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METHOD BASED ON QUASI VARIABLE MESH FOR SOLUTION OF

SYSTEM OF SECOND ORDER BOUNDARY VALUE PROBLEMS

WITH MIXED BOUNDARY CONDITIONS

S. NAYAK1, A. KHAN2, R. K. MOHANTY3, §

Abstract. A new numerical method with third order accuracy is presented for the
solution of nonlinear two point boundary value problems(BVPs) with mixed boundary
conditions using quasi variable mesh. In case of uniform mesh, method becomes fourth
order. The method has been extended to vector form. Error analysis of the proposed
scheme using a model problem is discussed. Application to fourth order nonlinear bound-
ary value problem in coupled form is discussed. The proposed method is tested on two
examples of linear and nonlinear BVPs and comparison with uniform mesh method has
been made to prove the accuracy of the method.
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1. Introduction

Consider the following system ofM nonlinear two point boundary value problems(BVPs)

uxx
(i) = f (i)(x, u(1), u(2), .., u(i), .., u(M), ux

(1), ux
(2), .., ux

(i), ., ux
(M)), (1)

subject to mixed boundary conditions

α
(i)
0 u(i)(0)− α(i)

1 ux
(i)(0) = Ai (2)

β
(i)
0 u(i)(1) + β

(i)
1 ux

(i)(1) = Bi, (3)

where ux
(i) = d

dxu
(i), uxx

(i) = d2

dx2
u(i) and α

(i)
0 , α

(i)
1 , β

(i)
0 , β

(i)
1 > 0,α

(i)
0 + α

(i)
1 > 0,

β
(i)
0 + β

(i)
1 > 0 , α

(i)
0 + β

(i)
0 > 0 for i = 1(1)M,M ∈ Z+. We assume following conditions
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([9])which assure the existence of unique solution of the system (1) − (3). Let −∞ <

u(i), ux
(i) <∞ such that :

(i)f (i)(x, u(1), u(2), ..., u(i), ..., u(M), ux
(1), ux

(2), ..., ux
(i), ..., ux

(M)) are continuous;

(ii)
∂f (i)

∂u(j)
and

∂f (i)

∂ux(j)
exist and are continuous;

(iii)
n∑

i,j=1

∂f (i)

∂u(j)
> 0 and | ∂f

(i)

∂ux(j)
| ≤ C, for some positive constant C and i, j = 1(1)M

Many authors have studied the existence of solutions of BVPs with mixed boundary
conditions([4],[10],[19]) and simultaneous efforts have been made to solve such problems.
Usmani [20] developed a finite difference method of order four to solve second order bound-
ary value problems without significant derivative. Chawla[3]developed a uniform mesh
discretization scheme at the boundary as well as interior points of the domain to solve
second order BVPs with mixed boundary conditions. Rashidinia et. al. [13] developed non
polynomial spline method of order two and four to solve second order nonlinear singular
boundary value problems. Also, more recently two parameter alternating group explicit
(TAGE) and Newton–TAGE iteration method based on variable mesh was proposed by
Mohanty et. al.[12]to solve the nonlinear BVPs with mixed boundary conditions.
In this paper, we have developed a scheme using quasi-variable mesh to solve two point
BVPs (1)−(3). We have used quasi variable mesh as truncation error in a finite-difference
method depends upon the derivative of the variable as well as mesh size. Thus, in region
with large deviated derivatives a fine mesh distributes the truncation error uniformly and
accordingly coarse meshes are used for smooth functions[7]. We applied the method on
linear as well as nonlinear problems. Several higher order problems which can be decom-
posed into system (1) − (3) can be efficiently solved by using the proposed scheme. The
scheme discretizes the problem at the interior as well as boundary points and resultant
linear and nonlinear systems are solved by block Gauss elimination and block Newton’s
method resp. ([1],[2]). To the best of authors knowledge no such third order variable mesh
discretization scheme for solving such a system (1)− (3) is known in the literature so far.

There are six sections in this paper. In section 2, we give derivation of the scheme and in
section 3, vector convergence of the proposed scheme is provided. In section 4, we provide
its application to a fourth order BVP. Finally in section 5, two examples are considered
and numerical results are shown to prove the efficiency of the proposed methods and in
section 6, we provide concluding remarks.

