C_{m}-SUPERMAGIC LABELING OF FRIENDSHIP GRAPHS

T. ONER ${ }^{1}$, M. HUSSAIN ${ }^{2}$, S. BANARAS ${ }^{3}$, §

Abstract

The friendship graph F_{n}^{m} is obtained by joining n copies of the cycle graph C_{m} with a common vertex. In this work, we investigate the C_{m}-supermagic labeling of friendship graphs.

Keywords: Magic labeling, covering, friendship graphs.
AMS Subject Classification: 05C78.

1. Introduction and Preliminaries

A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. Graph labeling was first introduced by Rosa [6] in 1966. Since then there are various types of labeling that have been studied and developed (see [1]).

A finite simple graph $G(V, E)$ admits an H-covering if every edge of G belongs to a subgraph of G isomorphic to H. Guitérrez and Lladó [2] introduced the notion of an H magic labeling as follows. Let $G=(V, E)$ be a finite simple graph that admits H-covering. A bijection function $\lambda: V \cup G \rightarrow\{1,2,3, \ldots,|V|+|E|\}$ is called H-magic labeling of G if for every subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to $H, \sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=m(\lambda)$ is constant. Here $m(\lambda)$ is called as magic sum. The graph G is called H-supermagic if $\lambda(V)=\{1,2,3, \ldots,|V|\}$.
Many researches have studied H-supermagic labeling. For example: In [5] Maryati, Baskoro and Salaman studied path-supermagic labeling. Roswitha et al. [7] investigated H-supermagicness of some classes of graphs such as a Jahangir graph, a wheel graph for even n, and a complete bipartie graph $K_{m, n}$ for $m=2 . C_{4}$-supermagic labelings of the cartesian product of paths and graphs was given by Kojima [3]. Selvagopal and Jeyanthi [8] showed that polygonal snake graphs has C_{m}-supermagic labeling.

The friendship graph F_{n}^{m} is obtained by joining n copies of the cycle graph C_{m} with a common vertex. Different kind of labelings of friendship graphs have been investigated:

[^0]Shalini and Kumar [9] investigated friendship graphs with four types of labeling such that Harmonious, Cordial, distance antimagic labeling and sum labeling. Prime labeling of friendship graphs given by Meena and Vaithilingam [10]. Edge vertex prime labeling of friendship graphs studied by Parmar [11]. Harmonious labeling of certain graph including friendship graphs investigated by Tanna [12]. In [13], Prasanna and Suhakar gave algorithms to enumerate all non-isomorphic Vertex and Edge Magic Total Labeling on cycle graphs, wheels, Fan Graphs and Friendship graphs. Radhika1 and Selvi [14] showed that Friendship graph F_{2}^{3} is θ - graceful. Daoud and A.N. Elsawy [15] proved that double fan graphs, quadrilateral friendship graphs, and butterfly graphs are edge even graceful. Llado and Moragas [4] studied some C_{m}-supermagic graphs including friendship graphs. In this work, we present different kind of C_{m}-supermagicness of friendship graphs.

2. Results

Theorem 2.1. The Friendship graph $F_{n}^{3} ; n \geq 2$, admits a C_{3}-supermagic labeling.
Proof. F_{n}^{3} has $2 n+1$ vertices and $3 n$ edges. The vertices and edges of F_{n}^{3} are denoted as follows:

$$
\begin{aligned}
V & =\left\{v_{c}\right\} \cup\left\{v_{j i}: j=1,2, i=1, \ldots, n\right\} \\
E & =\left\{e_{1 i}: e_{1}{ }_{i}=v_{c} v_{1 i}: i=1, \ldots, n\right\} \cup\left\{e_{2}{ }_{i}: e_{2}{ }_{i}=v_{1}{ }_{i} v_{2}{ }_{i}: i=1, \ldots, n\right\} \\
& \cup\left\{e_{3}{ }_{i}: e_{3}{ }_{i}=v_{2}{ }_{i} v_{c}: i=1, \ldots, n\right\}
\end{aligned}
$$

where v_{c} is the common vertex.

To define a bijection $\lambda: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$, we need to investigate two cases. Case1: n is odd:

$$
\begin{aligned}
\lambda\left(v_{c}\right) & =1, \\
\lambda\left(v_{1 i}\right) & =1+i, i=1,2,3, \ldots, n, \\
\lambda\left(v_{2} i\right) & =2 n+2-i, i=1,2,3, \ldots, n, \\
\lambda\left(e_{1} i\right) & =2 n+1+i, i=1,2,3, \ldots, n, \\
\lambda\left(e_{2} i\right) & = \begin{cases}3 n+\frac{n+1}{2}+i & , i=1,2,3, \ldots, \frac{n+1}{2} \\
2 n+\frac{n+1}{2}+i & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(e_{3 i}\right) & = \begin{cases}5 n+3-2 i & , i=1,2,3, \ldots, \frac{n+1}{2} \\
6 n+3-2 i & , i=\frac{n+1}{2}+1, \ldots, n\end{cases}
\end{aligned}
$$

Here, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots, 2 n+1\}$ and for any subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{3}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}\right)+\lambda\left(v_{1 i}\right)+\lambda\left(v_{2 i}\right)=2 n+4 \\
\sum_{e \in E^{\prime}} \lambda(e) & =\lambda\left(e_{1} i_{i}\right)+\lambda\left(e_{2 i}\right)+\lambda\left(e_{3} i^{\prime}\right)=10 n+\frac{n+1}{2}+4 \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=12 n+\frac{n+1}{2}+8 .
\end{aligned}
$$

