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CONVOLUTION OF SOME SLANTED HALF-PLANE MAPPINGS

WITH HARMONIC STRIP MAPPINGS

POONAM SHARMA1, OMENDRA MISHRA1, §

Abstract. In this paper, we show that the convolution of generalized half-plane map-
ping and harmonic vertical strip mapping with dilatation eiθ zn (n ∈ N, θ ∈ R) is convex
in a particular direction and also solve the problem proposed by Z. Liu et al. [Convolu-
tions of harmonic half-plane mappings with harmonic vertical strip mappings, Filomat,
31 (2017), no. 7, 1843–1856].
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1. Introduction

Let H denotes the class of complex-valued functions f = u+ iv which are harmonic in
the unit disk D = {z ∈ C : |z| < 1} , where u and v are real-valued harmonic functions in
D. Functions f ∈ H can also be expressed as f = h+ g, where h and g are analytic in D,
called the analytic and co-analytic parts of f , respectively. The Jacobian of f = h+ g is
given by Jf (z) = |h′(z)|2 − | g′(z)|2.

According to the Lewy’s Theorem, every harmonic function f = h + g ∈ H is locally
univalent and sense preserving in D if and only if Jf (z) > 0 in D which is equivalent to
the existence of an analytic function ω(z) = g′(z)/h′(z) in D such that

|ω(z)| < 1 for all z ∈ D.
The function ω is called the dilatation of f . By requiring harmonic functions to be sense-
preserving, we retain some basic properties exhibited by analytic functions, such as the
open mapping property, the argument principal, and zeros being isolated (see for detail
[6]). The class of all univalent, sense preserving harmonic functions f = h+ g ∈ H, with
the normalized conditions h(0) = 0 = g(0) and h′(0) = 1 is denoted by SH. If the function
f = h+ g ∈ SH, then h and g are of the form

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n (|b1| < 1; z ∈ D) . (1)
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A subclass of functions f = h + g ∈ SH with the condition g′(0) = 0 (or ωf (0) = 0) is
denoted by S0

H. Further, the subclasses of functions f in SH
(
S0
H
)
, denoted by KH

(
K0
H
)
,

consists of functions f that map the unit disk D onto a convex region.
We define the harmonic convolution (or Hadamard product) ”∗”of f = h+g ∈ H, where

h and g as above in (1) and F = H +G ∈ H, where

H(z) = z +

∞∑
n=2

Anz
n and G(z) =

∞∑
n=1

Bnz
n,

by

(f ∗ F )(z) = z +
∞∑
n=2

anAnz
n +

∞∑
n=1

bnBnzn.

In the present paper, authors study a generalized class of slanted half-plane mappings.
It is proved that the convolution of generalized half-plane mapping and harmonic vertical
strip mapping with dilatation eiθ zn (n ∈ N, θ ∈ R) is convex in a particular direction.

Recall [3] that a function f = h + g ∈ S0
H is called a slanted half-plane mapping

if f maps D onto Hα := {w : <e(eiαw) > −1/2}, where 0 ≤ α < 2π. The class of
all slanted half-plane mappings is denoted by S0(Hα). A function f = h + g ∈ SH is
called a generalized slanted half-plane mapping if it maps D onto the region Hc,α := {w :
<e(eiαw) > −1/(1 + c)}, where 0 ≤ α < 2π, c > 0. Using the shearing method due to
Clunie and Sheil Small [2] and the Riemann mapping theorem, such a mapping has the
form

h(z) + e−2iαg(z) =
2z

(1 + c)(1− eiαz)
.

The class of all generalized slanted half-plane mappings is denoted by Sc(Hα). In the
harmonic case, one can easily see that there are infinitely many slanted half-plane mappings
for each fixed α. For α = 0 and c = 1, the class Sc(Hα) reduces to the class of right half-
plane mappings f ∈ S0(H0) that map D onto f(D) = H0 = {w : <e(w) > −1/2}, and
such a mapping clearly assumes the form

h(z) + g(z) =
z

1− z
.

We now recall fundamental result, called shearing theorem, due to Clunie and Sheil-Small
as follows:

Theorem 1.1. [2]A locally univalent harmonic function f = h + g in D is a univalent
mapping of D onto a domain convex in the direction of eiγ if and only if h − e2iγg is a
analytic univalent mapping of D onto a domain convex in the direction of eiγ.

