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REGULAR FILTERS OF COMMUTATIVE BE-ALGEBRAS

V. V. KUMAR1, M. S. RAO2, S. KALESHA VALI3, §

Abstract. The concept of regular filters is introduced in commutative BE-algebras.
The class of all regular filters of a commutative BE-algebra is characterized in terms of
dual annihilators. Some equivalent conditions are derived for every filter of a commuta-
tive BE-algebra to become a regular filter. Some properties of prime regular filters of a
commutative BE-algebra are investigated.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras [8]. It is known that the class of BCK-algebras is a proper subclass of the
class of BCI-algebras. In [5, 6] Q. P. Hu and X. Li introduced a wide class of abstract
algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper
subclass of the class of BCH-algebras. J. Neggers and H. S. Kim [12] introduced the notion
of a d-algebra which is a generalization of BCK-algebras, and also they introduced the
notion of a B-algebra [13, 14], i.e., (I) x∗x = 0; (II) x∗0 = x; (III) (x∗y)∗z = x∗(z∗(0∗y)),
for any x, y, z ∈ X, which is equivalent in some sense to the groups. Moreover, Y.B. Jun,
E.H. Roh and H.S. Kim [9] introduced a new notion, called an BH-algebra, which is
another generalization of BCH/BCI/BCK-algebras, i.e., (I); (II) and (IV) x ∗ y = 0 and
y ∗ x = 0 imply x = y for any x, y ∈ X.

The notion of BE-algebras was introduced and extensively studied by H.S. Kim and
Y.H. Kim in [10]. These classes of BE-algebras were introduced as a generalization of
the class of BCK-algebras of K. Iseki and S. Tanaka [7]. Some properties of filters of
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BE-algebras were studied by S.S. Ahn and Y.H. Kim in [1] and by B.L. Meng in [11].
In [19], A. Walendziak discussed some properties of commutative BE-algebras. He also
investigated the relationship between BE-algebras, implicative algebras and J-algebras.
In [3], Chajda et al., Characterized the complements and relative complements of the set
of all deductive systems as the so-called annihilators of Hilbert algebras. Later, Hala~s[4]
introduced the concepts of an annihilator and a relative annihilator of a given subset of
a BCK-algebra. In 2012, A. Rezaei, and A. Borumand Saeid [15], stated and proved the
first, second and third isomorphism theorems in self distributive BE-algebras. Later, these
authors [16] introduced the notion of commutative ideals in a BE-algebra. In 2013, A.
Rezaei, and A. Borumand Saeid, and R.A. Borzooei [2] extensively studied the properties
of some types of filters of BE-algebras. In [18], some properties of dual annihilator filters
of commutative BE-algebras are studied. It is proved that the class of all dual annihilator
filters of a BE-algebra is a complete Boolean algebra. A set of equivalent conditions is
derived for every prime filter of a commutative BE-algebra to become a maximal filter.

In this paper, the notion of regular filters is introduced in commutative BE-algebras.
The class of all regular filters of a commutative BE-algebra is then characterized in terms of
dual annihilators. Some sufficient conditions are derived for a prime filter of a commutative
BE-algebra to become a regular filter. A set of equivalent conditions are derived for every
filter of a commutative BE-algebra to become a regular filter. Some properties of the set
of all prime regular filters of a commutative BE-algebra are derived.

2. Preliminaries

In this section, we present certain definitions and results which are taken mostly from
the papers [1], [10], [17] and [19] for the ready reference of the reader.

Definition 2.1. [10] An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra if it satisfies
the following properties:

(1) x ∗ x = 1,

(2) x ∗ 1 = 1,

(3) 1 ∗ x = x,

(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all
x, y, z ∈ X. A BE-algebra X is called transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for all
x, y, z ∈ X. Every self-distributive BE-algebra is transitive. A BE-algebra X is called
commutative if (x ∗ y) ∗ y = (y ∗ x) ∗ x for all x, y ∈ X. Every commutative BE-algebra is
transitive. For any x, y ∈ X, define x∨ y = (y ∗ x) ∗ x. If X is commutative then (X,∨) is
a semilattice [19]. We introduce a relation ≤ on a BE-algebra X by x ≤ y if and only if
x∗y = 1 for all x, y ∈ X. Clearly ≤ is reflexive. If X is commutative, then ≤ is transitive,
anti-symmetric and hence a partial order on X.

Theorem 2.1. [19] If X is a commutative BE-algebra, then x∗y = 1 and y ∗x = 1 imply
that x = y for all x, y ∈ X.