Case2: n is even:

$$
\begin{aligned}
\lambda\left(v_{c}\right) & =n+1+\frac{n}{2} \\
\lambda\left(v_{1} i\right) & =i, i=1,2,3, \ldots, n, \\
\lambda\left(v_{2} i\right) & =\left\{\begin{array}{cc}
2 n+2-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
n+1+\frac{n}{2}-\frac{i}{2} & , i=2,4,6, \ldots, n
\end{array}\right. \\
\lambda\left(e_{1} i\right) & =\left\{\begin{array}{cc}
2 n+2+\frac{n}{2}-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
3 n+2-\frac{i}{2} & , i=2,4,6, \ldots, n
\end{array}\right. \\
\lambda\left(e_{2} i\right) & =3 n+1+i, i=1,2,3, \ldots, n, \\
\lambda\left(e_{3} i\right) & =5 n+2-i, i=1,2,3, \ldots, n,
\end{aligned}
$$

Similarly, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots, 2 n+1\}$ and for any subgraph $H^{\prime}=$ $\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{3}, we have

$$
\begin{aligned}
& \sum_{v \in V^{\prime}} \lambda(v)=\lambda\left(v_{c}\right)+\lambda\left(v_{1 i}\right)+\lambda\left(v_{2} i^{\prime}\right)= \begin{cases}3 n+\frac{5}{2}+\frac{n}{2}+\frac{i}{2} & , i=1,3,5, \ldots, n-1 \\
3 n+2+\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
& \sum_{e \in E^{\prime}} \lambda(e)=\lambda\left(e_{1} i^{\prime}\right)+\lambda\left(e_{2} i^{2}\right)+\lambda\left(e_{3} i^{2}\right)=\left\{\begin{array}{cc}
10 n+\frac{9}{2}+\frac{n}{2}-\frac{i}{2} & , i=1,3,5, \ldots, n-1 \\
11 n+5-\frac{i}{2} & , i=2,4,6, \ldots, n
\end{array}\right. \\
& m(\lambda)=\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=14 n+7
\end{aligned}
$$

Hence F_{n}^{3} admits a C_{3}-supermagic labeling.
Theorem 2.2. The Friendship graph of C_{m}, F_{n}^{m}, admits a C_{m}-supermagic labeling.
Proof. The F_{n}^{m} has $(m-1) n+1$ vertices and $m n$ edges. The vertices and edges of F_{n}^{m} are denoted as follows:

$$
\begin{aligned}
V & =\left\{v_{c}\right\} \cup\left\{v_{j i}: j=1,2,3, \ldots, m-1 i=1, \ldots, n\right\} \\
E & =\left\{e_{1 i}: e_{1 i}=v_{c} v_{1 i}: i=1, \ldots, n\right\} \cup\left\{e_{j_{i} i}: e_{j i}=v_{j-1} v_{j i}: j=2,3,4, \ldots, m-1 i=1, \ldots, n\right\} \\
& \cup\left\{e_{m}{ }_{i}: e_{m} i=v_{m-1}{ }^{2} v_{c}: i=1, \ldots, n\right\}
\end{aligned}
$$ where v_{c} is the common vertex.

To define a bijection $\lambda: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$, we need to investigate 4 cases. Case1: m is even and n is odd:

$$
\begin{aligned}
& \lambda\left(v_{c}\right)=1, \\
& \lambda\left(v_{1}{ }_{i}\right)=1+i, i=1,2,3, \ldots, n \text {, } \\
& \lambda\left(v_{2 i}\right)= \begin{cases}n+\frac{n+1}{2}+i & , i=1,2,3, \ldots, \frac{n+1}{2} \\
\frac{n+1}{2}+i & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
& \lambda\left(v_{3 i}\right)=\left\{\begin{array}{cl}
3 n+3-2 i & , i=1,2,3, \ldots, \frac{n+1}{2} \\
4 n+3-2 i & , i=\frac{n+1}{2}+1, \ldots, n
\end{array}\right. \\
& \lambda\left(v_{j i}\right)= \begin{cases}1+(j-1) n+i & , j=4,6,8, \ldots, m-2, i=1,2,3, \ldots, n \\
2+j n-i & , j=5,7,9, \ldots, m-1, i=1,2,3, \ldots, n\end{cases} \\
& \lambda\left(e_{j i}\right)= \begin{cases}(m-1) n+1+(j-1) n+i & , j=1,3,5, \ldots, m-1, i=1,2,3, \ldots, n \\
(m-1) n+2+j n-i & , j=2,4,6, \ldots, m, i=1,2,3, \ldots, n\end{cases}
\end{aligned}
$$