2. Derivation of the Scheme

We consider a coupled nonlinear BVP of the following type:

uxx = f(x, u(x), v(x), ux(x), vx(x)) (4)

vxx = g(x, u(x), v(x), ux(x), vx(x)) (5)

subject to :

α
(1)
0 u(0)− α(1)

1 ux(0) = A1, β
(1)
0 u(1) + β

(1)
1 ux(1) = B1 (6)

α
(2)
0 v(0)− α(2)

1 vx(0) = A2, β
(2)
0 v(1) + β

(2)
1 vx(1) = B2 (7)
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where f, g are continuous in [0, 1] and α
(i)
0 , α

(i)
1 , β

(i)
0 , β

(i)
1 > 0, also α

(1)
0 + α

(i)
1 > 0, β

(i)
0 +

β
(i)
1 > 0 , α

(i)
0 + β

(i)
0 > 0, i = 1, 2. Now, to derive the scheme we first discretise the

solution interval [0,1] into N subintervals using nodal points xk − xk−1 = hk, k = 1(1)N

where hk be the mesh size and the mesh ratio be σk =
hk+1

hk
> 0, k = 1, 2, 3, ..., N − 1.

When σ = 1, the mesh reduces to a uniform mesh i.e., hk+1 = hk = h. In this paper,
σk ≡ σ as the considered mesh is quasi variable. Also, assume Uk, Vk and uk, vk be the
approximate and exact solution of u(x), v(x) for the problem (4)− (7) at the grid points
xk, k = 0, 1, 2, ..., N . Then, we follow the scheme [3] and derive discretization schemes at
boundary points of the domain. Thus, for the coupled nonlinear BVP (4) − (7), we use
the following approximations and schemes to evaluate u(x) and v(x) at the end points x0
and xN :

ux0 =
α
(1)
0

α
(1)
1

u0 −
A1

α
(1)
1

, (8)

vx0 =
α
(2)
0

α
(2)
1

v0 −
A2

α
(2)
1

, (9)

f0 = f(x0, u0, v0, ux0 , vx0), (10)

g0 = g(x0, u0, v0, ux0 , vx0), (11)

ū 1
2

= u0 +
h1
2
ux0 +

h21
8
f0, (12)

v̄ 1
2

= v0 +
h1
2
vx0 +

h21
8
g0, (13)

ūx 1
2

=
3

4h1
(u1 − u0) +

1

4
ux0 +

h1
8
f0, (14)

v̄x 1
2

=
3

4h1
(v1 − v0) +

1

4
vx0 +

h1
8
g0, (15)

f̄ 1
2

= f(x 1
2
, ū 1

2
, v̄ 1

2
, ūx 1

2

, v̄x 1
2

), (16)

ḡ 1
2

= g(x 1
2
, ū 1

2
, v̄ 1

2
, ūx 1

2

, v̄x 1
2

), (17)

u1 = u0 + h1ux0 +
h21
6

[
f0 + 2f̄ 1

2

]
+ T 3

0 (h1), (18)

v1 = v0 + h1vx0 +
h21
6

[
g0 + 2ḡ 1

2

]
+ T 3

0 (h1), (19)

uxN =
B1

β
(1)
1

− β
(1)
0

β
(1)
1

uN , (20)

vxN =
B2

β
(2)
1

− β
(2)
0

β
(2)
1

vN , (21)
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fN = f(xN , uN , vN , uxN , vxN ), (22)

gN = g(xN , uN , vN , uxN , vxN ), (23)

ūN− 1
2

= uN −
hN−1

2
uxN +

h2N−1
8

fN , (24)

v̄N− 1
2

= vN −
hN−1

2
vxN +

h2N−1
8

gN , (25)

ūx
N− 1

2

=
3

4hN−1
(uN − uN−1) +

1

4
uxN −

hN−1
8

fN , (26)

v̄x
N− 1

2

=
3

4hN−1
(vN − vN−1) +

1

4
vxN −

hN−1
8

gN , (27)

f̄N− 1
2

= f(xN− 1
2
, ūN− 1

2
, v̄N− 1

2
, ūx

N− 1
2

, v̄x
N− 1

2

), (28)

ḡN− 1
2

= g(xN− 1
2
, ūN− 1

2
, v̄N− 1

2
, ūx

N− 1
2

, v̄x
N− 1

2

), (29)

uN = uN−1 + hN−1uxN −
h2N−1

6

(
f̄N + 2f̄N− 1

2

)
+ T 3

N (hN−1), (30)

vN = vN−1 + hN−1vxN −
h2N−1

6

(
ḡN + 2ḡN− 1

2

)
+ T 3

N (hN−1). (31)

