

(
i− (j + dp4e+ 1− p)

)
}

= min{p− (j − i)− dp4e − 1, (j − i) + dp4e+ 1}
≥ dp4e+ 1 as in the calculation of D

i,j+dp4 e+1
.

Thus v
j+dp4 e+1−p is adjacent to both vi and vj , and so eG(vi) = 2.

Case 2: p− dp4e ≤ j − i ≤ p− 1
We observe that D

j,j−dp4 e−1
= dp4e+ 1, and

D
i,j−dp4 e−1

= min{(j − dp4e − 1)− i, p−
(
(j − dp4e − 1)− i

)
}

= min{(j − i)− (dp4e+ 1), p− (j − i) + dp4e+ 1}.

But, p− (j − i) + dp4e+ 1 > dp4e+ 1 and

(j − i)− (dp4e+ 1) ≥ (p− dp4e)− (dp4e+ 1)

= p− 2dp4e − 1

≥ dp4e+ 1 (as in the calculation of D
i,j+dp4 e+1

)

imply that D
i,j−dp4 e−1

≥ dp4e + 1, and so v
j−dp4 e−1

is adjacent to both vi and vj . That

is, eG(vi) = 2. Thus, as we claimed each vertex of G is of eccentricity 2 for p ≡ 0, 3 (mod 4).

Case ii: p ≡ 1 or 2 (mod 4)
In this case too, we first claim that each vertex is an a2 − vertex. Let vi be any

vertex of G and let vj be any vertex adjacent to vi. Then, it is clear from (1) that
dp4e + 1 ≤ Di,j ≤ bp2c or Di,j = 1. With no loss of generality we may assume that i < j
and consider the following three cases.
Case 1: j − i ≤ bp2c and Di,j 6= 1
We see that, D

j,j−dp4 e+1
= dp4e − 1. The fact j − i ≤ bp2c implies that

(j − dp4e+ 1)− i ≤ bp2c − d
p
4e+ 1

=

{
(2dp4e − 2)− dp4e+ 1 if p ≡ 1 (mod 4)

(2dp4e − 1)− dp4e+ 1 if p ≡ 2 (mod 4)

=

{
dp4e − 1 if p ≡ 1 (mod 4)

dp4e if p ≡ 2 (mod 4)

≤ dp4e

consequently, D
i,j−dp4 e+1

≤ dp4e. It follows that, the vertex v
j−dp4 e+1

is non-adjacent to

both vi and vj . In this case vi is an a2 − vertex.
Case 2: j − i > bp2c and Di,j 6= 1.
If j + dp4e − 1 ≤ p, then D

j,j+dp4 e−1
= dp4e − 1 and we can show that D

i,j+dp4 e−1
< dp4e.

Thus, v
j+dp4 e−1

is non-adjacent to both vi and vj ; that is, vi is an a2 − vertex. Similarly,

if j + dp4e − 1 > p then the vertex v
j+dp4 e−1−p

is non-adjacent to both vi and vj , and so vi

is an a2 − vertex.
Case 3: Di,j = 1
Case 3.1: j /∈ {p− 1, p}
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We see that Dj,j+2 = 2 < dp4e + 1 and Di,j+2 = 3 < dp4e + 1. It follows that vj+2 is
non-adjacent to both vi and vj .
Case 3.2: j ∈ {p− 1, p}
If j = p and i = 1, we see that vj−2 is non-adjacent to both vi and vj . Otherwise, vi−2 is
non-adjacent to vi and vj .
In either case vi is an a2 − vertex.
Therefore, as we claimed each vertex of G is an a2 − vertex.

We now claim that eG(v) = 2 for all vertex of G. Let vi be an arbitrary vertex and let
vj /∈ NG(vi). Then, 2 ≤ Di,j ≤ dp4e; that is,

2 ≤ min{j − i, p− (j − i)} ≤ dp4e.
Thus,

2 ≤ j − i ≤ dp4e or 2 ≤ p− (j − i) ≤ dp4e;
that is,

2 ≤ j − i ≤ dp4e or p− dp4e ≤ j − i ≤ p− 2.

Case 1: 2 ≤ j − i ≤ dp4e
If j− i = dp4e, then the vertex vi−1 or vj+1 is adjacent to both vi and vj . If j− i = 2, then
vi+1 is adjacent to both vi and vj . Hence we may now assume that

3 ≤ j − i ≤ dp4e − 1.

Note that from this point onwards p /∈ {9, 10}. If j + dp4e+ 1 ≤ p, then it is readily seen
that

D
j,j+dp4 e+1

= dp4e+ 1.

Since D
i,j+dp4 e+1

= min{j+dp4e+1−i, p−(j+dp4e+1−i)}, and since (j−i)+dp4e+1 > dp4e,

p−
(
(j − i) + dp4e+ 1

)
> dp4e it follows that

D
i,j+dp4 e+1

> dp4e.

Thus v
j+dp4 e+1

is adjacent to both the vertices vi and vj , and so eG(vi) = 2. On the

other hand, if j + dp4e + 1 > p, then the vertex v
j+dp4 e+1−p is adjacent to both vi and vj .

Consequently eG(vi) = 2.
Case 2: p− dp4e ≤ j − i ≤ p− 2
If j−i = p−2, then the vertex vj+1 or vi−1 is adjacent to both vi and vj . If j−i = p−dp4e,
then the vertex vi+1 is adjacent to both vi and vj . Hence we may now assume that

p− dp4e+ 1 ≤ j − i ≤ p− 3.

Note that from this point onwards p /∈ {9, 10}. Consider the vertex v
j−dp4 e−1

. Then, it is

clear that

D
j,j−dp4 e−1

= dp4e+ 1.

And, we can show that

D
i,j−dp4 e−1

> dp4e.

Thus, v
j−dp4 e−1

is adjacent to both vi and vj so that eG(vi) = 2. Therefore, in the case

p ≡ 1, 2 (mod 4) each vertex of the graph G is an a2 − vertex of eccentricity 2 as well.

Thus QM-4 graph and its complement are self-centered with radius 2.
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