Here, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots,(m-1) n+1\}$ and for any subgraph
$H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{m}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}\right)+\lambda\left(v_{1} i^{\prime}\right)+\lambda\left(v_{2}\right)+\lambda\left(v_{3} i\right)+\sum_{j=4}^{m-1} \lambda\left(v_{j i}\right) \\
& =(1)+\left(4 n+4+\frac{n+1}{2}\right)+\frac{(m-4)}{2}(3-n)+n\left(\frac{(m-1) m}{2}-6\right) \\
& =\frac{3}{2} m+\frac{1}{2} n+\frac{1}{2} m^{2} n-m n-\frac{1}{2} \\
\sum_{e \in E^{\prime}} \lambda(e) & =\frac{m}{2}(2(m-1) n+3-n)+n \frac{m(m+1)}{2} \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=3 m+\frac{1}{2} n+2 m^{2} n-2 m n-\frac{1}{2} .
\end{aligned}
$$

Case2: m is even and n is even:

$$
\begin{aligned}
\lambda\left(v_{c}\right) & =n+1+\frac{n}{2}, \\
\lambda\left(v_{1} i\right) & =i, i=1,2,3, \ldots, n, \\
\lambda\left(v_{2 i}\right) & = \begin{cases}2 n+2-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
n+1+\frac{n}{2}-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
\lambda\left(v_{3} i\right) & = \begin{cases}2 n+2+\frac{n}{2}-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
3 n+2-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
\lambda\left(v_{j i}\right) & = \begin{cases}1+(j-1) n+i & , j=4,6,8, \ldots, m-2, i=1,2,3, \ldots, n \\
2+j n-i & , j=5,7,9, \ldots, m-1, i=1,2,3, \ldots, n\end{cases} \\
\lambda\left(e_{j i}\right) & = \begin{cases}(m-1) n+1+(j-1) n+i & , j=1,3,5, \ldots, m-1, i=1,2,3, \ldots, n \\
(m-1) n+2+j n-i & , j=2,4,6, \ldots, m, i=1,2,3, \ldots, n\end{cases}
\end{aligned}
$$

For all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots,(m-1) n+1\}$ and for any subgraph $H^{\prime}=$ (V^{\prime}, E^{\prime}) isomorphic to C_{m}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}\right)+\lambda\left(v_{1 i}\right)+\lambda\left(v_{2} i^{\prime}\right)+\lambda\left(v_{3} i\right)+\sum_{j=4}^{m-1} \lambda\left(v_{j i}\right) \\
& =\left(n+1+\frac{n}{2}\right)+\left(4 n+3+\frac{n}{2}\right)+\frac{(m-4)}{2}(3-n)+n\left(\frac{(m-1) m}{2}-6\right) \\
& =\frac{3}{2} m+2 n+\frac{1}{2} m^{2} n-m n-2 \\
\sum_{e \in E^{\prime}} \lambda(e) & =\frac{m}{2}(2(m-1) n+3-n)+n \frac{m(m+1)}{2} \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=3 m+2 n+2 m^{2} n-2 m n-2 .
\end{aligned}
$$

Case3: m is odd and n is odd:

$$
\left.\begin{array}{l}
\lambda\left(v_{c}\right)=1, \\
\lambda\left(v_{j i}\right)= \begin{cases}1+(j-1) n+i & , j=1,3,5, \ldots, m-2, i=1,2,3, \ldots, n \\
2+j n-i & , j=2,4,6, \ldots, m-1, i=1,2,3, \ldots, n\end{cases} \\
\lambda\left(e_{1 i}\right)=(m-1) n+1+i, i=1,2,3, \ldots, n
\end{array}\right\} \begin{array}{ll}
(m-1) n+n+\frac{n+1}{2}+i & , i=1,2,3, \ldots, \frac{n+1}{2} \\
\lambda\left(e_{2} i\right) & = \begin{cases}(m-1) n+\frac{n+1}{2}+i & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(e_{3 i}\right)= \begin{cases}(m-1) n+3+3 n-2 i & , i=1,2,3, \ldots, \frac{n+1}{2} \\
(m-1) n+3+4 n-2 i & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(e_{j i}\right)= \begin{cases}(m-1) n+1+(j-1) n+i & , j=4,6,8, \ldots, m-1, i=1,2,3, \ldots, n \\
(m-1) n+2+j n-i & , j=5,7,9, \ldots, m, i=1,2,3, \ldots, n\end{cases}
\end{array}
$$

For all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots,(m-1) n+1\}$ and for any subgraph $H^{\prime}=$ (V^{\prime}, E^{\prime}) isomorphic to C_{m}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}\right)+\sum_{j=2}^{m-1} \lambda\left(v_{j i}\right) \\
& =(1)+\frac{(m-1)}{2}(3-n)+n \frac{(m-1) m}{2} \\
& =\frac{3}{2} m+\frac{1}{2} n+\frac{1}{2} m^{2} n-m n-\frac{1}{2} \\
\sum_{e \in E^{\prime}} \lambda(e) & =\lambda\left(e_{1} i\right)+\lambda\left(e_{2} i\right)+\lambda\left(e_{3} i\right)+\sum_{j=4}^{m} \lambda\left(e_{j} i\right) \\
& =4 n+3((m-1) n+1)+\frac{n+1}{2}+1+\frac{m-3}{2}(2(m-1) n+3-n)+n\left(\frac{m(m+1)}{2}-6\right) \\
& =\frac{1}{2} m(3 m n-2 n+3) \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=3 m+2 n+2 m^{2} n-2 m n-2
\end{aligned}
$$

