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AN APPROXIMATION TECHNIQUE FOR FIRST PAINLEVÉ

EQUATION

MOHAMMAD IZADI1, §

Abstract. In this study, we introduce a new approximative algorithm to get numeri-
cal solutions of the nonlinear first Painlevé equation. Indeed, to obtain an approximate
solution, a combination of exponential matrix method based on collocation points and
quasilinearization technique is used. The quasilinearization method is used to transform
the original non-linear problem to a sequence of linear equations while the exponential
collocation method is employed to solve the resulting linear equations iteratively. Fur-
thermore, since the exact solution of the model problem is not known, an error estimation
based on the residual functions is presented to check the accuracy of the proposed method.
Finally, the benefits of the method are illustrated with the aid of numerical calculations.
Comparisons with other well-known schemes show that the combined technique is easy
to implement while capable of giving results of very high accuracy with a relatively low
number of exponential functions.

Keywords: Collocation points, Exponential functions, Painlevé equation, Quasilineariza-
tion method.
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1. Introduction

The six Painlevé equations were first discovered by Painlevé and his co-workers in their
study of nonlinear second-order irreducible ordinary differential equations [24]. In this
paper, a novel efficient approximative algorithm based on exponential basis functions and
quasilinearization technique is introduced to solve the first Painlevé equation with initial
conditions given as

#

x2ptq “ 6x2ptq ` t µ, 0 ď t ď 1,

xp0q “ 0, x1p0q “ 1,
(1)

where µ is an arbitrary real constant. In fact, Painlevé equations satisfy the so-called
Painlevé properties (the general solutions are free from movable branch points) and their
solutions are known as Painlevé transcendents. Painlevé equations appear in many im-
portant physical applications. Among others, we emphasize as a model for describing the
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electric field in a semiconductor [18], quantum gravity [12], random matrix theory [32],
modelling the viscous shocks in Hele-Shaw flow and also Stokes phenomena [21] as well
as the existence of tronquée and hyperasymptotics solutions [5]. Moreover, the exact so-
lutions to many nonlinear partial differential equations such as Korteweg-de Vries (KdV),
cylindrical KdV and Boussinesq equations can be written in terms of Painlevé transcen-
dent [1, 31]. The mathematical theory of the classical Painlevé differential equations along
with some applications are considered in [4, 13, 19].

The properties of Painlevé differential equations have been studied from both analyt-
ical and numerical point of views in many publications. The most considerable analyti-
cal schemes include Adomian’s decomposition (ADM) and homotopy perturbation meth-
ods (HPM) [7], variational iteration method (VIM) and HPM [15], homotopy analysis
method [10, 14], and optimal homotopy asymptotic method [22]. On the other hand, nu-
merical techniques such as Chebyshev series [6, 16], computational intelligence technique
based on neural networks and particle swarm optimization [28, 29, 30], and reproducing
kernel Hilbert space algorithms [2] have been developed in the past to solve the nonlinear
equation (1).

Exponential polynomials or exponential functions have found important applications in
numerous branches of science and engineering. Physical systems which can be character-
ized by linear differential equations with constant coefficients naturally admit exponential
solutions. The function 1{x can be well approximated by sums of exponentials on finite
or infinite intervals [9]. The use of orthonormal exponentials as basis functions provide
efficient representation of a large class of signals arising in physical processes [20]. An old
bibliography for approximation with exponential sums can be found in [17].

The main subject of this paper is to approximate the solution of (1) on the interval
r0, 1s as a linear combination of real exponential functions. Rather than exploiting the
basis functions with negative exponents t1, e´t, e´2t, . . .u as considered in [33, 34, 35, 36],
we are going to find an accurate approximate solution of (1) of the form

xptq – xN ptq “
N
ÿ

n“0

an e
nt, 0 ď t ď 1, (2)

where a0, a1, . . . , aN are the coefficients of the exponential polynomial to be determined
through a collocation procedure. The main idea of the proposed technique based on using
these exponential functions along with collocation points is that it transforms the model
problem (2) to an algebraic form, thus greatly reducing the computational effort. However,
due to the nonlinearity of the problem under consideration, the resulting system of equa-
tions obtained via exponential-collocation is nonlinear and its solving may be inefficient
for a large value of N . Alternatively, to obviate this difficulty we first apply the quasi-
linearization method (QLM) to (1) and then utilize the exponential-collocation scheme to
the resulting linear equation.