Now we follow Mohanty et.al[11] and derive the discretization scheme for (4)− (7) at the
interior points xk, k = 1(1)N − 1. The approximations used to evaluate v(x) as well as
u(x) are as follows:

S = σ(σ + 1), (32)

P = σ2 + σ − 1, (33)

Q = (1 + σ)(σ2 + 3σ + 1), (34)

R = σ(1 + σ − σ2), (35)

v̄xk =
vk+1 + (σ2 − 1)vk − σ2vk−1

hkS
, (36)

f̄k = f(xk, uk, vk, ūxk , v̄xk), (37)

ḡk = g(xk, uk, vk, ūxk , v̄xk), (38)

v̄xk−1
=
−vk+1 + (1 + σ)2vk − σ(2 + σ)vk−1

hkS
, (39)

v̄xk+1
=

(1 + 2σ)vk+1 − (1 + σ)2vk + σ2vk−1
hkS

, (40)

f̄k±1 = f(xk±1, uk±1, vk±1, ūxk±1
, v̄xk±1

), (41)

ḡk±1 = g(xk±1, uk±1, vk±1, ūxk±1
, v̄xk±1

), (42)

ûxk = ūxk + µ1hk[f̄k+1 − f̄k−1], (43)

v̂xk = v̄xk + µ2hk[ḡk+1 − ḡk−1], µ1, µ2 are to be determined, (44)

f̂k = f(xk, uk, vk, ûxk , v̂xk), (45)
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ĝk = f(xk, uk, vk, ûxk , v̂xk), (46)

σuk−1 − (1 + σ)uk + uk+1 =
h2k
12

(P f̄k+1 +Qf̂k +Rf̄k−1) + T 3
k (hk), (47)

σvk−1 − (1 + σ)vk + vk+1 =
h2k
12

(P ḡk+1 +Qĝk +Rḡk+1) + T 3
k (hk). (48)

Simplifying the approximations (36), (39)− (40), (42), (44), (46) for v , we get

v̄xk = vxk +
1

6
σh2kvxxxk +O(h3k), (49)

v̄xk+1
= vxk+1

− 1

6
σ(1 + σ)h2kvxxxk +O(h3k), (50)

v̄xk−1
= vxk−1

− 1

6
(1 + σ)h2kvxxxk +O(h3k), (51)

ḡk+1 = gk+1 −
1

6
σ(1 + σ)h2kvxxxkG+O(h3k), (52)

ḡk−1 = gk−1 −
1

6
(1 + σ)h2kvxxxkG+O(h3k), (53)

v̂xk = vxk + [
1

6
σ + µ2(1 + σ)]h2kvxxxk +O(h3k), (54)

ĝk = gk − [
1

6
σ + µ2(1 + σ)]h2kvxxxkG+O(h3k),where G =

∂g

∂vxk
, (55)

Using (52)− (53), (55) in (48), we get:

σvk−1 − (1 + σ)vk + vk+1 =
h2k
12

(P ḡk+1 +Qĝk +Rḡk−1)

+
h4k
72

[σ(1 + σ)P − (σ + µ2(1 + σ))Q+ (1 + σ)R]vxxxkG+ T 3
k (hk). (56)

To make the proposed equation(56) of O(h5k) , the coefficients of h4k is equated to zero,

hence we get µ2 = −σ(1+σ+σ2)
6Q and the local truncation error becomes T 3

k (hk) = T 3
k =

O(h5k). Hence, we get the following two equations:

σuk−1 − (1 + σ)uk + uk+1 =
h2k
12

(P f̄k+1 +Qf̂k +Rf̄k−1) +O(h5k), (57)

σvk−1 − (1 + σ)vk + vk+1 =
h2k
12

(P ḡk+1 +Qĝk +Rḡk−1) +O(h5k). (58)

Similarily, we can derive µ1 = −σ(1+σ+σ2)
6Q . The same truncation error for uniform mesh

becomes O(h6). Moreover, a condition required for convergence of the scheme[6] is satisfied

as the coefficients P,Q,R are positive for (
√
5−1)
2 < σ < (

√
5+1)
2 . Also, since Uk, Vk are the

approximate solution of (4)− (7) respectively, using (18)− (19), (30)− (31), (57)− (58) we
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get the following three point discretization scheme:

U1 = U0 + h1Ux0 +
h21
6

[
f0 + 2f̄ 1

2

]
, (59)

V1 = V0 + h1Vx0 +
h21
6

[
g0 + 2ḡ 1

2

]
, (60)

σUk−1 − (1 + σ)Uk + Uk+1 =
h2k
12

(P f̄k+1 +Qf̂k +Rf̄k−1), (61)

σVk−1 − (1 + σ)Vk + Vk+1 =
h2k
12

(P ḡk+1 +Qĝk +Rḡk−1), (62)

UN = UN−1 + hN−1UxN −
h2N−1

6

(
f̄N + 2f̄N− 1

2

)
, (63)

VN = VN−1 + hN−1VxN −
h2N−1

6

(
ḡN + 2ḡN− 1

2

)
. (64)

Now, further if α
(1)
1 or α

(2)
1 = 0 then we use u0 = A1

α
(1)
0

, v0 = A2

α
(2)
0

in (18)− (19), else if both

are non zero then we substitute ux0 =
α
(1)
0 u0−A1

α
(1)
1

, vx0 =
α
(2)
0 v0−A2

α
(2)
1

respectively. Similarly,

if β
(1)
1 or β

(2)
1 = 0 then uN = B1

β
(1)
0

, vN = B2

β
(2)
0

in (30) − (31) or else if both are non zero

then we substitute uxN =
B1−β(1)

0 uN

β
(1)
1

, vxN =
B2−β(2)

0 vN

β
(2)
1

. Thus, depending on the values of

α
(1)
1 , α

(2)
1 , β

(1)
1 and β

(2)
1 whether all or either of them or none of them are zero we solve a

N − 1 × N − 1 or N × N or N + 1 × N + 1 tri-diagonal system [29].

3. Application of the scheme

We consider a fourth order nonlinear BVP of the following type:

uxxxx = f(x, u(x), ux(x), uxx(x), uxxx(x)), (65)

subject to boundary conditions:

α
(1)
0 u(0)− α(1)

1 ux(0) = A1, β
(1)
0 u(1) + β

(1)
1 ux(1) = B1, (66)

α
(2)
0 uxx(0)− α(2)

1 uxxx(0) = A2, β
(2)
0 uxx(1) + β

(2)
1 uxxx(1) = B2. (67)

where f is continuous in [0, 1] and α
(i)
0 , α

(i)
1 , β

(i)
0 , β

(i)
1 > 0,α

(i)
0 + α

(i)
1 > 0, β

(i)
0 + β

(i)
1 >

0 , α
(i)
0 + β

(i)
0 > 0, i = 1, 2 We decompose the problem (65) into a system of second order

BVPs

d2

dx2
u(x) = v(x) ≡ f (1)(x, u(1), u(2), u(1)x , u(2)x ), (68)

d2

dx2
v(x) = f(x, u(x), v(x), ux(x), vx(x)) ≡ f (2)(x, u(1), u(2), u(1)x , u(2)x ), (69)

subject to accordingly modified mixed boundary condition,

α
(1)
0 u(0)− α(1)

1 ux(0) = A1, β
(1)
0 u(1) + β

(1)
1 ux(1) = B1, (70)

α
(2)
0 v(0)− α(2)

1 vx(0) = A2, β
(2)
0 v(1) + β

(2)
1 vx(1) = B2. (71)
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Now as discussed in section 2, we get the following schemes

U1 = U0 + h1Ux0 +
h21
6

[
V̄0 + 2V̄ 1

2

]
, (72)

V1 = V0 + h1Vx0 +
h21
6

[
f̄0 + 2f̄ 1

2

]
, (73)

σUk−1 − (1 + σ)Uk + Uk+1 = h2k(PVk+1 +QVk +RVk−1), (74)

σVk−1 − (1 + σ)Vk + Vk+1 = h2k(P f̄k+1 +Qf̂k +Rf̄k−1), k = 1(1)N − 1, (75)

UN = UN−1 + hN−1UxN −
h2N−1

6

(
V̄N + 2V̄N− 1

2

)
, (76)

VN = VN−1 + hN−1VxN −
h2N−1

6

(
f̄N + 2f̄N− 1

2

)
. (77)

4. Convergence Analysis

For simplicity, we provide the convergence analysis for M = 2 i.e., a coupled nonlinear

BVP in case of both α
(1)
1 , α

(2)
1 and β

(1)
1 , β

(2)
1 being non zero. As when both are zero, we

get the usual Dirichlet boundary condition which has been discussed by other authors.
In case of either of them is non zero, such case can be discussed with similar arguments
discussed in this section.