Case4: m is odd and n is even:

$$
\begin{aligned}
\lambda\left(v_{c}\right) & =n+1+\frac{n}{2} \\
\lambda\left(v_{1 i}\right) & =i, i=1,2,3, \ldots, n, \\
\lambda\left(v_{2 i}\right) & = \begin{cases}2 n+2-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
n+1+\frac{n}{2}-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
\lambda\left(v_{j i}\right) & = \begin{cases}1+(j-1) n+i & , j=3,5,7, \ldots, m-2, i=1,2,3, \ldots, n \\
2+j n-i & , j=4,6,8, \ldots, m-1, i=1,2,3, \ldots, n\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda\left(e_{1 i}\right)= \begin{cases}(m-1) n+2+\frac{n}{2}-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
(m-1) n+2+n-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
& \lambda\left(e_{j i}\right)= \begin{cases}m n+1+(j-2) n+i & , j=2,4,6, \ldots, m-1, i=1,2,3, \ldots, n \\
m n+2+(j-1) n-i & , j=3,5,7, \ldots, m, i=1,2,3, \ldots, n\end{cases}
\end{aligned}
$$

For all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots,(m-1) n+1\}$ and for any subgraph $H^{\prime}=$ $\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{m}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}\right)+\lambda\left(v_{1 i}\right)+\lambda\left(v_{2}\right)+\sum_{j=3}^{m-1} \lambda\left(v_{j}\right) \\
& = \begin{cases}n+1+\frac{n}{2}+i+2 n+2-\frac{i+1}{2}+\frac{(m-3)}{2}(3-n)+n\left(\frac{(m-1) m}{2}-3\right) & , i=1,3,5, \ldots, n-1 \\
n+1+\frac{n}{2}+i+n+1+\frac{n}{2}-\frac{i}{2}+\frac{(m-3)}{2}(3-n)+n\left(\frac{(m-1) m}{2}-3\right) & , i=2,4,6, \ldots, n\end{cases} \\
\sum_{e \in E^{\prime}} \lambda(e) & =\lambda\left(e_{1 i}\right)+\sum_{j=2}^{m} \lambda\left(e_{j} i\right) \\
& = \begin{cases}(m-1) n+2+\frac{n}{2}-\frac{i+1}{2}+\frac{(m-1)}{2}(2 m n+3-3 n)+n\left(\frac{(m+1) m}{2}-1\right) & , i=1,3,5, \ldots, n-1 \\
(m-1) n+2+n-\frac{i}{2}+\frac{(m-1)}{2}(2 m n+3-3 n)+n\left(\frac{(m+1) m}{2}-1\right) & , i=2,4,6, \ldots, n\end{cases} \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=3 m+2 n+2 m^{2} n-2 m n-2 .
\end{aligned}
$$

Hence F_{n}^{m} admits a C_{m}-supermagic labeling.

Theorem 2.3. Isomorphic copies of Friendship graph $k F_{n}^{3} ; n \geq 2, k \geq 2$, admits a C_{3} supermagic labeling.

Proof. $k F_{n}^{3}$ has $k(2 n+1)$ vertices and $3 n k$ edges. The vertices and edges of $k F_{n}^{3}$ are denoted as follows:

$$
\begin{aligned}
V & =\left\{v_{c}^{s}: s=1,2,3, \ldots, k\right\} \cup\left\{v_{j i}^{s}: j=1,2, i=1, \ldots, n, s=1,2,3, \ldots, k\right\} \\
E & =\left\{e_{1}^{s}{ }_{i}: e_{1 i}^{s}{ }_{i}=v_{c}^{s} v_{1 i}^{s}: i=1, \ldots, n, s=1,2,3, \ldots, k\right\} \\
& \cup\left\{e_{2}^{s}{ }_{i}: e_{2}^{s}{ }_{i}=v_{1}^{s}{ }_{i} v_{2}^{s}{ }_{i}: i=1, \ldots, n, s=1,2,3, \ldots, k\right\} \\
& \cup\left\{e_{3}^{s}{ }_{i}: e_{3}^{s}{ }_{i}=v_{2}^{s}{ }_{i} v_{c}^{s}: i=1, \ldots, n, s=1,2,3, \ldots, k\right\}
\end{aligned}
$$ where v_{c}^{s} are the common verteces.

To define a bijection $\lambda: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$, we need to investigate two cases. Case1: n is odd:

$$
\begin{aligned}
\lambda\left(v_{c}^{s}\right) & =(n+1)(k+1-s), \\
\lambda\left(v_{1 i}^{s}\right) & =(n+1)(s-1)+i, i=1,2,3, \ldots, n \\
\lambda\left(v_{2}^{s}\right) & = \begin{cases}(2 k-1) n+k+\frac{n+1}{2}-1+i-(s-1) n & , i=1,2,3, \ldots, \frac{n+1}{2} \\
(2 k-1) n+k+\frac{n+1}{2}-1+i-n-(s-1) n & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(e_{1 i}^{s}\right) & = \begin{cases}(2 k-1) n+k+2 n+2-2 i+(s-1) n & , i=1,2,3, \ldots, \frac{n+1}{2} \\
(2 k-1) n+k+2 n+2-2 i+n+(s-1) n & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(e_{2 i}^{s}\right) & =k+3 k n+(s-1) n+i, i=1,2,3, \ldots, n \\
\lambda\left(e_{3 i}^{s}\right) & =k(2 n+1)+3 k n+1-(s-1) n-i, i=1,2,3, \ldots, n
\end{aligned}
$$