Theorem 2.2. [11] Let X be a transitive BE-algebra and x, y, z ∈ X. Then

(1) 1 ≤ x implies x = 1,

(2) y ≤ z implies x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x.

Definition 2.2. [1] A non-empty subset F of a BE-algebra X is called a filter of X if,
for all x, y ∈ X, it satisfies the following properties:
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(1) 1 ∈ F ,

(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

For any non-empty subset A of a transitive BE-algebra X, the set 〈A〉 = {x ∈ X | a1 ∗
(a2 ∗ (· · · ∗ (an ∗x) · · · )) = 1 for some a1, a2, . . . an ∈ A} is the smallest filter containing A.
For any a ∈ X, 〈a〉 = {x ∈ X | an ∗ x = 1 for some n ∈ N}, where an ∗ x = a ∗ (a ∗ (· · · ∗
(a ∗x) · · · )) with the repetition of a is n times, is called the principal filter generated a. If
X is self-distributive, then 〈a〉 = {x ∈ X | a ∗ x = 1}. A proper filter P of a BE-algebra
is called prime [17] if 〈x〉 ∩ 〈y〉 ⊆ P implies x ∈ P or y ∈ P for any x, y ∈ X. A proper
filter M of a transitive BE-algebra X is called maximal [17] if there exists no proper filter
Q such that M ⊂ Q. Every maximal filter of a commutative BE-algebra is prime.

Theorem 2.3. [17] Let X be a self-distributive BE-algebra and F a filter of X. Then for
any a, b ∈ X, 〈a〉 ∩ 〈b〉 ⊆ F if and only if 〈F ∪ {a}〉 ∩ 〈F ∪ {b}〉 = F .

For any non-empty subset A of a commutative BE-algebra X, the dual annihilator [18]
of A is defined as A+ = {x ∈ X | x ∨ a = 1 for all a ∈ A}. Clearly A+ is a filter of X.
Obviously X+ = {1} and {1}+ = X. For A = {a}, we simply denote {a}+ by (a)+.

Proposition 2.1. [18] For any two filters F,G of a commutative BE-algebra X, we have

(1) F ∩ F+ = ∅,
(2) F ⊆ F++,

(3) F+++ = F+,

(4) F ⊆ G implies G+ ⊆ F+,

(5) (F ∨G)+ = F+ ∩G+,

(6) (F ∩G)++ = F++ ∩G++.

Corollary 2.1. [18] For any two elements a, b of a commutative BE-algebra X, we have

(1) (〈a〉)+ = (a)+,

(2) 〈a〉 ⊆ (a)++,

(3) a ≤ b implies (a)+ ⊆ (b)+.

3. Regular filters of BE-algebras

In this section, the notion of regular filters is introduced in commutative BE-algebras.
The class of all regular filters of commutative BE-algebras is characterized in terms of
dual annihilators. Some equivalent conditions are derived for every filter of a BE-algebra
to become a regular filter.

Definition 3.1. A filter F of a BE-algebra X is called a regular filter if x ∈ F then
(x)++ ⊆ F for all x ∈ X.

Clearly the filters {1} and X are regular filters of X.

Example 3.1. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 a b 1

∨ 1 a b c
1 1 1 1 1
a 1 a 1 1
b 1 1 b 1
c 1 1 1 c

Then clearly (X, ∗,∨, 1) is a commutative BE-algebra. Consider the subset F = {1, a, b}
of X. Clearly F is a filter of X. Now (a)+ = {1, b, c}; (b)+ = {1, a, c} and (c)+ = {1, a, b}.
Hence (a)++ = {1, a} ⊂ F ; (b)++ = {1, b} ⊂ F . Therefore F is a regular filter of X.
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Lemma 3.1. Let X be a commutative BE-algebra. Then for any x, y, a ∈ X, we have

(x ∗ y) ∨ a ≤ (x ∨ a) ∗ (y ∨ a).

Proof. Let a, x, y ∈ X. Since X is commutative, we get

((x ∗ y) ∨ a) ∗ ((x ∨ a) ∗ (y ∨ a)) = ((x ∗ y) ∨ a) ∗ (((x ∗ a) ∗ a) ∗ ((y ∗ a) ∗ a))

= ((x ∗ y) ∨ a) ∗ ((y ∗ a) ∗ (((x ∗ a) ∗ a) ∗ a))

= ((x ∗ y) ∨ a) ∗ ((y ∗ a) ∗ (x ∗ a))

= (((x ∗ y) ∗ a) ∗ a) ∗ ((y ∗ a) ∗ (x ∗ a))