The rest of the paper is organized as follows: in Section 2, a concise introduction to the
technique of quasilinearization is expressed. In Section 3, the methodology of collocation
for the corresponding quasi-linear equations is explained. Results and discussions of the
combined proposed method are reported in Section 4. Finally, a conclusion is provided.

2. Quasilinearization Method

As previously mentioned, solving a nonlinear system of equations obtained via direct
exponential-collocation scheme using nonlinear solvers such as Newton’s methods may be
inefficient when the number of basis functions is getting large. To overcome this difficulty,
we may first convert the original equation (2) into a sequence of linear equations and
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then apply the aforementioned exponential collocation scheme to them. To this end, we
describe briefly the quasi-linearization method (QLM) as a generalized Newton-Raphson
scheme for functional equations, see [3, 23, 26, 25, 27].

Let us consider the general form of nonlinear differential equation (2),

x2ptq “ fpxptq, tq, (3)

with the initial conditions xp0q “ 0, x1p0q “ 1. Here f is a function of xptq. To start
computation, we need to choose an initial approximation of the function xptq. Assuming
that x0ptq “ 0 as an initial guess, the QLM iteration for (3) is determined as follows

x2r`1ptq “ fpxrptq, tq `
`

xr`1ptq ´ xrptq
˘

fxpxrptq, tq, (4)

with the same boundary conditions xr`1p0q “ 0, x1r`1p0q “ 1, r “ 0, 1, . . ., and the
function fx “ Bf{Bx denotes the functional derivative of fpxptq, tq. By applying the QLM
technique on the first Painlevé equation (1) we get

x2r`1ptq “ tµ´ 6x2
rptq ` 12xrptqxr`1ptq, 0 ď t ď 1, (5)

with the corresponding initial conditions

xr`1p0q “ 0, x1r`1p0q “ 1. (6)

Therefore, instead of applying the exponential collocation scheme directly to Painlevé
equation we solve a sequence of linear equations (5) by the collocation method, which is
referred to as the exponential-QLM.

3. Exponential-QLM

Our goal is to solve the model problem (1) approximately such that the desired solutions
expressed in terms of the truncated exponential series form (2). This task is instead
accomplished for the corresponding approximated quasi-linear model problem (5). To this
end, assuming that we have already an approximation solution xN,rptq in the iteration
r “ 0, 1, . . ., we take the solution in the next iteration as

xN,r`1ptq “
N
ÿ

n“0

aprqn ent, 0 ď t ď 1, (7)

where the unknown coefficients a
prq
n , n “ 0, 1, . . . , N to be sought. We can rewrite the

finite series (7) in a matrix form compactly as

xN,r`1ptq “ EN ptqA
prq, (8)

where two known and unknown vectors EN ptq and Aprq are defined as

EN ptq “
“

1 et e2t . . . eNt
‰

, Aprq “
”

a
prq
0 a

prq
1 . . . a

prq
N

ıT
.

Here, a superscript T denotes the matrix transpose operation. The next aim is to find a
relationship between xN,r`1ptq and its second-order derivative, which appears in (5). It
can easily check that the derivatives of EN ptq satisfy

E
p`q
N ptq “

”

0 et 2` e2t . . . N ` eNt
ı

, ` “ 1, 2 . . . .

Now, we are able to relate EN ptq and its derivatives through the following matrix repre-
sentation for ` “ 1, 2, . . .

E
p`q
N ptq “ EN ptqD

`, (9)
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and where the diagonal matrix D` has the form

D` “

»

—

—

—

—

—

—

–

0 0 0 . . . 0
0 1 0 . . . 0
...

... 2`
...

...

0 0 0
. . . 0

0 0 0 . . . N `

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

.