where $s=1,2,3, \ldots, k$. Here, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots, k(2 n+1)\}$ and for any subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{3}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}^{s}\right)+\lambda\left(v_{1}^{s}{ }_{i}\right)+\lambda\left(v_{2}^{s}\right) \\
& = \begin{cases}2 k+\frac{1}{2} n+3 k n-n s-\frac{1}{2}+2 i & , i=1,2,3, \ldots, \frac{n+1}{2} \\
2 k-\frac{1}{2} n+3 k n-n s-\frac{1}{2}+2 i & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\sum_{e \in E^{\prime}} \lambda(e) & =\lambda\left(e_{1}^{s}\right)+\lambda\left(e_{2 i}^{s}\right)+\lambda\left(e_{3}^{s}{ }_{i}\right)
\end{aligned} \begin{array}{ll}
3 k+10 k n+n s+3-2 i & , i=1,2,3, \ldots, \frac{n+1}{2} \\
& = \begin{cases}3 k+n+10 k n+n s+3-2 i & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=5 k+\frac{1}{2} n+13 k n+\frac{5}{2} .
\end{array}
$$

Case2: n is even:

$$
\begin{aligned}
& \lambda\left(v_{c}^{s}\right)= k n+\frac{n}{2}+1+(n+1)(k-s), \\
& \lambda\left(v_{1}^{s}{ }_{i}\right)=(s-1) n+i, i=1,2,3, \ldots, n, \\
& \lambda\left(v_{2}^{s}{ }_{i}\right)= \begin{cases}k n+\frac{n}{2}+1+(n+1)(s-1)+\frac{n}{2}+1-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
k n+\frac{n}{2}+1+(n+1)(s-1)-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
& \lambda\left(e_{1}^{s}{ }_{i}\right)= \begin{cases}k n+\frac{n}{2}+1+(n+1)(k-1)+(k+1-s) n+1-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
k n+\frac{n}{2}+1+(n+1)(k-1)+(k+1-s) n+1+\frac{n}{2}-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
& \lambda\left(e_{2}^{s} i_{i}\right)=k+3 k n+(s-1) n+i, i=1,2,3, \ldots, n, \\
& \lambda\left(e_{3}^{s} i_{i}\right)= k(2 n+1)+3 k n+1-(s-1) n-i, i=1,2,3, \ldots, n,
\end{aligned}
$$

where $s=1,2,3, \ldots, k$. Similarly, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots, k(2 n+1)\}$ and for any subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{3}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}^{s}\right)+\lambda\left(v_{1}^{s}\right)+\lambda\left(v_{2}^{s}{ }_{i}\right) \\
& = \begin{cases}k-\frac{1}{2} n+3 k n+n s+\frac{3}{2}+\frac{1}{2} i & , i=1,3,5, \ldots, n-1 \\
k-n+3 k n+n s+1+\frac{1}{2} i & , i=2,4,6, \ldots, n\end{cases} \\
\sum_{e \in E^{\prime}} \lambda(e) & =\lambda\left(e_{1 i}^{s}\right)+\lambda\left(e_{2}^{s}\right)+\lambda\left(e_{3}^{s} i_{i}\right) \\
& = \begin{cases}3 k+\frac{1}{2} n+11 k n-n s+\frac{3}{2}-\frac{1}{2} i & , i=1,3,5, \ldots, n-1 \\
3 k+n+11 k n-n s+2-\frac{1}{2} i & , i=2,4,6, \ldots, n\end{cases} \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=4 k+14 k n+3
\end{aligned}
$$

Hence $k F_{n}^{3}$ admits a C_{3}-supermagic labeling.
Theorem 2.4. k isomorphic copies of Friendship graph of $C_{m}, k F_{n}^{m} ; m \geq 4, n \geq 2$, admits a C_{m}-supermagic labeling.

Proof. $k F_{n}^{m}$ has $k((m-1) n+1)$ vertices and $k m n$ edges. The vertices and edges of $k F_{n}^{m}$ are denoted as follows:

$$
\begin{aligned}
V & =\left\{v_{c}^{s}: s=1,2,3, \ldots, k\right\} \cup\left\{v_{j i}^{s}: j=1,2,3, \ldots, m-1, i=1, \ldots, n, s=1,2,3, \ldots, k\right\} \\
E & =\left\{e_{1 i}^{s}: e_{1 i}^{s}=v_{c}^{s} v_{1 i}^{s}: i=1, \ldots, n, s=1,2,3, \ldots, k\right\} \\
& \cup\left\{e_{j i}^{s}: e_{j i}^{s}=v_{j-1 i}^{s} v_{j i}^{s}: j=2,3, \ldots, m-1, i=1, \ldots, n, s=1,2,3, \ldots, k\right\} \\
& \cup\left\{e_{m i}^{s}: e_{m i}^{s}=v_{m-1 i}^{s} v_{c}^{s}: i=1, \ldots, n, s=1,2,3, \ldots, k\right\}
\end{aligned}
$$

T. ONER, M. HUSSAIN, S. BANARAS : C_{M}-SUPERMAGIC LABELING OF FRIENDSHIP GRAPHS 915 where v_{c}^{s} are the common verteces.