= (y ∗ a) ∗ ((((x ∗ y) ∗ a) ∗ a) ∗ (x ∗ a))

= (y ∗ a) ∗ (x ∗ ((((x ∗ y) ∗ a) ∗ a) ∗ a))

= (y ∗ a) ∗ (x ∗ ((x ∗ y) ∗ a))

= (y ∗ a) ∗ ((x ∗ y) ∗ (x ∗ a))

= (x ∗ y) ∗ ((y ∗ a) ∗ (x ∗ a))

= 1 since (x ∗ y) ≤ (y ∗ a) ∗ (x ∗ a)

Therefore (x ∗ y) ∨ a ≤ (x ∨ a) ∗ (y ∨ a). �

Theorem 3.1. Let S be a ∨-closed subset of a commutative BE-algebra X. Then the set
F = {x ∈ X | x ∨ s = 1 for some s ∈ S} is a regular filter of X.

Proof. Clearly 1 ∈ F . Let x ∈ F and x ∗ y ∈ F . Then x ∨ a = 1 and (x ∗ y) ∨ b = 1 for
some a, b ∈ S. Since S is ∨-closed, by the above lemma, we get

1 = (x ∗ y) ∨ b

≤ (x ∗ y) ∨ (a ∨ b)

≤ (x ∨ a ∨ b) ∗ (y ∨ a ∨ b)

= (1 ∨ b) ∗ (y ∨ a ∨ b)

= 1 ∗ (y ∨ a ∨ b)

= y ∨ a ∨ b

Since a ∨ b ∈ S, we get y ∈ F . Hence F is a filter of X. Let x ∈ F . Then s ∨ x = 1 for
some s ∈ S. Hence x ∈ (s)+. Thus (x)++ ⊆ (s)+. If t ∈ (x)++ ⊆ (s)+, then s ∨ t = 1 and
s ∈ S. Hence t ∈ F and thus (x)++ ⊆ F . Therefore F is a regular filter of X. �

Proposition 3.1. Every dual annihilator filter of a self-distributive and commutative BE-
algebra is a regular filter.

Proof. Let X be a self-distributive and commutative BE-algebra and F a dual annihilator
of X. Then F = S+ for some ∅ 6= S ⊆ X. Let x ∈ F = S+ be an arbitrary element. Then
(x)++ ⊆ S+++ = S+ = F . Therefore F = S+ is a regular filter of X. �

Corollary 3.1. Each dual annihilator (a)+, a ∈ X of a self-distributive and commutative
BE-algebra is a regular filter.

The converse of the above theorem is not true. For consider a proper regular filter
F 6= X satisfying the property F+ = {1} is not a dual annihilator because of F++ =
(F+)+ = ({1})+ = X 6= F . Hence F is not a dual annihilator. However, in the following,
we derive a sufficient condition for a regular filter to become a dual annihilator filter.

Definition 3.2. A filter F of a commutative BE-algebra is said to satisfy s-condition if
to each x /∈ F , there exists y ∈ F such that (x)++ = (y)+.
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Example 3.2. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 a c
b 1 1 1 c
c 1 a b 1

∨ 1 a b c
1 1 1 1 1
a 1 a a 1
b 1 a b 1
c 1 1 1 c

Then (X, ∗,∨, 1) is a commutative BE-algebra. Observe that (a)+ = (b)+ = {1, c}. and
(c)+ = {1, a, b}. Again (a)++ = (b)++ = {1, a, b} and (c)++ = {1, c} = (a)+ = (b)+.
Consider the filter F = {1, c} of X. Clearly F is a regular filter of X. It can be easily
verified that F is satisfying the s-condition.

Theorem 3.2. Let F be a non-dense (F+ 6= {1}) regular filter of a commutative BE-
algebra X. If F satisfies the s-condition, then F is a dual annihilator filter of X.

Proof. Let F be a non-dense regular filter of X. Assume that F satisfies the s-condition.
Clearly F ⊆ F++. Conversely, let x ∈ F++. Then F+ ⊆ (x)+. Suppose x /∈ F . Then
by s-condition, we get y ∈ F such that (x)++ = (y)+. Since y ∈ F and F is regular, we
get (y)++ ⊆ F . Hence F+ ⊆ (x)+ ⊆ (y)++ ⊆ F . Thus F+ = F ∩ F+ = {1}, which is
contradiction. Thus x ∈ F , which gives F++ ⊆ F . Hence F = F++. Therefore F is a
dual annihilator filter of X. �

Theorem 3.3. Let P be a non-dense (P+ 6= {1}) regular filter of a commutative BE-
algebra X. If P is prime, then P is a dual annihilator filter of X.