By the aid of (9) we can express all derivatives involved in the given equation. In particular
for the second derivative in (1) we have

x2N,r`1ptq “ EN ptqD
2Aprq. (10)

To obtain a solution in the form (2) or (7) of the problem (1) on the interval 0 ď t ď 1,
we will use the collocation points defined by

tk “
k

N
, k “ 0, 1, . . . , N. (11)

Proceeding by inserting the collocation points (11) into the relations (8) and (10) we get

Xr`1 “ E Aprq, Xr`1 “

»

—

—

—

–

xN,r`1pt0q
xN,r`1pt1q

...
xN,r`1ptN q

fi

ffi

ffi

ffi

fl

, E “

»

—

—

—

–

EN pt0q
EN pt1q

...
EN ptN q

fi

ffi

ffi

ffi

fl

, (12)

and

:Xr`1 “ ED2A, :Xr`1 “

»

—

—

—

–

x2N,r`1pt0q

x2N,r`1pt1q
...

x2N,r`1ptN q

fi

ffi

ffi

ffi

fl

. (13)

Now, we are able to compute the exponential solutions of (5). The collocation procedure
is based on calculating these exponential coefficients by means of collocation points (11).
To continue, inserting the collocation points into the first Painlevé differential equation to
get the system

x2r`1ptkq ´ 12xrptkqxr`1ptkq “ µ tk ´ 6x2
rptkq, k “ 0, 1, . . . , N.

Following matrix notation we may write the above equations as compactly as

:Xr`1 ` PrXr`1 “ Fr, (14)

where the constant coefficient matrix Pr and the right-hand side vector Fr have the fol-
lowing representations

Pr “

»

—

—

—

–

´12xrpt0q 0 . . . 0
0 ´12xrpt1q . . . 0
...

...
. . .

...
0 0 . . . ´12xrptN q

fi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

,

Fr “ µ

»

—

—

—

–

t0
t1
...
tN

fi

ffi

ffi

ffi

fl

´ 6

»

—

—

—

–

x2
N,rpt0q

x2
N,rpt1q

...
x2
N,rptN q

fi

ffi

ffi

ffi

fl

.
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Let us place the relations (12) and (13) into (14). This gives us the fundamental matrix
equation

Wr A
prq “ Fr, (15)

where

Wr :“ ED2 ` Pr E.

Evidently, the fundamental matrix equation (15) is a set of pN ` 1q linear equations in

terms of pN ` 1q unknown coefficients a
prq
0 , a

prq
1 , . . . , a

prq
N to be found.

In order to take into account the initial conditions, we must also convert them into
matrix form. The relations (8) and (9) with ` “ 1 will be used to show the initial
conditions xr`1p0q “ 0, x1r`1p0q “ 1 in the matrix notation. To this end, at t “ 0 we get

ĎW0A
prq “ 0, ĎW0 :“ EN p0q “ r1 1 1 . . . 1sT ,

ĎW1A
prq “ 1, ĎW1 :“ EN p0qD

1 “ r0 1 2 . . . N sT .

Now, by replacing the first and last rows of the augmented matrix rWr;Frs by the row
matrices rĎW0; 0s and rĎW1; 1s, we arrive at the linear algebraic system of equations

ĎWr A “ sFr. (16)

Thus, the unknown exponential coefficients in (2) will be calculated via solving this linear
system of equations. Note that if rank(ĎWr)=rank(rĎWr; sFrsq “ N ` 1, then the vector of

unknown Aprq is uniquely determined through computing the inverse pĎWrq
´1 multiplied by

sFr. This means that the initial-value problem (5) has a unique solution obtained via (7).
Otherwise, one may find no solution or find a particular solution [35].

3.1. Error estimation based on residual functions. Since the exact solution of the
first Painlevé differential equation is not known yet, we need some tools to measure the
accuracy of the proposed collocation scheme. In this section, the error estimation based
on the residual function is introduced for the method. For this purpose, let EN,r`1ptq
denote the residual error function, which obtains by putting the truncated exponential
series solution (5) into (1). This implies that the error functions EN,r`1 : r0, 1s Ñ R can
be defined by [33]-[36]

EN,r`1ptq “ x2N,r`1ptq ´ 6x2
N,r`1ptq ´ tµ, t P r0, 1s. (17)

Due to the fact that the truncated exponential series (7) is the approximate solution of (5)
and consequently (1), we expect that the residual obtained by inserting the computed
approximated solutions xN,r`1ptq into the differential equation becomes approximately
small. As the error functions are clearly zero at the collocation points (11), we expect that
when EN,r`1ptq tend to zero as N increase. In other words, the smallness of the residual
error function means that the approximate solutions are close to the exact solution.

