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RIGHT (σ, τ)−LIE IDEALS AND ONE SIDED GENERALIZED

DERIVATIONS

E. GÜVEN, §

Abstract. Let R be a prime ring with characteristic not 2 and σ, τ, α, β, λ, µ, γ automor-
phisms of R. Let h : R −→ R be a nonzero left(resp.right)-generalized (α, β)−derivation,
a, b ∈ R. and U, V nonzero right (σ, τ)−Lie ideals of R. The main object in this arti-
cle is to study the situations. (1) a[U, b]λ,µ = 0 or [U, b]λ,µa = 0, (2) a(U, b)λ,µ = 0 or
(U, b)λ,µa = 0, (3) bh(I) ⊂ Cλ,µ(U) or h(I)b ⊂ Cλ,µ(U), (4) (b, U)λ,µ = 0 or [b, U ]λ,µ = 0,
(5) (U, b)λ,µ ⊂ Cλ,µ(R), (6) bV ⊂ Cλ,µ(U) or V b ⊂ Cλ,µ(U). Also, some characteristics
of left and right generalized (α, β)−derivation satisfying several conditions on ideals are
given.
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1. Introduction

Let R be a ring and σ, τ two mappings of R. For each r, s ∈ R we set [r, s]σ,τ =
rσ(s) − τ(s)r and (r, s)σ,τ = rσ(s) + τ(s)r. Let U be an additive subgroup of R. If
[U,R] ⊂ U then U is called a Lie ideal of R. The definition of (σ, τ)−Lie ideal of R is
introduced in [8] as follows: (i) U is called a right (σ, τ)−Lie ideal of R if [U,R]σ,τ ⊂ U ,
(ii) U is called a left (σ, τ)−Lie ideal if [R,U ]σ,τ ⊂ U , (iii) U is called a (σ, τ)−Lie ideal if
U is both right and left (σ, τ)−Lie ideal of R. Every Lie ideal of R is a (1, 1)−Lie ideal of
R, where 1 : R→ R is the identity mapping.

If R = { (x y0 0) | : x and y are integers}, U = { (x 0
0 0) | x is integer}, σ(x y0 0) = (x 0

0 0) and

τ(x y0 0) = (x −y
0 0 ) then U is (σ, τ)−right Lie ideal but not a Lie ideal of R.

A derivation d is an additive mapping on R which satisfies d(rs) = d(r)s + rd(s),for
all r, s ∈ R. The notion of generalized derivation was introduced by Brešar [2] as follows.
An additive mapping h : R → R will be called a generalized derivation if there exists a
derivation d of R such that h(xy) = h(x)y + xd(y), for all x, y ∈ R.

An additive mapping d : R→ R is said to be a (σ, τ)−derivation if d(rs) = d(r)σ(s) +
τ(r)d(s) for all r, s ∈ R. Every derivation d : R→ R is a (1, 1)−derivation. Chang [3] gave
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the following definition. Let R be a ring, σ and τ automorphisms of R and d : R → R
a (σ, τ)−derivation. An additive mapping h : R → R is said to be a right generalized
(σ, τ)−derivation of R associated with d if h(xy) = h(x)σ(y) + τ(x)d(y), for all x, y ∈ R
and h is said to be a left generalized (σ, τ)−derivation of R associated with d if h(xy) =
d(x)σ(y) + τ(x)h(y), for all x, y ∈ R. h is said to be a generalized (σ, τ)−derivation of R
associated with d if it is both a left and right generalized (σ, τ)−derivation of R associated
with d. Every (σ, τ)−derivation d : R → R is a generalized (σ, τ)−derivation with d.
Based on this definition of Chang, every (σ, τ)−derivation d : R → R is a generalized
(σ, τ)−derivation associated with d and every derivation d : R → R is a generalized
(1, 1)−derivation associated with d. A generalized (1, 1)−derivation is simply called a
generalized derivation. It is clear that the generalized derivation defined by [2] is the right
generalized derivation in the definition given by Chang.