Proof. Let P be a non-dense regular filter of X. Assume that P is prime. Clearly P ⊆
P++. Conversely, let x ∈ P++. Suppose that x /∈ P . Since P is prime, we get (x)+ ⊆ P .
Since x ∈ P++, we get P+ = P+++ ⊆ (x)+ ⊆ P . Hence P+ = P ∩ P+ = {1}, which is
a contradiction. Thus x ∈ P , which gives P++ ⊆ P . Hence P = P++. Therefore P is a
dual annihilator filter of X. �

Definition 3.3. A prime filter P of a commutative BE-algebra is called minimal if there
exists no prime filter Q of X such that Q ⊂ P .

Example 3.3. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 a c
b 1 1 1 c
c 1 a b 1

∨ 1 a b c
1 1 1 1 1
a 1 a a 1
b 1 a b 1
c 1 1 1 c

Then (X, ∗,∨, 1) is a commutative BE-algebra. Consider the subset P = {1, c} of X.
Clearly P is a prime filter of X. Observe that the improper filter {1} is not prime because
of a ∨ c = 1 ∈ {1} but neither a ∈ {1} nor c ∈ {1}. Therefore P is a minimal prime filter
of X. Similarly, we observe that G = {1, a, b} is another minimal prime filter of X.

Theorem 3.4. A prime filter P of a self-distributive and commutative BE-algebra X is
minimal if and only if for each x ∈ P there exists y /∈ P such that x ∨ y = 1.

Proof. Assume that P is a minimal prime filter of X. Let x ∈ P . Put S0 = {x ∨ y | y ∈
X −P}. Consider S = S0 ∪ (X −P ) and x ∈ S. Then clearly S is a ∨-closed subset of X
with X−P ⊆ S. Suppose 1 /∈ S. Let S = {M |M is a proper filter of X and M∩S = ∅}.
Clearly 〈1〉 ∈ S. Let {M}α be a chain of elements of S. Clearly

⋃
α
Mα is an upper bound
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of {M}α in S. Then by the Zorn’s lemma, we get a maximal elements of S, say Q. We now
show that Q is prime. Let a, b ∈ X and suppose a /∈ Q and b /∈ Q. Then 〈Q ∪ {a}〉 = X
and 〈Q∪ {b}〉 = X. Hence 〈Q∪ {a}〉 ∩ 〈Q∪ {b}〉 = X 6= Q. Then by Theorem 2.3, we get
〈a〉 ∩ 〈b〉 * Q. Thus Q is a prime filter of X such that Q∩S = ∅. Hence Q∩ (X −P ) = ∅
and x /∈ Q because of X − P ⊆ S and x ∈ S. Thus Q ( P , which is a contradiction to
the minimality of P . Therefore 1 ∈ S = S0 ∪ (X − P ). Since 1 /∈ X − P , we must have
1 ∈ S0. Hence x ∨ y = 1 for some y ∈ X − P .

Conversely, assume that P is a prime filter of X satisfying the condition. Suppose Q is
a prime filter of X such that Q ⊂ P . Choose a ∈ P − Q. By the condition, there exists
x /∈ P such that a ∨ x = 1 ∈ Q. Since Q is prime and a /∈ Q, we must have x ∈ Q ⊂ P .
This contradiction proves that P is a minimal prime filter of X. �

We now derive some sufficient conditions for a prime filter of a commutative BE-algebra
to become a regular filter. In the following example, we observe that a prime filter of a
commutative BE-algebra need not be a regular filter.

Example 3.4. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 b 1 1
c 1 c c 1

∨ 1 a b c
1 1 1 1 1
a 1 a b c
b 1 b b c
c 1 c c c

Then clearly (X, ∗,∨, 1) is a commutative BE-algebra. Consider the subset F = {1, c} of
X. Clearly F is a prime filter of X. Now (c)+ = {1} and so (c)++ = (1)+ = X. Hence
(c)++ * F . Therefore F is not a regular filter of X.

Proposition 3.2. Every minimal prime filter of a self-distributive and commutative BE-
algebra is a regular filter.