To define a bijection $\lambda: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$, we need to investigate four cases. Case1: n is even and m is even:

$$
\begin{aligned}
& \lambda\left(v_{c}^{s}\right)=k n+\frac{n}{2}+1+(n+1)(k-s), \\
& \lambda\left(v_{1 i}^{s}\right)=(s-1) n+i, i=1,2,3, \ldots, n, \\
& \lambda\left(v_{2}^{s}{ }_{i}\right)= \begin{cases}k n+\frac{n}{2}+1+(n+1)(s-1)+\frac{n}{2}+1-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
k n+\frac{n}{2}+1+(n+1)(s-1)-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
& \lambda\left(v_{3}^{s}{ }_{i}\right)= \begin{cases}k n+\frac{n}{2}+1+(n+1)(k-1)+(k+1-s) n+1-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
k n+\frac{n}{2}+1+(n+1)(k-1)+(k+1-s) n+1+\frac{n}{2}-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
& \lambda\left(v_{j i}^{s}\right)= \begin{cases}k+(j-1) k n+(s-1) n+i & , j=4,6,8, \ldots, m-2, i=1,2,3, \ldots, n \\
k+j k n+1-(s-1) n-i & , j=5,7,9, \ldots, m-1, i=1,2,3, \ldots, n\end{cases} \\
& \lambda\left(e_{j i}^{s}\right)= \begin{cases}k((m-1) n+1)+(j-1) k n+(s-1) n+i & , j=1,3,5, \ldots, m-1, i=1,2,3, \ldots, n \\
k((m-1) n+1)+j k n+1-(s-1) n-i & , j=2,4,6, \ldots, m, i=1,2,3, \ldots, n\end{cases}
\end{aligned}
$$

where $s=1,2,3, \ldots, k$. Here, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots, k(2 n+1)\}$ and for any subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{m}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}^{s}\right)+\lambda\left(v_{1}^{s} i_{i}\right)+\lambda\left(v_{2}^{s}\right)+\lambda\left(v_{3}^{s}{ }_{i}\right)+\sum_{j=4}^{m-1} \lambda\left(v_{j i}^{s}\right) \\
& =\frac{1}{2} m-2 k+k m+2 k n+\frac{1}{2} k m^{2} n-k m n \\
\sum_{e \in E^{\prime}} \lambda(e) & =\sum_{j=1}^{m} \lambda\left(e_{j i}^{s}\right) \\
& =\frac{1}{2} m(2 k-2 k n+3 k m n+1) \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=m-2 k+2 k m+2 k n+2 k m^{2} n-2 k m n
\end{aligned}
$$

Case2: n is even and m is odd:

$$
\begin{aligned}
\lambda\left(v_{c}^{s}\right) & =k n+\frac{n}{2}+1+(n+1)(k-s), \\
\lambda\left(v_{1}^{s}{ }_{i}\right) & =(s-1) n+i, i=1,2,3, \ldots, n, \\
\lambda\left(v_{2}^{s}{ }_{i}\right) & = \begin{cases}k n+\frac{n}{2}+1+(n+1)(s-1)+\frac{n}{2}+1-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
k n+\frac{n}{2}+1+(n+1)(s-1)-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
\lambda\left(v_{3}^{s}{ }_{i}\right) & = \begin{cases}k n+\frac{n}{2}+1+(n+1)(k-1)+(k+1-s) n+1-\frac{i+1}{2} & , i=1,3,5, \ldots, n-1 \\
k n+\frac{n}{2}+1+(n+1)(k-1)+(k+1-s) n+1+\frac{n}{2}-\frac{i}{2} & , i=2,4,6, \ldots, n\end{cases} \\
\lambda\left(v_{j i}^{s}\right) & = \begin{cases}k+(j-1) k n+(s-1) n+i & , j=4,6,8, \ldots, m-1, i=1,2,3, \ldots, n \\
k+j k n+1-(s-1) n-i & , j=5,7,9, \ldots, m-2, i=1,2,3, \ldots, n\end{cases} \\
\lambda\left(e_{j i}^{s}\right) & = \begin{cases}k((m-1) n+1)+(j-1) k n+(s-1) n+i & , j=1,3,5,, \ldots, m-2, i=1,2,3, \ldots, n \\
k((m-1) n+1)+j k n+1-(s-1) n-i & , j=2,4,6, \ldots, m-1, i=1,2,3, \ldots, n\end{cases}
\end{aligned}
$$

$$
\lambda\left(e_{m i}^{s}\right)=k((m-1) n+1)+m n k+1-(s-1) n-i, i=1,2,3, \ldots, n
$$

where $s=1,2,3, \ldots, k$. Here, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots, k(2 n+1)\}$ and for any subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{m}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}^{s}\right)+\lambda\left(v_{1}^{s}{ }_{i}\right)+\lambda\left(v_{2}^{s} i_{i}\right)+\lambda\left(v_{3}^{s}{ }_{i}\right)+\sum_{j=4}^{m-1} \lambda\left(v_{j i}^{s}\right) \\
& =\frac{1}{2} m-2 k-n+k m+\frac{3}{2} k n+n s+\frac{1}{2} k m^{2} n-k m n-\frac{1}{2}+i \\
\sum_{e \in E^{\prime}} \lambda(e) & =\sum_{j=1}^{m-1} \lambda\left(e_{j i}^{s}\right)+\lambda\left(e_{m}^{s} i_{i}\right) \\
& =\frac{1}{2} m+n+k m+\frac{1}{2} k n-n s+\frac{3}{2} k m^{2} n-k m n+\frac{1}{2}-i \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=m-2 k+2 k m+2 k n+2 k m^{2} n-2 k m n .
\end{aligned}
$$