The mapping h(r) = (a, r)σ,τ , ∀r ∈ R is a left-generalized (σ, τ)−derivation with (σ, τ)−
derivation d1(r) = [a, r]σ,τ ,∀r ∈ R and right-generalized (σ, τ)−derivation with (σ, τ)−derivation
d(r) = −[a, r]σ,τ ,∀r ∈ R.

Throughout the paper, R will be a prime ring with center Z, characteristic not 2 and
σ, τ, α, β, λ, µ, γ automorphisms of R. We set Cσ,τ (R) = {c ∈ R | cσ(r) = τ(r)c, ∀ r ∈ R},
and shall use the following relations frequently:

[rs, t]σ,τ = r[s, t]σ,τ + [r, τ(t)]s = r[s, σ(t)] + [r, t]σ,τs,
[r, st]σ,τ = τ(s)[r, t]σ,τ + [r, s]σ,τσ(t),
(rs, t)σ,τ = r(s, t)σ,τ − [r, τ(t)]s = r[s, σ(t)] + (r, t)σ,τs,.
(r, st)σ,τ = τ(s)(r, t)σ,τ + [r, s]σ,τσ(t) = −τ(s)[r, t]σ,τ + (r, s)σ,τσ(t).

2. Results

Lemma 2.1. [1] Let R be a prime ring and d : R −→ R a (σ, τ)−derivation. If U is a
right ideal of R and d(U) = 0 then d = 0.

Lemma 2.2. [6] Let U be a nonzero right (σ, τ)−Lie ideal of R and a ∈ R. If [U, a]α,β = 0
then a ∈ Z or U ⊂ Cσ,τ (R).

Lemma 2.3. [5] Let h : R −→ R be a nonzero left-generalized (σ, τ)−derivation associated
with a nonzero (σ, τ)−derivation d : R −→ R and I, J be nonzero ideals of R. If h(I) ⊂
Cλ,µ(J) then R is commutative.

The following Lemma is a generalization of [7].

Lemma 2.4. Let I be a nonzero ideal of R and a, b ∈ R. If b, ba ∈ Cλ,µ(I) or (b, ab ∈
Cλ,µ(I)) then b = 0 or a ∈ Z.

Proof. If b, ba ∈ Cλ,µ(I) then we have

0 = [ba, x]λ,µ = b[a, λ(x)] + [b, x]λ,µa = b[a, λ(x)]

and so b[a, λ(x)] = 0 for all x ∈ I. Replacing x by xr, r ∈ R we get bλ(I)[a,R] = 0.
This gives that b = 0 or a ∈ Z.

If b, ab ∈ Cλ,µ(I) then the relation

0 = [ab, x]λ,µ = a[b, x]λ,µ + [a, µ(x)]b = [a, µ(x)]b for all x ∈ I
gives that [a, µ(I)]b = 0. Considering as above we get b = 0 or a ∈ Z. �

Lemma 2.5. Let h : R −→ R be a nonzero right-generalized (α, β)−derivation associated
with a nonzero (α, β)−derivation d : R −→ R. Let I be a nonzero ideal of R and a, b ∈ R.
If a[h(I), b]λ,µ = 0 or a(h(I), b)λ,µ = 0 then dα−1λ(b) = 0 or a[a, µ(b)] = 0.
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Proof. If a[h(I), b]λ,µ = 0 then we get, for all x ∈ I

0 = a[h(xα−1λ(b)), b]λ,µ = a[h(x)λ(b) + β(x)dα−1λ(b), b]λ,µ

= ah(x)[λ(b), λ(b)] + a[h(x), b]λ,µλ(b) + aβ(x)[dα−1λ(b), b]λ,µ

+ a[β(x), µ(b)]dα−1λ(b)

= aβ(x)[dα−1λ(b), b]λ,µ + a[β(x), µ(b)]dα−1λ(b).