4. Experimental Results

In this section we illustrate the accuracy and effectiveness of the proposed Exponential-
QLM collocation method numerically when applied to the first Painlevé equation. Com-
parisons with existing well-established numerical schemes are also made to justify our
results. All numerical computations have been done by using MATLAB R2017a.

To start computation, we take µ1 “ 1 in (1) and set the number of basis functionN “ 10.
The number of iteration utilized in QLM is r “ 5, which is sufficient to get the desired
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solution. The approximate solution x10,6ptq of this model problem using exponential basis
functions (5) in the interval 0 ď t ď 1 is obtained as follows

x10,6ptq “ 0.0053514797698255 e10t ´ 0.0974685921933804 e9t ` 0.79484640484 e8t

´ 3.81700030192051 e7t ` 11.9322976008606 e6t ´ 25.2690718754434 e5t

` 36.3985238406147 e4t ´ 34.4059616985225 e3t ` 19.2007019388484 e2t

´ 3.84210696576906 et ´ 0.900111831084693.

To show that there is no significant difference between the direct and quasi-linearization
approaches in terms of accuracy, we also report the corresponding approximation by means
of direct exponential-collocations scheme. In this case we get

x10ptq “ 0.00535147976577493 e10t ´ 0.0974685921340833 e9t ` 0.79484640444 e8t

´ 3.8170003003456 e7t ` 11.9322975967392 e6t ´ 25.2690718680475 e5t

` 36.3985238314116 e4t ´ 34.4059616906897 e3t ` 19.2007019344877 e2t

´ 3.84210696433558 et ´ 0.900111831296.

Note, however, that the required CPU-time for the direct collocation procedure is about
8-10 times larger compared to the exponential-QLM, for which it takes about 6-7 seconds.

Figure 1 visualizes the two above approximations. To see the impact of using differ-
ent numbers of iterations, we also depict the numerical solution after r “ 25 iterations.
Looking at Fig.1 shows that no significant gain is achieved if one exploits a higher number
of iterations in exponential-QLM. The influence on results by changing the number of
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Figure 1. The approximated exponential (dashdotdotted) and
exponential-QLM (r “ 5, 25) series solutions x10,r`1ptq using µ “ 1.

basis functions used in the approximation form (7) are analyzed in the next experiment.
We use different numbers of basis functions N “ 10, 15, and N “ 20. A comparison
between numerical solutions obtained via direct exponential-collocation and its variant
exponential-QLM is reported in Table 1.

The accuracy and convergence of the exponential-QLM are analyzed further by calcu-
lating the estimated errors via (17). The corresponding accuracies related to the results
shown in Table 1, i.e., for N “ 10, 15, 20 as well as N “ 5 are shown in Fig. 2. Results
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Exponential Exponential-QLM

t N “ 10 N “ 10 N “ 15 N “ 20

0.0 5.72458747ˆ10´16 0.000000000000000 0.000000000000000 0.000000000000000

0.1 0.100208773704597 0.100208773704608 0.100216728639073 0.100216747706758

0.2 0.202120946908331 0.202120946908391 0.202139411269529 0.202139452778939

0.3 0.308601374057235 0.308601374057432 0.308630684225899 0.308630749264295

0.4 0.423944902448233 0.423944902448789 0.423986198578745 0.423986289623842

0.5 0.554284564943518 0.554284564945013 0.554339997390958 0.554340119178205

0.6 0.708388623252529 0.708388623256570 0.708461927484248 0.708462088285766

0.7 0.899152049132979 0.899152049144271 0.899249724572649 0.899249938322129

0.8 1.146399272299335 1.146399272332506 1.146531437041188 1.146531726857257

0.9 1.482331498884031 1.482331498987892 1.482524018900693 1.482524431395324

1.0 1.963159451563367 1.963159451914160 1.963118370987331 1.963128716139353

Table 1. Comparison of numerical solutions in exponential and
exponential-QLM methods for N “ 10, 15, 20.

are plotted on semi-logarithmic scale in order to see the differences elaborately. It can be
clearly seen from Fig. 2 that the errors are exponentially decreased while N is increased.
In fact, using N “ 15 the error function E15,6ptq has the form