Case3: n is odd and m is even:

$$
\begin{aligned}
\lambda\left(v_{c}^{s}\right) & =(n+1)(k+1-s), \\
\lambda\left(v_{1 i}^{s}\right) & =(n+1)(s-1)+i, i=1,2,3, \ldots, n \\
\lambda\left(v_{2 i}^{s}\right) & = \begin{cases}(2 k-1) n+k+\frac{n+1}{2}-1+i-(s-1) n & , i=1,2,3, \ldots, \frac{n+1}{2} \\
(2 k-1) n+k+\frac{n+1}{2}-1+i-n-(s-1) n & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(v_{3 i}^{s}\right) & = \begin{cases}(2 k-1) n+k+2 n+2-2 i+(s-1) n & , i=1,2,3, \ldots, \frac{n+1}{2} \\
(2 k-1) n+k+2 n+2-2 i+n+(s-1) n & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(v_{j i}^{s}\right) & = \begin{cases}k+(j-1) k n+(s-1) n+i & , j=4,6,8, \ldots, m-2, i=1,2,3, \ldots, n \\
k+j k n+1-(s-1) n-i & , j=5,7,9, \ldots, m-1, i=1,2,3, \ldots, n\end{cases} \\
\lambda\left(e_{j i}^{s}\right) & = \begin{cases}k((m-1) n+1)+(j-1) k n+(s-1) n+i & , j=1,3,5, \ldots, m-1, i=1,2,3, \ldots, n \\
k((m-1) n+1)+j k n+1-(s-1) n-i & , j=2,4,6, \ldots, m, i=1,2,3, \ldots, n\end{cases}
\end{aligned}
$$

where $s=1,2,3, \ldots, k$. Here, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots, k(2 n+1)\}$ and for any subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{m}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}^{s}\right)+\lambda\left(v_{1 i}^{s}\right)+\lambda\left(v_{2}^{s}\right)+\lambda\left(v_{3}^{s}\right)+\sum_{j=4}^{m-1} \lambda\left(v_{j i}^{s}\right) \\
& =\frac{1}{2} m-k+\frac{1}{2} n+k m+k n+\frac{1}{2} k m^{2} n-k m n-\frac{1}{2} \\
\sum_{e \in E^{\prime}} \lambda(e) & =\sum_{j=1}^{m} \lambda\left(e_{j i}^{s}\right) \\
& =\frac{1}{2} m(2 k-2 k n+3 k m n+1) \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=m-k+\frac{1}{2} n+2 k m+k n+2 k m^{2} n-2 k m n-\frac{1}{2} .
\end{aligned}
$$

Case4: n is odd and m is odd:

$$
\left.\begin{array}{rl}
\lambda\left(v_{c}^{s}\right) & =(n+1)(k+1-s), \\
\lambda\left(v_{1 i}^{s}\right) & =(n+1)(s-1)+i, i=1,2,3, \ldots, n \\
\lambda\left(v_{2}^{s}{ }_{i}\right) & = \begin{cases}(2 k-1) n+k+\frac{n+1}{2}-1+i-(s-1) n & , i=1,2,3, \ldots, \frac{n+1}{2} \\
(2 k-1) n+k+\frac{n+1}{2}-1+i-n-(s-1) n & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(v_{3 i}^{s}\right) & = \begin{cases}(2 k-1) n+k+2 n+2-2 i+(s-1) n & , i=1,2,3, \ldots, \frac{n+1}{2} \\
(2 k-1) n+k+2 n+2-2 i+n+(s-1) n & , i=\frac{n+1}{2}+1, \ldots, n\end{cases} \\
\lambda\left(v_{j i}^{s}\right) & = \begin{cases}k+(j-1) k n+(s-1) n+i & , j=4,6,8, \ldots, m-1, i=1,2,3, \ldots, n \\
k+j k n+1-(s-1) n-i & , j=5,7,9, \ldots, m-2, i=1,2,3, \ldots, n\end{cases} \\
\lambda\left(e_{j i}^{s}\right) & = \begin{cases}k((m-1) n+1)+(j-1) k n+(s-1) n+i & , j=1,3,5,, \ldots, m-2, i=1,2,3, \ldots, n \\
k((m-1) n+1)+j k n+1-(s-1) n-i & , j=2,4,6, \ldots, m-1, i=1,2,3, \ldots, n\end{cases} \\
\lambda\left(e_{m i}^{s}\right) & =k((m-1) n+1)+m n k+1-(s-1) n-i, i=1,2,3, \ldots, n
\end{array}\right]
$$

where $s=1,2,3, \ldots, k$. Here, for all $v \in V$, we have $\lambda(v) \in\{1,2,3, \ldots, k(2 n+1)\}$ and for any subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ isomorphic to C_{m}, we have