That is

aβ(x)[k, b]λ,µ + a[β(x), µ(b)]k = 0 for all x ∈ I. (1)

where k = dα−1λ(b). Replacing x by β−1(a)x in (1) and using (1) we have for all x ∈ I
0 = aaβ(x)[k, b]λ,µ + a[aβ(x), µ(b)]k

= aaβ(x)[k, b]λ,µ + aa[β(x), µ(b)]k + a[a, µ(b)]β(x)k

= a[a, µ(b)]β(x)k

which gives a[a, µ(b)]β(I)k = 0. Since β(I) is a nonzero ideal of R and R is a prime
ring then the last relation gives that dα−1λ(b) or a[a, µ(b)] = 0.

If a(h(I), b)λ,µ = 0 then considering as above and using the relation

(rs, t)σ,τ = r(s, t)σ,τ − [r, τ(t)]s = r[s, σ(t)] + (r, t)σ,τ for all r, s, t ∈ R. (2)

We have the same result. �

Lemma 2.6. Let h : R −→ R be a nonzero left-generalized (α, β)−derivation associated
with a nonzero (α, β)−derivation d : R −→ R. Let I be a nonzero ideal of R and a, b ∈ R.
If [h(I), b]λ,µa = 0 or (h(I), b)λ,µa = 0 then dβ−1µ(b) = 0 or [a, λ(b)]a = 0.

Proof. If [h(I), b]λ,µa = 0 then we get for all x ∈ I

0 = [h(β−1µ(b)x), b]λ,µa = [dβ−1µ(b)α(x) + µ(b)h(x), b]λ,µa

= dβ−1µ(b)[α(x), λ(b)]a+ [dβ−1µ(b), b]λ,µα(x)a

+ µ(b)[h(x), b]λ,µa+ [µ(b), µ(b)]h(x)a

= dβ−1µ(b)[α(x), λ(b)]a+ [dβ−1µ(b), b]λ,µα(x)a

which gives that

k[α(x), λ(b)]a+ [k, b]λ,µα(x)a = 0 for all x ∈ I (3)

where k = dβ−1µ(b). Replacing x by xα−1(a) in (3) and using (3) we have for all x ∈ I
0 = k[α(x)a, λ(b)]a+ [k, b]λ,µα(x)aa

= kα(x)[a, λ(b)]a+ k[α(x), λ(b)]aa+ [k, b]λ,µα(x)aa

= kα(x)[a, λ(b)]a.

That is kα(I)[a, λ(b)]a = 0. This relation gives that dβ−1µ(b) = 0 or [a, λ(b)]a = 0.
If (h(I), b)λ,µa = 0 then considering as above and using the relation (2) we get the same

result. �

Theorem 2.1. Let U be a nonzero right (σ, τ)−Lie ideal of R and a, b ∈ R.

(i) If a[U, b]λ,µ = 0 (or a(U, b)λ,µ = 0) then a[a, µ(b)] = 0 or U ⊂ Cσ,τ (R).
(ii) If [U, b]λ,µa = 0 (or (U, b)λ,µa = 0) then [a, λ(b)]a = 0 or U ⊂ Cσ,τ (R).
(iii) If (U, b)λ,µ ⊂ Cλ,µ(R) then b2 ∈ Z or U ⊂ Cσ,τ (R).
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Proof. Let u be an element of U . The mapping defined by d(r) = [u, r]σ,τ ,∀r ∈ R is a
left(and right)-generalized (σ, τ)−derivation associated with d. If d = 0 then u ∈ Cσ,τ (R)
is obtained. Let d 6= 0.

(i) If a[U, b]λ,µ = 0 or a(U, b)λ,µ = 0 then we have a[[u,R]σ,τ , b]λ,µ = 0 or a([u,R]σ,τ , b)λ,µ =
0. That is a[d(R), b]λ,µ = 0 or a(d(R), b)λ,µ = 0. This implies that dσ−1λ(b) = 0 or
a[a, µ(b)] = 0 by Lemma 2.5. That is [u, σ−1λ(b)]σ,τ = 0 or a[a, µ(b)] = 0. If we consider
this argument for all u ∈ U we get

[U, σ−1λ(b)]σ,τ = 0 or a[a, µ(b)] = 0.