It can be also said that, we use a fourth order BVP to provide the convergence analysis
as, such problems can be written as coupled BVPs. Many authors have provided con-
vergence analysis in case of higher or fourth order BVP. To name a few, Rashidinia et.
al. ([14],[15],[16]), Sharifi et. al.([17],[18]), Usmani ([20], [21], [22],[24],[27]) and Usmani
et.al. ( [23], [25], [26]). But in the aforesaid, particular boundary conditions has been
dealt with( see Gupta [5]). Moreover, significant derivative has not been considered in the
BVP discussed. Whereas, we have used a more general boundary conditions and not only
considered significant derivatives but also nonlinear singular BVPs.

Convergence analysis of the scheme (59) − (64) at the interior points has been given
by Mohanty et. al.[11]. Also, for BVP with mixed boundary conditions, Usmani [20] has
provided a order four convergence for the scheme. The problems considered were without
significant derivatives. Also, Rashidinia et. al. [13] has provided order four convergence
for the scheme they developed using separately derived boundary conditions. They used
quasilinearization to linearize the nonlinear terms and used second order approximations
for the significant derivatives. In all the said convergence analysis, the schemes were based
on uniform mesh. Whereas in this paper, we have provided the convergence analysis using
fourth order BVP based on quasivariable mesh and Newton’s Method has been used for
nonlinearity. Also, we provide separate discretized schemes at the interior as well exterior
points of the domain using both nodal and mid-points on the mesh.

In this section, we use the following coupled boundary value problem to verify the
accuracy of the scheme:

uxx(x) = v(x), (78)

vxx = a(x)u(x) + f(x). (79)

subject to modified conditions:

α
(1)
0 u(0)− α(1)

1 ux(0) = A1, β
(1)
0 u(1) + β

(1)
1 ux(1) = B1 (80)

α
(2)
0 v(0)− α(2)

1 vx(0) = A2, β
(2)
0 v(1) + β

(2)
1 vx(1) = B2 (81)
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where u(x), v(x), f(x) are continuous on [0, 1] and α
(i)
0 , α

(i)
1 , β

(i)
0 , β

(i)
1 > 0,α

(i)
0 + α

(i)
1 > 0,

β
(i)
0 + β

(i)
1 > 0 , α

(i)
0 + β

(i)
0 > 0, i = 1, 2 are real constants. Now,as discussed in section 2

we use the approximate solutions Uk, Vk, the following approximations and the schemes
as discussed in section 3:

Ū 1
2

= U0 +
h1
2
Ux0 +

h21
8
V̄0, (82)

Ūx 1
2

=
3

4h1
(U1 − U0) +

1

4
Ux0 +

h1
8
V̄0 (83)

Ux0 =
α
(1)
0

α
(1)
1

U0 −
A1

α
(1)
1

, (84)

h1Ux0 = (U1 − U0)−
h21
6

(
V̄0 + 2V̄ 1

2

)
(85)

ŪN− 1
2

= UN −
hN−1

2
UxN +

h2N−1
8

V̄N , (86)

Ūx
N− 1

2

=
3

4hN−1
(UN − UN−1) +

1

4
UxN −

hN−1
8

V̄N (87)

UxN =
B1

β
(1)
1

− β
(1)
0

β
(1)
1

UN , (88)

hN−1UxN = (UN − UN−1) +
h2N−1

6

(
V̄N + 2V̄N− 1

2

)
(89)

V̄ 1
2

= V0 +
h1
2
Vx0 +

h21
8
F̄0, (90)

V̄x 1
2

=
3

4h1
(V1 − V0) +

1

4
Vx0 +

h1
8
F̄0 (91)

Vx0 =
α
(1)
0

α
(1)
1

V0 −
A1

α
(1)
1

, (92)

h1Vx0 = (V1 − V0)−
h21
6

(
F̄0 + 2F̄ 1

2

)
, (93)

V̄N− 1
2

= VN −
hN−1

2
VxN +

h2N−1
8

F̄N , (94)

V̄x
N− 1

2

=
3

4hN−1
(VN − VN−1) +

1

4
VxN −

hN−1
8

F̄N , (95)

VxN =
B1

β
(1)
1

− β
(1)
0

β
(1)
1

VN , (96)

hN−1VxN = (VN − VN−1) +
h2N−1

6

(
F̄N + 2F̄N− 1

2

)
. (97)

where Vr ≈ v(xr), Ur ≈ u(xr), Fr = arUr + fr, r = 0, 12 , N −
1
2 . Thereafter, substitut-

ing (82)− (84), (86)− (88) and (90)− (92), (94)− (96) in (85), (89) and (93), (97) respec-
tively. We get the following equations evaluating u(x) and v(x) at the boundary points
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x0 and xN .