Proof. Let P be a minimal prime filter of a self-distributive and commutative BE-algebra
X. Let x ∈ P . Since P is a minimal prime filter, there exists y /∈ P such that x∨y = 1. Let
t ∈ (x)++. Then we get (x)+ ⊆ (t)+. Hence y ∈ (x)+ ⊆ (t)+. Thus t ∈ (t)++ ⊆ (y)+ ⊆ P .
Hence (x)++ ⊆ P . Therefore P is a regular filter of X. �

The converse of the above proposition is not true. That is, every regular filter of
a commutative BE-algebra need not be a minimal prime filter. It can be seen in the
following example:

Example 3.5. Let X = {1, a, b, c, d} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c d
1 1 a b c d
a 1 1 a c d
b 1 1 1 c d
c 1 a b 1 d
d 1 a b c 1

∨ 1 a b c d
1 1 1 1 1 1
a 1 a a 1 1
b 1 a b 1 1
c 1 1 1 c 1
d 1 1 1 1 d

Then clearly (X, ∗,∨, 1) is a commutative BE-algebra. Consider the subset F = {1, a, b}
of X. Clearly F is a filter of X. Now (a)+ = {1, c, d}; (b)+ = {1, c, d}; (c)+ = {1, a, b, d}
and (d)+ = {1, a, b, c}. Hence (a)++ = (b)++ = {1, a, b} = F . Therefore F is a regular of
X. Observe that F is not even a prime filter of X because of c ∨ d = 1 ∈ F but neither
c ∈ F nor d ∈ F .
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Definition 3.4. For any prime filter P of a commutative BE-algebra X, define O(P ) =
{x ∈ X | x ∨ s = 1 for some s /∈ P}.

Example 3.6. Let X = {1, a, b, c, d} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c d
1 1 a b c d
a 1 1 1 1 d
b 1 c 1 c d
c 1 b b 1 d
d 1 a b c 1

∨ 1 a b c d
1 1 1 1 1 1
a 1 a b c 1
b 1 b b 1 1
c 1 c 1 c 1
d 1 1 1 1 d

Then clearly (X, ∗,∨, 1) is a commutative BE-algebra. Consider the subset P = {1, a, b, c}
of X. Clearly P is a prime filter of X. Now O(P ) = {x | x ∨ y = 1 for some y /∈ P} =
{1, a, b, c}. Now consider the filter F = {1, d}. Here O(F ) = {1, b, c, d}, which is not a
filter of X. Therefore a prime filter P is required to construct a proper regular filter O(P ).

Proposition 3.3. For any prime filter P of a commutative BE-algebra X,O(P ) is a
regular filter of X.

Proof. Clearly 1 ∈ O(P ). Let x ∈ O(P ) and x∗y ∈ O(P ). Then x∨a = 1 and (x∗y)∨b = 1
for some a /∈ P and b /∈ P . Since P is prime, we get a ∨ b /∈ P . Then by the argument
given in Theorem 3.1, we get y ∨ (a∨ b) = 1. Since a∨ b /∈ P , we get y ∈ O(P ). Therefore
O(P ) is a filter of X. Now, let x ∈ O(P ). Then x ∨ s = 1 for some s /∈ P . Let t ∈ (x)++.
Then s ∈ (x)+ ⊆ (t)+. Hence t ∨ s = 1 where s /∈ P . Thus t ∈ O(P ), which infers that
(x)++ ⊆ O(P ). Therefore O(P ) is a regular filter of X. �

Proposition 3.4. A prime filter P of a commutative BE-algebra X is a regular filter if
it satisfies the property: P+ 6= {1}.

Proof. Let P be a prime filter of X such that P+ 6= {1}. Let x ∈ P . Since P+ 6= {1},
there exists 1 6= a ∈ P+. Hence x ∨ a = 1. Since P ∩ P+ = ∅, we get a /∈ P . Now, let
t ∈ (x)++. Then a ∈ (x)+ ⊆ (t)+, which gives a∨ t = 1 ∈ P . Since P is prime, and a /∈ P ,
we must have t ∈ P . Hence (x)++ ⊆ P . Therefore P is a regular filter of X. �

We now derive a characterization theorem for regular filter of self-distributive and com-
mutative BE-algebras. For this purpose, we first observe the following necessary results:

Proposition 3.5. Let X be a self-distributive and commutative BE-algebra. Then for
any x ∈ X, we have

(x)+ = ∩{P | P is a minimal prime filter such that x /∈ P}

Proof. Let a ∈ (x)+ and P be a minimal prime filter such that x /∈ P . Then x ∨ a =
1 ∈ P . Since x /∈ P , we get a ∈ P for all minimal prime filters with x /∈ P . Hence
(x)+ ⊆ ∩{P | P is a minimal prime filter such that x /∈ P}. Conversely, suppose that
t /∈ (x)+. Then t ∨ x 6= 1. Then there exists a prime filter say P such that t ∨ x /∈ P .
Hence t /∈ P . Let = = {Q | Q is a prime filter such that t /∈ Q}. Clearly P ∈ =. Let
{Qi}i∈∆ be a chain in =. Clearly