If [U, σ−1λ(b)]σ,τ = 0 then we obtain that

b ∈ Z or U ⊂ Cσ,τ (R)

by Lemma 2.5. Finally we obtain that a[a, µ(b)] = 0 or U ⊂ Cσ,τ (R) for any cases.
(ii) If [U, b]λ,µa = 0 or (U, b)λ,µa = 0 then we have [[u,R]σ,τ , b]λ,µa = 0 or ([u,R]σ,τ , b)λ,µa.

This means that [d(R), b]λ,µa = 0 or (d(R), b)λ,µa = 0. Using Lemma 2.6 we get dτ−1µ(b) =
0 or [a, λ(b)]a = 0. That is [u, τ−1µ(b)]σ,τ = 0 or [a, λ(b)]a = 0. Considering as above we
get [a, λ(b)]a = 0 or U ⊂ Cσ,τ (R).

(iii) If (U, b)λ,µ ⊂ Cλ,µ(R) then we have [(U, b)λ,µ, R]λ,µ = 0. This gives that, for all
u ∈ U

0 = [(u, b)λ,µ, b]λ,µ = [uλ(b) + µ(b)u, b]λ,µ

= uλ(b)λ(b) + µ(b)uλ(b)− µ(b)uλ(b)− µ(b)µ(b)u

= uλ(b)λ(b)− µ(b)µ(b)u.

That is [U, b2]λ,µ = 0. Using Lemma 2.2 we get b2 ∈ Z or U ⊂ Cσ,τ (R). �

Lemma 2.7. Let I be a nonzero ideal of R and b ∈ R.

(i) If b ∈ Cα,β(I) then b ∈ Cα,β(R).
(ii) If [b, I]α,β ⊂ Cλ,µ(R) then b ∈ Cα,β(R) or R is commutative.

Proof. The mapping defined by d(r) = [b, r]α,β,∀r ∈ R is a (α, β)−derivation and so
left-generalized (α, β)−derivation associated with d.

(i) If b ∈ Cα,β(I) then [b, I]α,β = 0 and so d(I) = 0 is obtained. This gives that d = 0
by Lemma 2.1. That is b ∈ Cα,β(R).

(ii) If [b, I]α,β ⊂ Cλ,µ(R) then we have d(I) ⊂ Cλ,µ(R). Using that d is a left-generalized
(α, β)−derivation then we have R is commutative by Lemma 2.3. Finally we obtain that
b ∈ Cα,β(R) or R is commutative for any cases. �

Corollary 2.1. Let U be a nonzero right (σ, τ)−Lie ideal of R and I a nonzero ideal of
R.

(i) If U ⊂ Cα,β(I) then U ⊂ Cα,β(R).
(ii) If [U, I]α,β ⊂ Cλ,µ(R) then U ⊂ Cα,β(R) or R is commutative.

Proof. (i) If U ⊂ Cα,β(I) then we have U ⊂ Cα,β(R) by Lemma 2.7 (i).
(ii) If [U, I]α,β ⊂ Cλ,µ(R) then we have U ⊂ Cα,β(R) or R is commutative by Lemma

2.7 (ii). �

Theorem 2.2. Let d : R −→ R be a nonzero (α, β)− derivation and b ∈ R. Let U be a
nonzero right (σ, τ)−Lie ideal of R.

(i) If d(U) = 0 then U ⊂ Z or U ⊂ Cσ,τ (R).
(ii) If b ∈ Cλ,µ(U) then b ∈ Cλ,µ(R) or U ⊂ Z or U ⊂ Cσ,τ (R).
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Proof. (i) If d(U) = 0 then we have, for all v ∈ U , r, s ∈ R
0 = d[v, rs]σ,τ = d(τ(r)[v, s]σ,τ + [v, r]σ,τσ(s))

= dτ(r)α[v, s]σ,τ + βτ(r)d[v, s]σ,τ + d[v, r]σ,τασ(s) + β[v, r]σ,τdσ(s)

= dτ(r)α[v, s]σ,τ + β[v, r]σ,τdσ(s).