The class of slanted strip mappings S0(Ωγ,β), defined in [1] consists of functions f that
map D onto slanted strip domains

Ωγ,β =

{
w :

β − π
2 sinβ

< <e(eiγw) <
β

2 sinβ

}
,

where 0 < β < π and 0 ≤ γ < 2π. Each f = h+ g ∈ S0(Ωγ,β) has the form

h(z) + e−2iγg(z) =
e−iγ

2i sinβ
log

1 + zei(γ+β)

1 + zei(γ−β)
.
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Let Lc,α = hc,α + gc,α ∈ Sc(Hα) be given by

hc,α + e−2iαgc,α =
2z

(1 + c)(1− eiαz)
,

where

hc,α =
z − z2

1+ce
iα

(1− eiαz)2
and gc,α =

1−c
1+cze

2iα − z2

1+ce
3iα

(1− eiαz)2
. (2)

The mapping Lc,α maps D onto Hc,α := {w : <e(eiαw) > −1/ (1 + c)}, where c > 0. If
α = 0, then we get generalized half-plane harmonic univalent mappings introduced by
Muir [14].

Convolution of two harmonic convex mappings need not be convex, and it may even
fail to be univalent. Therefore, it is interesting to study the convolution properties of two
harmonic convex mappings. For some results on convolution of harmonic mappings see
[5, 7, 8, 9, 11, 12, 15].

A domain w ⊂ C is said to be convex in the direction γ, γ ∈ R, if and only if for every
a ∈ C, the set Ω ∩ {a+ teiγ : t ∈ R} is either connected or empty.

We now state some results which were proved earlier and problem proposed by Liu et
al. [12]:

Theorem 1.2. [3] If fk ∈ S0(Hγk), k = 1, 2, and f1 ∗ f2 is locally univalent in D, then
f1 ∗ f2 is convex in the direction −(γ1 + γ2).

Theorem 1.3. [3] Let f = h+ g ∈ S0(H0) with the dilatation ω(z) = eiθ zn(n = 1, 2), θ
∈ R. Then f0 ∗ f ∈ S0

H and is convex in the direction of real axis.

Theorem 1.4. [10] Let f = h + g ∈ S0(Hγ) with the dilatation ω(z) = eiθ zn(n = 1, 2),
θ ∈ R. Then f0 ∗ f ∈ S0

H and is convex in the direction of −γ.

Theorem 1.5. [12] Let Lc,0 = hc,0 + gc,0 ∈ Sc(H0) be defined by (2) and f = h + g ∈
S0(Ωβ) with ω(z) = eiθz, where π/2 ≤ β < π (θ ∈ R), then Lc,0 ∗ f ∈ S0

H and is convex
in the horizontal direction for 0 < c ≤ 2.

Theorem 1.6. [12] Let Lc,0 = hc,0 + gc,0 ∈ Sc(H0) be defined by (2) and f = h + g ∈
S0(Ωβ) with ω(z) = eiθzn, where β = π/2 (n ∈ N, θ ∈ R), then Lc,0 ∗ f ∈ S0

H and is

convex in the horizontal direction for 0 < c ≤ 2
n .

Problem (4.4) [12] Let Lc,0 = hc,0 + gc,0 ∈ Sc(H0) be defined by (2) and f = h + g ∈
S0(Ωβ) with ω(z) = eiθzn, where π/2 ≤ β < π (n ∈ N, θ ∈ R), then Lc,0 ∗ f ∈ S0

H and is

convex in the horizontal direction for 0 < c ≤ 2
n .

2. MAIN RESULTS

Lemma 2.1. If a function f = h+ g ∈ Sc(Hα), then

h(z) + e−2iαg(z) =
2z

(1 + c)(1− eiαz)
(c > 0).

Proof. If f = h + g ∈ Sc(Hα), then <e {eiα(h + g)} > −1/ (1 + c) which means that
<e{eiαh(z) + e−iαg(z)} > −1/ (1 + c). In other words, <e {eiα(h(z) + e−2iαg(z))} >
−1/ (1 + c). Since f is a convex function, it follows from a convexity theorem by Clunie
and Sheil-Small [2] that the function h(z)+e−2iαg(z) is the convex in the direction π/2−α,
and so f is univalent. It is also clear that z → h(z) + e−2iαg(z) maps D onto the region
Hc,α which implies the result. �



316 TWMS J. APP. ENG. MATH. V.11, N.1, 2021

Lemma 2.2. Let Lc,α = hc,α + gc,α be defined by (2) and f = h + g ∈ S0(Ωγ,β) be the
vertical strip mapping, with dilatation ω(z) = g′(z)/h′(z). then the dilatation of ω̃ of Lc,α
∗ f is given by

ω̃(z) = e2iα

[
(1− c)g′

(
zeiα

)
− czeiαg′′

(
zeiα

)
(1 + c)h′ (zeiα) + czeiαh′′ (zeiα)

]
. (3)

Proof. Let f = h+ g ∈ Sc(Hα) with ω(z) = g′(z)/h′(z). Let Lc,α ∗ f = hc,α ∗ h +gc,α ∗ g
= h1 + g1, where

h1(z) =
1

1 + c

[
z

1− zeiα
+

cz

(1− zeiα)2

]
∗ h

=
e−iα

1 + c

[
h(zeiα) + czeiαh′

(
zeiα

)]
,

and

g1(z) =
1

1 + c

[
z

1− zeiα
− cz

(1− zeiα)2

]
∗ g

=
eiα

1 + c

[
g(zeiα)− czeiαg′

(
zeiα

)]
.