E15,6ptq “ ´2.291779ˆ 10´6 e30t ` 1.260489ˆ 10´4 e29t ´ 0.00334939474952182 e28t

` 0.0572703212328443 e27t ´ 0.70808241479334 e26t ` 6.74407593990554 e25t

´ 51.4750588875573 e24t ` 323.382275604955 e23t ´ 1704.33827885901 e22t

` 7642.11041899027 e21t ´ 29462.5590324569 e20t ` 98445.457843787 e19t

´ 286813.415939263 e18t ` 731812.465393484 e17t ´ 1640320.39584424 e16t

` 3235913.1642476 e15t ´ 5622456.95956756 e14t ` 8601078.32479796 e13t

´ 11566496.7869567 e12t ` 13634033.504754 e11t ´ 14024612.0140905 e10t

` 12508945.7012303 e9t ´ 9587975.369255 e8t ` 6237942.34911554 e7t

´ 3386582.34819993 e6t ` 1498302.33048981 e5t ´ 522349.847436787 e4t

` 136555.704864704 e3t ´ 24747.1595899454 e2t ` 2700.48555324498 et

´ 1.0 t´ 128.401784724185.

In the next experiments, we fix N “ 15 and use r “ 5 iterations and see the impact of
utilizing different parameter µ on numerical solutions. We employ µ “ 0, 1, . . . , 5 except
µ “ 1 that previously considered in Table 1. Table 2 demonstrates the numerical solutions
obtained via exponential-QLM at some points t P r0, 1s.

Comparisons are provided in Table 3 to show the validity and accuracy of the pro-
posed exponential-QLM. For this purpose, we report the numerical solutions obtained by
the state-of-the-art analytical and computational procedures. These methods include the
reproducing kernel algorithm (RKA) [2], the predictor-corrector PECE method of Adams-
Bashforth-Moulton type described in [8] using step size h “ 1{2000, and the rationalized
Haar wavelets method (RHWM) [11]. We run exponential-QLM when N “ 17, µ “ 1, and
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Figure 2. Comparison of the error functions obtained in exponential-
QLM with r “ 5 and for various N “ 5, 10, 15, and 20.

t µ “ 0 µ “ 2 µ “ 3 µ “ 4 µ “ 5

0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

0.1 0.1000500063 0.1003834504 0.1005501716 0.1007168922 0.1008836123

0.2 0.2008018149 0.2034770216 0.2048146459 0.2061522841 0.2074899363

0.3 0.3040814279 0.3131803345 0.3177303788 0.3222808171 0.3268316494

0.4 0.4130378202 0.4349386089 0.4458950526 0.4568555314 0.4678200468

0.5 0.5324019325 0.5763029198 0.5982907301 0.6203034587 0.6423411359

0.6 0.6690262707 0.7480101005 0.7876711366 0.8274453841 0.8673331923

0.7 0.8329100132 0.9660056560 1.0331806389 1.1007775270 1.1687991966

0.8 1.0391044229 1.2553048998 1.3654431987 1.4769650134 1.5898893214

0.9 1.3113237258 1.6577236396 1.8370251653 2.0205342522 2.2083597438

1.0 1.6891104843 2.2484822759 2.5457250670 2.8553980162 3.1780826167

Table 2. Comparison of numerical solutions in exponential-QLM with
N “ 15, r “ 5, and different µ “ 0, 2, 3, 4, 5.

r “ 5. It can be seen from Table 3 that the solutions of initial value problem (7) match
between six to eight decimal places with the RKA and PECE.

To further show the advantage of the exponential-QLM proposed in this paper and val-
idate our results, we now present comparison experiments for the first Painlevé equation
at different t in r0, 1s in terms of the magnitude of errors. For comparison, the following
numerical methods are used, see also [2]. They are the RKA [2], the varational iteration
method (VIM) [15], the homotopy perturbation method (HPM) [15], the homotopy anal-
ysis method (HAM) [15], the particle swarm optimization algorithm (PSOA) [28], and the
neural networks algorithm (NNA) [29]. The numerical errors achieved by (17) while using
N “ 10 and N “ 20 are shown in Table 4. We emphasize that the values of errors at
the endpoints t “ 0 and t “ 1 may be pessimistic; this fact can be concluded from the
results shown in Tables 1 and 3, which are in good agreement with other well-established
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t EXP-QLM RHWM RKA PECE