⋂
i∈∆

Qi is a lower bound for {Qi}i∈∆. Therefore by Zorn’s

Lemma, = has a minimal element, say Q0. Since Q0 is an element of =, we get t /∈ Q0.
Clearly Q0 is a minimal prime filter such that t /∈ Q0. Hence

t /∈
⋂
{P | P is a minimal prime filter such that x /∈ P}

Therefore
⋂
{P | P is a minimal prime filter such that x /∈ P} ⊆ (x)+. �
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If X is a self-distributive BE-algebra, then clearly 〈a〉 = {x ∈ X | a ∗ x = 1}. Hence
we have

Lemma 3.2. If X is a self-distributive and commutative BE-algebra, then 〈a〉 ∩ 〈b〉 =
〈a ∨ b〉 for all a, b ∈ X.

Proof. Clearly 〈a ∨ b〉 ⊆ 〈a〉 ∩ 〈b〉. Conversely, let x ∈ 〈a〉 ∩ 〈b〉. Then a ∗ x = 1 and
b ∗ x = 1. Hence a ≤ x and b ≤ x, which gives a ∨ b ≤ x. Thus x ∈ 〈a ∨ b〉, which means
〈a〉 ∩ 〈b〉 ⊆ 〈a ∨ b〉. �

Lemma 3.3. Let X be a self-distributive and commutative BE-algebra. Then for all
a, b ∈ X

(a ∨ b)++ = (a)++ ∩ (b)++.

Proof. Let a, b ∈ X. Observed that (a)++ ∩ (b)++ = 〈a〉++ ∩ 〈b〉++ = (〈a〉 ∩ 〈b〉)++ =
(〈a ∨ b〉)++ = (a ∨ b)++. �

As a consequence of these results, a characterization theorem of regular filters is now
derived in the following:

Theorem 3.5. Let X be a self-distributive and commutative BE-algebra and F a filter
of X. Then the following conditions are equivalent.

(1) F is a regular filter;

(2) For x, y ∈ X, (x)+ = (y)+ and x ∈ F imply that y ∈ F ;

(3) F =
⋃
x∈F

(x)++;

(4) For x, y ∈ X,h(x) = h(y) and x ∈ F imply that y ∈ F where h(x) = {P ∈
Minp(X) | x ∈ P}, Minp(X) is the class of all minimal prime filters of X.

Proof. (1) ⇒ (2): Assume that F is a regular filter of X. Let x, y ∈ X be such that
(x)+ = (y)+ and x ∈ F . Since F is a regular filter, we get that y ∈ (y)++ = (x)++ ⊆ F .

(2) ⇒ (3): Assume the condition (2). Let x ∈ X. Then we have 〈x〉 ⊆ (x)++. Hence
F =

⋃
x∈F
〈x〉 ⊆

⋃
x∈F

(x)++. Conversely, let a ∈
⋃
x∈F

(x)++. Then (a)++ ⊆ (x)++ for some

x ∈ F . Hence (a)++ = (a)++ ∩ (x)++ = (a∨x)++. Hence (a)+ = (a)+++ = (a∨x)+++ =
(a ∨ x)+ and a ∨ x ∈ F . Therefore by condition (2), it yields that a ∈ F .

(3)⇒ (1): Assume the condition (3). Let a ∈ F . Then a ∈ (t)++ for some t ∈ F . Hence
(a)++ ⊆ (t)++ ⊆

⋃
x∈F

(x)++ = F . Therefore F is a regular filter of X.

(2)⇔ (4): It follows from the observation that h(x) = h(y)⇔ (x)+ = (y)+. Assume that
h(x) = h(y). Then

a ∈ (x)+ ⇔ a ∈ P for all P ∈Minp(X)− h(x)

⇔ a ∈ P for all P ∈Minp(X)− h(y)

⇔ a ∈ (y)+

Therefore we obtain that (x)+ = (y)+. Conversely, assume that (x)+ = (y)+. Then

P ∈Minp(X)− h(x) ⇔ P /∈ h(x)

⇔ x /∈ P

⇔ (x)+ ⊆ P

⇔ (y)+ ⊆ P

⇔ y /∈ P since P is minimal

⇔ P ∈Minp(X)− h(y)
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Therefore h(x) = h(y). Hence the theorem is proved. �

In [15], A. Rezaei and A.B. Saeid studied about the homomorphic images and inverse
images of filters of a BE-algebras. In general, the inverse image of a regular filter of
a commutative BE-algebras need not be a regular filter. However, in the following, we
observe a necessary and sufficient condition for the inverse image of a regular filter of a
commutative BE-algebra to become again a regular filter.