The dilatation is given by

ω̃(z) =
g′1(z)

h′1(z)
= e2iα

[
(1− c)g′

(
zeiα

)
− czeiαg′′

(
zeiα

)
(1 + c)h′ (zeiα) + czeiαh′′ (zeiα)

]
.

�

Lemma 2.3. [1] If the mapping f = h+ g ∈ S0(Ωγ,β), then

h(z) + e−2iγg(z) =
e−iγ

2i sinβ
log

1 + zei(γ+β)

1 + zei(γ−β)
.

Lemma 2.4. Let a mapping Lc,α = hc,α + gc,α be defined by (2) and f = h + g ∈
S0(Ωγ,β). If the mapping Lc,α ∗ f is sense preserving, then Lc,α ∗ f is convex in the
direction −(α+ γ).

Proof. By similar method used in [9], we can prove this lemma. So we omit the details. �

Note: If we take c = 1, γ = 0, β = π
2 in above lemma, we get the result proved in [9,

Theorem 3.2].

Theorem 2.1. Let Lc,α = hc,α+gc,α ∈ Sc(Hα) be defined by (2) and f = h+g ∈ S0(Ωγ,β)

with ω(z) = eiθzn, where 0 < β < π (n ∈ N, θ ∈ R), then Lc,α ∗ f ∈ S0
H and is convex in

the direction −(α+ γ) for 0 < c ≤ 2
n .

Proof. To prove this theorem, it suffices to show by Lemma 2.4 that the dilatation of ω̃ of
Lc,α ∗ f given by (3) satisfies |ω̃(z)| < 1 for all z ∈ D. By (3), we see that ω̃(z) = W (zeiα),
where

W (z) = e2iα
[

(1− c)g′(z)− czg′′(z)
(1 + c)h′(z) + czh′′(z)

]
.

For |ω̃(z)| < 1, it is enough to prove that |W (z)| < 1. Since f = h+g ∈ S0(Ωγ,β), we have

h(z) + e−2iγg(z) =
e−iγ

2i sinβ
log

1 + zei(γ+β)

1 + zei(γ−β)
. (4)
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Since the dilatation ω(z) = eiθzn, we have

g′(z) = eiθznh′(z) and g′′(z) = neiθzn−1h′(z) + eiθznh′′(z)

so that W (z) defined above takes the form

W (z) = ei(2α+θ)zn
(

1− c− nc− cu[h(z)]

1 + c+ cu[h(z)]

)
, (5)

where

u[h(z)] = z
h′′(z)

h′(z)
.

From (4), with the dilatation ω(z) = eiθzn, we find that

h′(z) =
1

(1 + e−2iγω(z))(1 + zei(γ+β))(1 + zei(γ−β))

and

h′′(z) = −2(ze2iγ + eiγ cosβ)(1 + e−2iγω(z)) + e−2iγω′(z)(1 + zei(γ+β))(1 + zei(γ−β))

(1 + e−2iγω(z))2(1 + zei(γ+β))2(1 + zei(γ−β))2
,

Therefore,

u[h(z)] = − 2z(ze2iγ + eiγ cosβ)

(1 + zei(γ−β))(1 + zei(γ+β))
− ze−2iγω′(z)

1 + e−2iγω(z)

= − 2z(ze2iγ + eiγ cosβ)

(1 + zei(γ−β))(1 + zei(γ+β))
− n ei(θ−2γ)zn

1 + ei(θ−2γ)zn

= − zei(γ−β)

1 + zei(γ−β)
− zei(γ+β)

1 + zei(γ+β)
− n ei(θ−2γ)zn

1 + ei(θ−2γ)zn
.

which proves that X := <e u[h(z)] > −1 − n
2 for all z ∈ D and thus, 2 + n + 2X > 0 .

From (5), to show
∣∣∣1−c−nc−cu[h(z)]1+c+cu[h(z)]

∣∣∣ ≤ 1, it suffices to show that

T := (1 + c+ cX)2 − (1− c− nc− cX)2 ≥ 0, for all z ∈ D (6)

or

T = c (2− cn) (2 + n+ 2X) ≥ 0. (7)

Since, c > 0 and 2 + n + 2X > 0, we conclude that T ≥ 0 if and only if 0 < c ≤ 2
n . This

completes the proof of Theorem 2.1. �

Substituting α = 0, γ = 0, we get the following result:

Corollary 2.1. [12] Let Lc,0 = hc,0 + gc,0 ∈ Sc(H0) be defined by (2) and f = h + g ∈
S0(Ω0,β) with ω(z) = eiθzn, where 0 < β < π (n ∈ N, θ ∈ R), then Lc,0 ∗ f ∈ S0

H and is

convex in the horizontal direction for 0 < c ≤ 2
n .
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