U0[1 + h1
α
(1)
0

α
(1)
1

+
h41
24
a0] + U1(−1) + V0

h21
2

[1 +
h1α

(2)
0

3α
(2)
1

] + V1(0) = Ψ1
0, (98)

U0[
h21
2
a0 +

h31
6

(ax0
+
a0α

(1)
0

α
(1)
1

) + h41(
α
(1)
0 ax0

12α
(1)
1

+
axx0

24
)] + U1(0) + V0(1 +

h1α
(2)
0

α
(2)
1

)

+ V1(−1) = Ψ2
0, (99)

UN [1 + hN−1
β
(1)
0

β
(1)
1

+
h4N−1

24
aN ] + UN−1(−1) + VN

h2N−1
2

[1 +
hN−1β

(2)
0

β
(2)
1

] + VN−1(0) = Ψ1
N , (100)

UN [
h2N−1

2
aN −

h3N−1
6

(axN
+
aNβ

(1)
0

β
(1)
1

) + h4N−1(
β
(1)
0 axN

12β
(1)
1

+
axxN

24
)]

+ VN (1 +
hN−1β

(2)
0

β
(2)
1

) + VN−1(−1) = Ψ2
N . (101)

where

Ψ1
0 = h1

A1

α
(1)
1

+
h31A2

6α
(2)
1

− h41f0
24

, (102)

Ψ2
0 = h1

A2

α
(2)
1

+
h21
6

[−3f0 + h1(
a0A1

α
(1)
1

− fx0) + h21(−fxx0

4
+
A1ax0

2α
(1)
1

)], (103)

Ψ1
N = hN−1

B1

β
(1)
1

+
h3N−1B2

6β
(2)
1

−
h4N−1fN

24
, (104)

Ψ2
N = hN−1

B2

β
(2)
1

+
h2N−1

6
[−3fN − hN−1(aN

B1

β
(1)
1

− fxN
) + h2N−1(

fxxN

4
+
B1axN

2β
(1)
1

)]. (105)

Next, we define following approximation for ak±1, fk±1, k = 1(1)N − 1 in the derived equations:

ak−1 = ak − hkaxk +
h2k
2
axxk

, (106)

ak+1 = ak + hk+1axk +
h2k+1

2
axxk

. (107)

Similar, approximations can be defined for fk±1. Thus, we obtain the vector difference equation
of BVP using the approximations (106) − (107) in equation (61) − (62) at interior points i.e. for
k = 1, ..., N − 1:

[
BD11

k BD12
k

BD21
k BD22

k

] [
Uk−1
Vk−1

]
+

[
D11
k D12

k

D21
k D22

k

] [
Uk
Vk

]
+

[
AD11

k AD12
k

AD21
k AD22

k

] [
Uk+1

Vk+1

]
=

[
Ψ1
k

Ψ2
k

]
(108)
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where

D11
k = (1 + σ), D12

k =
h2kQ

12
, (109)

D21
k = h2kQak, D

22
k = 1 + σ, (110)

BD11
k = −σ,BD12

k =
h2kR

12
, (111)

BD21
k = h2kR(ak − hkaxk

+ h2k
axxk

2
), BD22

k = −σ, (112)

AD11
k = −1, AD12

k =
h2kP

12
, (113)

AD21
k = h2kP (ak + hkσaxk

+ h2k
σ2axxk

2
), AD22

k = −1, (114)

Ψ1
k = 0, (115)

Ψ2
k =

h2k
2

(
fkσ(1 + σ) + hkfxk

σ(σ2 − 1) + 2h2kfxxk
σ(σ3 + 1)

)
, k = 1(1)N − 1, (116)

The schemes (98) − (101), (108) evaluating u(x), v(x) at the boundary as well as interior points
can be written as the following matrix form:

LÛ + Ψ̂ =
[
sub diag sup

] Ûk−1Ûk
Ûk+1

+ Ψ̂ = 0̂ (117)

where k = 1(1)N − 1, L is a tridiagonal matrix of order N + 1 consisting of the following:

(i) off-diagonal block elements sub with components [UN−1, VN−1]T and

BDi,j
k , k = 1(1)N − 1; i, j = 1, 2,

(ii)sup with components ADi,j
k , k = 1(1)N − 1; i, j = 1, 2 and [U1, V1]T and similarily

(iii)diagonal block elements diag with components [U0, V0]T , Di,j
k , k = 1(1)N − 1, i, j = 1, 2

and [UN , VN ]T also

Û = [Û0, Û1, ..., Ûk, ...ÛN ]T ,where Ûk = [Uk, Vk]T

Ψ̂ = [[Ψ1
0,Ψ

2
0]T , ..., [Ψ1

k,Ψ
2
k]T , ..., [Ψ1

N ,Ψ
2
N ]T ]T ,which is a constant vector,

T̂ 3
k = [ [T 3

0 , T
3
0 ]T , [T 3

1 , T
3
1 ]T , ..., [T 3

k , T
3
k ]T , ..., [T 3

N , T
3
N ]T ]T

0̂ = [[0, 0]T , [0, 0]T , ..., [0, 0]T ]T

Let û = [[u0, v0]T , [u1, v1]T , [u2, v2]T ......, [uk, vk]T , ...[uN , vN ]T ]T ∼= û satisfy

Lû+ Ψ̂ + T̂ 3
k = 0, where L is defined in (117) (118)

Let êk = [Uk − uk, Vk − vk]T ≡ [eku , ekv ]T be the discretization error, then Û − û = E =
[ê0, ê1, ..., êN ]T . Also, subtracting equation(118) from (117), we obtain the error equation as follows

LE = T̂ 3
k , (119)

Let |ak| ≤ K1, |axk
| ≤ K2, |axxk

| ≤ K3, where k = 0(1)N , Ki are positive constants. Then, using
(98)− (101), (111)− (114) and for 0 ≤ k ≤ N , we get:

‖sup‖∞ ≤ 1, (120)

‖sub‖∞ ≤ σ. (121)

Thus, again using (98) − (101), (111) − (114) and for sufficiently small hk, we can say that the
off-diagonal block elements are non zero. Hence, L is irreducible[28].
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Let sumrowl be the sum of elements of lth row of L, then

sumrowl =


h1

α
(1)
0

α
(1)
1

+
h2
1

6 (3 + h1
α

(2)
0

α
(2)
1

+ h21
a0
4 ), l = 1

h1
α

(2)
0

α
(2)
1

+
h2
1

6 (3a0 + h1(a0
α

(1)
0

α
(1)
1

+ ax0) + h21(
axx0

4 +
α

(1)
0 ax0

2α
(1)
1

)), l = 2
(122)

sumrowl =

{
h2
kS
2 , l = 3, 5, 7, ..., N − 2
h2
kSak
2 + h3kaxk

σ(σ2−2)
12 + h4kaxxk

(σ4+σ)
24 , l = 4, 6, 8, ..., N − 1

(123)

sumrowl =


hN−1

β
(1)
0

β
(1)
1

+
h2
N−1

6 (3 + hN−1(
β
(2)
0

β
(2)
1

+ h2N−1
aN
4 )), l = N

hN−1
β
(2)
0

β
(2)
1

+
h2
N−1

6 (3aN − hN−1(aN
β
(1)
0

β
(1)
1

+ axN
)+

h2N−1(
axxN

4 +
β
(1)
0 axN

2β
(1)
1

)), l = N + 1

(124)

Now,let 0 < Kmin ≤ min(K1,K2,K3) ≤ Kmax, where Kmin,Kmax are positive numbers. Using
(122)− (124) and for sufficiently small hk, we can easily prove that L is Monotone[28]. Therefore,
L−1 exist and L−1 ≥ 0. Hence by (119) we have,

||E|| = ||L−1||||T̂ 3
k || (125)

Now for sufficiently small hk and (122)− (124), we can say that:

sumrowl >
{
h2
1Kmin

2 , l = 1 (126)

sumrowl ≥
{
h2
k

2 KminS, l = 2, 3...N and k = 1, 2, ..., N − 1 (127)

sumrowl >
{
h2
N−1Kmin

2 , l = N + 1 (128)

Let Li,l
−1 be the (i, l)th element of L−1 , then by theory of matrices for i = 1(1)N + 1,