That is
dτ(r)α[v, s]σ,τ + β[v, r]σ,τdσ(s) = 0 for all v ∈ U, r, s ∈ R. (4)

Replacing s by σ−1[u, s]σ,τ , u ∈ U in (4) and using hypothesis we get

d(R)α[U, σ−1[U,R]σ,τ ]σ,τ = 0.

Since d 6= 0 then using [1, Lemma 3] we obtain [U, σ−1[U,R]σ,τ ]σ,τ = 0. This gives that
[U,R]σ,τ ⊂ Z or U ⊂ Cσ,τ (R) by Lemma 2.2.

If [U,R]σ,τ ⊂ Z then we have U ⊂ Cσ,τ (R) or R is commutative by Lemma 2.7 (ii).
Finally we obtain that U ⊂ Z or U ⊂ Cσ,τ (R).

(ii) The mapping defined by d(r) = [b, r]λ,µ ,∀r ∈ R is a (λ, µ)− derivation. If d = 0

then b ∈ Cλ,µ(R) is obtained. Let d 6= 0.
If b ∈ Cλ,µ(U) then we have [b, U ]λ,µ = 0. That is d(U) = 0. This means that U ⊂ Z

or U ⊂ Cσ,τ (R) by (i). Finally we obtain that b ∈ Cλ,µ(R) or U ⊂ Z or U ⊂ Cσ,τ (R). �

Corollary 2.2. Let U be a nonzero right (σ, τ)−Lie ideal of R and a, b ∈ R. If b, ba ∈
Cλ,µ(U) or b, ab ∈ Cλ,µ(U) then b = 0 or a ∈ Z or U ⊂ Cσ,τ (R) or U ⊂ Z.

Proof. If b, ba ∈ Cλ,µ(U) then using Theorem 2.2 (ii) we get, for all v ∈ V
{(U ⊂ Cσ,τ (R) or U ⊂ Z) or b ∈ Cλ,µ(R)} and {(U ⊂ Cσ,τ (R) or U ⊂ Z) or ba ∈ Cλ,µ(R)} .

This means that

(U ⊂ Cσ,τ (R) or U ⊂ Z) or {b ∈ Cλ,µ(R) and ba ∈ Cλ,µ(R)}
If {b ∈ Cλ,µ(R) and ba ∈ Cλ,µ(R)} then we have b = 0 or a ∈ Z by Lemma 2.4. Finally

we obtain that b = 0 or a ∈ Z or U ⊂ Cσ,τ (R) or U ⊂ Z for any cases.
If b, ab ∈ Cλ,µ(U) then, considering as above we get the same result. �

Lemma 2.8. Let I be a nonzero ideal of R and h : R −→ R a nonzero right-generalized
(σ, τ)− derivation associated with a nonzero (σ, τ)−derivation d. If b ∈ R such that
[h(I), b]λ,µ = 0 then b ∈ Z or dσ−1λ(b) = 0.

Proof. Using hypothesis we get for all x ∈ I
0 = [h(xσ−1λ(b)), b]λ,µ = [h(x)λ(b) + µ(x)dσ−1λ(b), b]λ,µ

= h(x)[λ(b), λ(b)] + [h(x), b]λ,µ λ(b) + µ(x)[dσ−1λ(b), b]λ,µ + [µ(x), µ(b)]dσ−1λ(b)

= µ(x)[dσ−1λ(b), b]λ,µ + [µ(x), µ(b)]dσ−1λ(b).

That is
µ(x)[dσ−1λ(b), b]λ,µ + [µ(x), µ(b)]dσ−1λ(b) = 0 for all x ∈ I. (5)

Replacing x by rx, r ∈ R in (5) and using (5) we get for all x ∈ I, r ∈ R
0 = µ(r)µ(x)[dσ−1λ(b), b]λ,µ + µ(r)[µ(x), µ(b)]dσ−1λ(b) + [µ(r), µ(b)]µ(x)dσ−1λ(b)

= [µ(r), µ(b)]µ(x)dσ−1λ(b)

which gives
[R,µ(b)]µ(I)dσ−1λ(b) = 0.