Theorem 3.6. Let f be a homomorphism of a commutative BE-algebra X into another
BE-algebra X ′. If G is a regular filter of X ′ and f−1 exists, then f−1(G) is a regular filter
of X if and only if f−1((x)+) is a regular filter of X for each x ∈ X ′.

Proof. Assume that f−1(G) is a regular filter of X for each regular filter G of X ′. Since
(x)+ is a regular filter of X ′ for each x ∈ X ′, we get that f−1((x)+) is a regular filter of
X. Conversely, assume that f−1((x)+) is a regular filter of X for each x ∈ X ′. Let G be
a regular filter of X ′. Then clearly f−1(G) is a filter of X. Let x, y ∈ X be such that
(x)+ = (y)+ and x ∈ f−1(G). Then f(x) ∈ G. For any a ∈ X ′, we get

a ∈ (f(x))+ ⇔ f(x) ∈ (a)+

⇔ x ∈ f−1((a)+)

⇔ y ∈ f−1((a)+) f−1((x)+) is a regular filter of X

⇔ f(y) ∈ (a)+

⇔ a ∈ (f(y))+

Hence (f(x))+ = (f(y))+. Since f(x) ∈ G and G is a regular filter, we get f(y) ∈ G. Thus
y ∈ f−1(G). Therefore f−1(G) is a regular filter in X. �

Theorem 3.7. Let X be a self-distributive and commutative BE-algebra X. Then the
following conditions are equivalent.

(1) every filter is a regular filter;

(2) every principal filter is a regular filter;

(3) every prime filter is a regular filter;

(4) for a, b ∈ X, (a)+ = (b)+ implies 〈a〉 = 〈b〉.

Proof. (1)⇒ (2): It is clear.

(2) ⇒ (3): Assume that every principal filter is a regular filter. Let P be a prime filter
of X. Suppose (a)+ = (b)+ and a ∈ P . Then clearly 〈a〉 ⊆ P . Since a ∈ 〈a〉 and 〈a〉
is a regular filter, we get that (a)++ ⊆ 〈a〉 ⊆ P . Hence b ∈ 〈b〉 ⊆ (b)++ = (a)++ ⊆ P .
Therefore P is a regular filter.

(3) ⇒ (4): Assume that every prime filter of X is a regular filter. Let a, b ∈ X such
that (a)+ = (b)+. Suppose 〈a〉 6= 〈b〉. Without loss of generality assume that 〈a〉 * 〈b〉.
Consider Σ = { F ∈ F(X) | a ∨ b ∈ F and a /∈ F }. Then clearly 〈a ∨ b〉 ∈ Σ. Let
{Fi}i∈∆ be a chain in Σ. Then clearly

⋃
i∈∆

Fi is a filter, a ∨ b ∈
⋃
i∈∆

Fi and a /∈
⋃
i∈∆

Fi.

Hence
⋃
i∈∆

Fi is an upper bound for {Fi}i∈∆ in Σ. Therefore, by Zorn’s Lemma, Σ has a

maximal element, say P . We now prove that P is prime. Let x, y ∈ X be such that x /∈ P
and y /∈ P . Hence P ⊂ 〈P ∪ {x}〉 and P ⊂ 〈P ∪ {y}〉. Therefore by the maximality of P ,
〈P ∪ {x}〉 and 〈P ∪ {y}〉 are not in Σ. Hence a ∈ 〈P ∪ {x}〉 and a ∈ 〈P ∪ {y}〉. Therefore

a ∈ 〈P ∪ {x}〉 ∩ 〈P ∪ {y}〉
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Since a /∈ P , we get 〈P ∪ {x}〉 ∩ 〈P ∪ {x}〉 6= P . By Theorem 2.3, we get 〈x ∨ y〉 =
〈x〉 ∩ 〈y〉 * P . Hence P is a prime filter. Therefore by condition (3), we get that P is a
regular filter of X. Since P ∈ Σ, we get that a ∨ b ∈ P and a /∈ P . Since P is prime, we
get b ∈ P . Since b ∈ P and P is a regular filter, we get a ∈ P , which is a contradiction to
a /∈ P . Therefore 〈a〉 = 〈b〉.
(4) ⇒ (1): Assume the condition (4). Let F be a filter of X. Suppose a, b ∈ X be such
that (a)+ = (b)+ and a ∈ F . Then b ∈ 〈b〉 = 〈a〉 ⊆ F . Hence F is a regular filter of X. �

4. Properties of prime regular filters

In this section, we derive some properties of the class of all prime regular filters of a
commutative BE-algebra. A necessary and sufficient condition is derived for every prime
regular filter to become maximal.