Li,l
−1 ≤ 1

sumrowl

(129)

Hence using (126)− (128), we have

Li,l
−1 ≤


2

h2
1Kmin

, l = 1
2

h2
kSKmin

, l = 2, 3, ..., Nand k = 1, 2, ..., N − 1
2

h2
N−1Kmin

, l = N + 1

(130)

Now let us define,

‖ L−1 ‖= max
1≤i≤N+1

N+1∑
l=1

| Li,l−1 |, ‖ T ‖= max
0≤k≤N

| T̂ 3
k | (131)

As T 3
0 = O(h51), T 3

N = O(h5N−1), T 3
k = O(h5k), k = 1(1)N − 1 and by (119), (125)− (131) we get,

‖ E ‖ ≤ 2

Kmin

(
1

h21
O(h51) +

1

min(1≤k≤N−1)h
2
k S

O(h5k) +
1

h2N−1
O(h5N−1)

)
= O(h3k). (132)

Hence, the third order vector convergence of the proposed scheme (59)− (64) for BVPs of the type
(4)− (7) follows.

Theorem:
The solution of BVPs (1)− (3) be sufficiently smooth such that the required higher order deriva-
tives of u(x) exist in the solution domain. Then, the scheme (59) − (64) with sufficiently small

hk, 0 < σ < 1 and (
√
5−1)
2 < σ < (

√
5+1)
2 has third order convergence.
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5. Numerical Illustration

In this section, we have solved two BVPs and present their numerical results. The numerical

results are tabulated in the Tables 1-2. The first mesh width is h1 = (σ−1)
(σN−1) , σ 6= 1. Therefore,the

rest of the hk ’s can be obtained as hk+1 = σhk, k = 1(1)N . The computational order of conver-
gence (COC)[8] is also given for fourth order uniform mesh method. All calculations have been
done in Matlab 07. In the following problems ui(x) means ith derivative of u(x). We have used root
mean square errors(erms)[11] in case of quasi-variable mesh and maximum absolute error (emax)
for uniform mesh. erms, emax, COC are defined as follows:

erms(k) = (
1

N + 1

N∑
k=0

(Uk − u(xk))2)
1
2

emax(k) = max
0≤k≤N

|Uk − u(xk)|

COC = log2
emax(k)

emax(k + 1)

Example 5.1 Consider the following fourth order linear BVP of the form:

u4(x) = u(x) + 12 exp(x) + 8x exp(x), 0 ≤ x ≤ 1

u(0)− u1(0) = 0, u(1) + u1(1) = 10.873

u2(0)− u3(0) = −4, u2(1) + u3(1) = 54.366

with exact solution u(x) = x2ex.

Table 1. Example 5.1

erms emax COC

N O(hk
3) method O(h4) method

16 2.2847e-04 2.1913e-05 -
32 1.0828e-04 1.4369e-06 3.9307
64 3.8898e-05 9.1941e-08 3.9661
128 8.9433e-06 5.4697e-09 4.0065

Example 5.2 Consider the fourth order nonlinear BVP of the form:

u4(x) + u(x) = u(x)u3(x) + sinh(x)(2− cosh(x))

u(0)− 2u1(0) = −2, u(1) + 2u1(1) = 4.2614

u2(0)− 2u3(0) = −2, u2(1) + 2u3(1) = 4.2614

with exact solution u(x) = sinhx.

Table 2. Example 5.2

erms emax COC

N O(hk
3) method O(h4) method

16 1.1115e-04 4.7092e-05 -
32 2.7478e-05 3.4495e-06 3.7710
64 1.3248e-05 2.3197e-07 3.8944
128 4.0344e-06 1.4949e-08 3.9558
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Figure 1. Exact versus the approximate solution in third order method
for N = 64 and σ = 0.9 in Example 5.1

Figure 2. Exact versus the approximate solution in third order method
for N = 64 and σ = 0.9 in Example 5.2

6. Conclusion

The numerical results for our method verify the fourth-order convergence in case of uniform mesh
whereas third order convergence is proved analytically in case of quasi-variable mesh. Our method
works efficiently for higher order linear and nonlinear BVPs with mixed boundary conditions,
which can be decomposed into system of second order BVPs. As an experiment, only fourth order
BVPs are considered whereas the method can be also applied for higher even order nonlinear and
linear BVPs. Also an important consequence of using quasi variable mesh is that even higher order
singularly perturbed BVPs can be solved easily.
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