0.0 0.000000000000000 ´ 0.0000000000000000 0.00000000000000

0.1 0.100216747516847 0.100211 0.1002167467681712 0.10021674893349

0.2 0.202139452369758 0.202125 0.2021394491589076 0.20213945784765

0.3 0.308630748625048 0.308671 0.3086307410263387 0.30863076126022

0.4 0.423986288730206 0.424303 0.4239862750679019 0.42398631278537

0.5 0.554340117984486 0.517173 0.5543400973632109 0.55434016011750

0.6 0.708462086708691 ´ 0.7084620572155395 0.70846215823036

0.7 0.899249936218413 0.894911 0.8992498909209865 0.89925005749290

0.8 1.146531723985065 ´ 1.1465316432231625 1.14653193362504

0.9 1.482524426463903 1.477958 1.4825242507589982 1.48252480271840

1.0 1.963127374898169 ´ 1.9631276465421460 1.96312892826707

Table 3. Comparison of various numerical results with exponential-QLM
for N “ 17 and µ “ 1.

schemes. Finally, the logarithmic graph of the absolute coefficients of exponential func-
tions obtained via the exponential-QLM using N “ 20 and N “ 50 are plotted in Fig. 3.
These graphs indicate that the new proposed scheme has an appropriate convergence rate.

t N “ 10 N “ 20 RKA VIM HPM HAM PSOA NNA

0.0 3.31´03 2.89´08 0 0 0 0 0 0

0.1 6.03´14 4.92´12 1.32´10 1.35´08 7.96´10 8.00´10 1.05´03 6.15´06

0.2 8.72´14 5.39´12 4.74´09 1.85´06 4.88´09 1.19´09 8.05´04 2.58´06

0.3 1.50´14 2.66´11 1.38´08 3.20´05 2.22´07 5.62´09 6.71´04 2.00´06

0.4 2.35´13 5.61´11 2.48´08 2.45´04 3.94´06 1.12´08 6.39´04 2.21´06

0.5 2.11´13 1.85´11 4.42´08 1.20´03 3.79´05 5.31´08 6.79´04 1.17´06

0.6 1.21´12 2.36´10 7.41´08 4.50´03 2.45´04 6.38´07 7.72´04 4.55´06

0.7 1.78´12 2.27´10 1.22´07 1.40´03 1.21´03 7.55´06 9.10´04 4.05´06

0.8 2.88´13 4.83´10 2.06´07 3.84´02 4.97´03 6.89´05 1.07´03 8.42´06

0.9 6.30´12 3.97´09 3.84´07 9.63´02 1.78´02 5.02´04 1.29´03 8.85´06

1.0 6.05´01 4.60´03 9.14´07 2.27´01 5.74´02 3.07´03 1.98´03 4.13´05

Table 4. Comparison of error functions in exponential-QLM for N “

10, 20 and absolute errors in various numerical schemes when µ “ 1.

5. Conclusions

In this article, a new numerical matrix technique in terms of exponential functions,
which is based on collocation points is developed for the approximate solution of first
Painlevé differential equation. The direct application of this method termed exponential-
collocation method is transformed the model under consideration into a nonlinear ma-
trix equation, which may be solved inefficiently when a large number of exponential
functions is used. To get ride of the nonlinearity, a variant of this algorithm based on
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Figure 3. Logarithmic graph of absolute coefficients |a
p5q
n | in exponential-

QLM using N “ 20 (left) and N “ 50 (right) with r “ 5, µ “ 1.

quasi-linearization methodology, i.e., the exponential-QLM is then presented to solve the
Painlevé initial-value problem efficiently. Numerical examples are included to demon-
strate the validity and applicability of the combined collocation and quasi-linearization
techniques and comparisons are made with existing well-known results. Moreover, since
the exact solution of this problem is not yet known, an error analysis technique based on
residual function is developed.

On the basis of the simulations and their comparative studies provided in the last sec-
tion, it can be concluded that the first Painlevé equation can be solved effectively by the
exponential-QLM. Indeed, six to eight digit agreement was found between solutions ob-
tained by the exponential-QLM and the analytical and computational techniques of RKA
and PECE. A main benefit of the proposed scheme is that the solutions are obtained very
easily by means of today’s modern mathematical softwares such as MATLAB, MAPLE.
and MATHEMATICA.
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