$$
\begin{aligned}
\sum_{v \in V^{\prime}} \lambda(v) & =\lambda\left(v_{c}^{s}\right)+\lambda\left(v_{1 i}^{s}\right)+\lambda\left(v_{2}^{s} i_{i}\right)+\lambda\left(v_{3}^{s}{ }_{i}\right)+\sum_{j=4}^{m-1} \lambda\left(v_{j i}^{s}\right) \\
& =\frac{1}{2} m-k-\frac{1}{2} n+k m+\frac{1}{2} k n+n s+\frac{1}{2} k m^{2} n-k m n-1+i \\
\sum_{e \in E^{\prime}} \lambda(e) & =\sum_{j=1}^{m-1} \lambda\left(e_{j i}^{s}\right)+\lambda\left(e_{m i}^{s}\right) \\
& =\frac{1}{2} m+n+k m+\frac{1}{2} k n-n s+\frac{3}{2} k m^{2} n-k m n+\frac{1}{2}-i \\
m(\lambda) & =\sum_{v \in V^{\prime}} \lambda(v)+\sum_{e \in E^{\prime}} \lambda(e)=m-k+\frac{1}{2} n+2 k m+k n+2 k m^{2} n-2 k m n-\frac{1}{2} .
\end{aligned}
$$

Hence $k F_{n}^{m}$ admits a C_{m}-supermagic labeling.

3. Conclusions

In this paper, we gave class of C_{m}-supermagic labeling of friendship graphs and isomorphic copies of friendship graphs.

References

[1] J. A. Gallian, (2015), A dynamic survey of graph labeling, Electron. J. Combin., 19, \#DS6.
[2] A. Guitérrez and A. Lladó, (2005), Magic covering, J. Comb. Math. Comb. Comput., 53, pp. 43-565.
[3] T. Kojima, (2013), On C_{4}-supermagic labelings of the Cartesian product of paths and graphs, Discrete Math., 313(2), pp. 164-173.
[4] A. Lladó and J. Moragas, (2007), Cycle-magic Graphs, Discrete Math., 307(23), pp. 2925-2933.
[5] T. K. Maryati, E. T. Baskoro, and A. N. M. Salaman, (2008, P_{h}-supermagic labelings of some trees, J. Combin. Math. Comput., 65, pp. 197-204.
[6] A. Rosa, (1966), On certain valuations of the vertices of a graph, Theory of Graphs, International Symposium, Rome, 1966, 349-355.
[7] M. Roswitha, E. T. Baskoro, T. K. Maryati, N. A. Kurdhi and I. Susanti, (2013), Further results on cycle-supermagic labeling, AKCE Int. J. Graphs Comb., 10(2), pp. 211-220.
[8] P. Selvagopal and P. Jeyanthi, (2008), On C_{k}-super magic graphs, Int. J. Math. Comput. Sci., 3(1), pp. 25-30.
[9] T. Shalini and S. R. Kumar, (2015), Labeling Techniques in Friendship Graph, International Journal of Engineering Research and General Science, 3(1), pp. 277-284.
[10] S. Meena and K. Vaithilingam, (2012), Prime Labeling Of Friendship Graphs, International Journal of Engineering Research and Technology, 1(10), pp. 1-13.
[11] Y. M. Parmar, (2017), Edge Vertex Prime Labeling forWheel, Fan and Friendship Graph, International Journal of Mathematics and Statistics vention(IJMSI), 5(8), pp. 23-29.
[12] D. Tanna, (2013), Harmonious Labeling of Certain Graph, Int. J. Adv. Engg. Res. Studies, 2(4), pp. 46-48.
[13] N. L. Prasanna and N. Sudhakar, (2014), Algorithms for Magic Labeling on Graphs, Journal of Theoretical and Applied Information Technology, 66(1), pp. 36-42.
[14] M. Radhika1 and V. S. Selvi, (2017), A Study on Graceful and θ-Graceful Labeling of Some Graphs, International Journal of Computing Algorithm, 6(1), pp. 27-30.
[15] S. N. Daoud and A. N. Elsawy, (2019,) Edge even graceful labelling of new families of graphs, Journal of Taibah University for Science, 13(1), pp. 579-591.

Dr. Muhammad Hussain is working as an associate professor in the Department of Mathematics, COMSATS Lahore Campus. He completed his PhD at Abdus Salam School of Mathematical Sciences, GC University, Lahore under the supervision of Prof. Dr. Edy Tri Baskoro and joined the Department of Mathematics, COMSATS Lahore in 2008. He has published more than 30 ISI Impact factor's research articles.

Shakila Banaras is working as a lecturer in the Department of Mathematics, Queen Mary College Lahore. She completed her masters in Philin Graph labeling from GC University, Lahore and was chosen as a lecturer in mathematics in 2020.

[^0]: ${ }^{1}$ Department of Mathematics, Muğla Sıtkı Koçman University, Muğla, Turkey. e-mail: tarkanoner@mu.edu.tr; ORCID: https://orcid.org/0000-0002-2882-1666.
 ${ }^{2}$ Department of Mathematics, Comsats University, Islamabad, Lahore Campus, Pakistan. e-mail: mhmaths@gmail.com; ORCID: https://orcid.org/0000-0003-1768-3111.
 ${ }^{3}$ Department of Mathematics, GC University, Katchery Road, Lahore, Pakistan. e-mail: shakilabanaras862@gmail.com; ORCID: https://orcid.org/0000-0001-9163-1112.
 § Manuscript received: July 23, 2019; accepted: April 2, 2020. TWMS Journal of Applied and Engineering Mathematics, Vol.11, No. 3 © Işık University, Department of Mathematics, 2021; all rights reserved.