Since µ(I) is a nonzero ideal and R is prime then we have b ∈ Z or dσ−1λ(b) = 0. �
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Corollary 2.3. Let h : R −→ R be a nonzero right-generalized (σ, τ)− derivation associ-
ated with a nonzero (σ, τ)−derivation d and I, J nonzero ideals of R. If h(I) ⊂ Cλ,µ(J)
then R is commutative.

Proof. If h(I) ⊂ Cλ,µ(J) then we have [h(I), y]λ,µ = 0 for all y ∈ J. This gives that, for
any y ∈ J ,

y ∈ Z or dσ−1λ(y) = 0

by Lemma 2.8. Then J is the union of its additive subgroups K = {y ∈ J | y ∈ Z}
and L = {y ∈ J | dσ−1λ(y) = 0}. Since a group can not be the union of two of its
proper subgroups, we have J = K or J = L. Since σ−1λ(J) is a nonzero ideal of R then
dσ−1λ(J) 6= 0 by Lemma 2.1. Hence we have J = K and so J ⊂ Z. This means that R is
commutative by [9]. �

Theorem 2.3. Let U be a nonzero right (σ, τ)−Lie ideal of R and I a nonzero ideal of R.
Let h : R −→ R be a nonzero right-generalized (α, β)−derivation associated with nonzero
(α, β)− derivation d and b ∈ R.

(i) If h(I) ⊂ Cλ,µ(U) then U ⊂ Z or U ⊂ Cσ,τ (R).
(ii) If bh(I) ⊂ Cλ,µ(U) then b ∈ Z or U ⊂ Z or U ⊂ Cσ,τ (R).

Proof. (i) If h(I) ⊂ Cλ,µ(U) then we have h(I) ⊂ Cλ,µ(R) or U ⊂ Z or U ⊂ Cσ,τ (R) by
Theorem 2.2 (ii).

If h(I) ⊂ Cλ,µ(R) then we get R is commutative by Corollary 2.3 and so U ⊂ Z.
(ii) If bh(I) ⊂ Cλ,µ(U) then using Theorem 2.2 (ii) we get bh(I) ⊂ Cλ,µ(R) or U ⊂ Z

or U ⊂ Cσ,τ (R) .
If bh(I) ⊂ Cλ,µ(R) then we have b ∈ Z by [4]. Finally, we obtain that b ∈ Z or U ⊂ Z

or U ⊂ Cσ,τ (R). �

Theorem 2.4. Let U be a nonzero right (σ, τ)−Lie ideal of R and I a nonzero ideal of R.
Let h : R −→ R be a nonzero left-generalized (α, β)−derivation associated with nonzero
(α, β)− derivation d and b ∈ R.

(i) If h(I) ⊂ Cλ,µ(U) then U ⊂ Z or U ⊂ Cσ,τ (R).
(ii) If h(I)b ⊂ Cλ,µ(U) then b ∈ Z or U ⊂ Z or U ⊂ Cσ,τ (R).

Proof. (i) If h(I) ⊂ Cλ,µ(U) then using Theorem 2.2 (ii) we get h(I) ⊂ Cλ,µ(R) or U ⊂ Z
or U ⊂ Cσ,τ (R).

If h(I) ⊂ Cλ,µ(R) then we get R is commutative by Lemma 2.3 and so U ⊂ Z.
(ii) If h(I)b ⊂ Cλ,µ(U) then we have h(I)b ⊂ Cλ,µ(R) or U ⊂ Z or U ⊂ Cσ,τ (R) by

Theorem 2.2 (ii).
If h(I)b ⊂ Cλ,µ(R) then using [5] we get b ∈ Z. Finally, we obtain that b ∈ Z or U ⊂ Z

or U ⊂ Cσ,τ (R). �

Remark 2.1. Let J be a nonzero ideal of R. If J ⊂ Cλ,µ(R) then J ⊂ Z.

Proof. If J ⊂ Cλ,µ(R) then we have [J,R]λ,µ = 0 and so

0 = [xy, r]λ,µ = x[y, r]λ,µ + [x, µ(r)]y = [x, µ(r)]y for all x, y ∈ J, r ∈ R.

That is [J,R]J = 0. This gives that J ⊂ Z in prime rings. �

Theorem 2.5. Let U, V be nonzero right (σ, τ)−Lie ideals of R and a, b ∈ R. Let I be a
nonzero ideal of R.
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(i) If [a, I]α,β ⊂ Cλ,µ(U) then a ∈ Cα,β(R) or U ⊂ Cσ,τ (R) or U ⊂ Z.
(ii) If b[a, I]α,β ⊂ Cλ,µ(U) or [a, I]α,βb ⊂ Cλ,µ(U) then a ∈ Cα,β(R) or b ∈ Z or

U ⊂ Cσ,τ (R) or U ⊂ Z.
(iii) If bV ⊂ Cλ,µ(U) or V b ⊂ Cλ,µ(U) then b ∈ Z or V ⊂ Cσ,τ (R) or U ⊂ Cσ,τ (R) or

U ⊂ Z.

Proof. The mapping defined by d(r) = [a, r]α,β for all r ∈ R is an (α, β)−derivation and so
right (and left)-generalized (α, β)−derivation associated with d. If d = 0 then a ∈ Cα,β(R)
is obtained. Let d 6= 0.

(i) If [a, I]α,β ⊂ Cλ,µ(U) then we have d(I) ⊂ Cλ,µ(U). This means that U ⊂ Z or
U ⊂ Cσ,τ (R) by Theorem 2.3 (i). Finally we obtain that a ∈ Cα,β(R) or U ⊂ Cσ,τ (R) or
U ⊂ Z for any cases.

(ii) If b[a, I]α,β ⊂ Cλ,µ(U) or [a, I]α,βb ⊂ Cλ,µ(U) then we have bd(I) ⊂ Cλ,µ(U) or
d(I)b ⊂ Cλ,µ(U). Using Theorem 2.3 (ii) and Theorem 2.4 (ii) we get b ∈ Z or U ⊂ Z or
U ⊂ Cσ,τ (R). Finally we obtain that b ∈ Z or a ∈ Cα,β(R) or U ⊂ Cσ,τ (R) or U ⊂ Z for
any cases.

(iii) If bV ⊂ Cλ,µ(U) or V b ⊂ Cλ,µ(U) then we have b[V,R]σ,τ ⊂ Cλ,µ(U) or [V,R]σ,τ b ⊂
Cλ,µ(U). Using Theorem 2.5 (ii) we get V ⊂ Cσ,τ (R) or b ∈ Z or U ⊂ Cσ,τ (R) or
U ⊂ Z. �

Corollary 2.4. Let V be nonzero right (σ, τ)−Lie ideals of R and b ∈ R. Let I be a
nonzero ideal of R. If bV ⊂ Cλ,µ(I) or V b ⊂ Cλ,µ(I) then b ∈ Z or V ⊂ Cσ,τ (R).

Proof. Every ideal I of R is a right (1, 1)−Lie ideal of R. If bV ⊂ Cλ,µ(I) or V b ⊂ Cλ,µ(I)
then we have b ∈ Z or V ⊂ Cσ,τ (R) or I ⊂ Cσ,τ (R) or I ⊂ Z by Theorem 2.5 (iii).

If I ⊂ Cσ,τ (R) then we have I ⊂ Z by Remark 2.1. On the other hand J ⊂ Z means
that R is commutative by [9]. Finally we obtain that b ∈ Z or V ⊂ Cσ,τ (R) for any
cases. �
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E. GÜVEN: RIGHT (σ, τ)−LIE IDEALS AND ONE SIDED GENERALIZED DERIVATIONS 167
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