Let X be a commutative BE-algebra and P(X) denote the set of all prime regular
filters of X. For any S ⊆ X, let K(S) = {P ∈ P(X) | S * P} and for any x ∈ X;K(x) =
K({x}). Then we have the following observations which can be verified directly.

Lemma 4.1. Let X be a self-distributive and commutative BE-algebra and x, y ∈ X.
Then the following conditions hold:

(1)
⋃
x∈X

K(x) = P(X),

(2) K(x) ∩K(y) = K(x ∨ y),

(3) K(x) = ∅ ⇔ x = 1,

(4) K(x) = P(X) if and only if (x)+ = {1}.
Proposition 4.1. Let X be a self-distributive and commutative BE-algebra and x ∈ X.
Then the following conditions hold:

(1) K(〈x〉) = K(x) = K((x)++)

(2) K((x)++) ⊆ P(X)−K((x)+)

Proof. (1). Let P ∈ P(X) be such that P ∈ K(〈x〉). Then we get 〈x〉 * P . Hence
there exists y ∈ 〈x〉 such that y /∈ P . Hence x ≤ y, which implies x ∨ y = y. Suppose
x ∈ P . Then we get y = y ∨ x ∈ P , which is a contradiction. Thus P ∈ K(x). Hence
K(〈x〉) ⊆ K(x). Conversely, let P ∈ P(X) be such that P ∈ K(x). Hence x /∈ P .
Thus 〈x〉 * P . Therefore P ∈ K(〈x〉). Hence K(〈x〉) = K(x). We now prove that
K(〈x〉) = K((x)++). Let P ∈ P(X) be such that P ∈ K(〈x〉). Then 〈x〉 * P and hence
(x)++ * P because of 〈x〉 ⊆ (x)++. Thus P ∈ K((x)++). Therefore K(〈x〉) ⊆ K((x)++).
Conversely, choose that P ∈ P(X) such that P ∈ K((x)++). Hence (x)++ * P . Since P
is a regular filter, we get x /∈ P . Thus P ∈ K(x). Therefore K((x)++) ⊆ K(x).

(2). Let P ∈ P(X) be such that P ∈ K((x)++). Then we get (x)++ * P . Since P is a
regular filter, we get that x /∈ P . Hence (x)+ ⊆ P , which infers that P /∈ K((x)+). Thus
it yields that P ∈ P(X)−K((x)+). Therefore K((x)++) ⊆ P(X)−K((x)+). �

Definition 4.1. A proper regular filter M of a commutative BE-algebra is called a max-
imal regular filter if there exists no proper regular filter M0 such that M ⊂M0.

Example 4.1. In Example 3.1, the filter F = {1, a, b} is a regular filter which maximal
because of there exists no other proper filter which properly contains the regular filter F .

Theorem 4.1. Let X be a self-distributive and commutative BE-algebra. Then for any
P,Q ∈ P(X) there exists a, b ∈ X such that P ∈ K(a) −K(b) and Q ∈ K(b) −K(a) if
and only if every prime regular filter is maximal.
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Proof. Assume that for any P,Q ∈ P(X) there exists a, b ∈ X such that P ∈ K(a)−K(b)
and Q ∈ K(b)−K(a). Let P1 be a prime regular filter of X. Suppose there exists a proper
regular filter P2 of X such that P1 ⊂ P2. Since by the assumption, there exists two basic
open sets K(x) and K(y) such that P1 ∈ K(x) − K(y) and P2 ∈ K(y) − K(x). Since
P1 /∈ K(y), we get y ∈ P1 ⊂ P2, which is a contradiction to that P2 ∈ K(y). Hence P1 is
a maximal regular filter.

Conversely, assume that every prime regular filter is a maximal regular filter. Let P
and Q be two distinct elements of P(X). Hence by the assumption, both P and Q are
maximal regular filters in X. Hence P * Q and Q * P . Then there exists a, b ∈ X such
that a ∈ P − Q and b ∈ Q − P . Hence P ∈ K(b) −K(a) and Q ∈ K(a) −K(b). Hence
the proof is completed �

Proposition 4.2. Let X be a commutative BE-algebra. Then each dual annihilator (x)+

is a direct factor of X if and only if (x)+ ∨ (x)++ = X for all x ∈ X.

Proof. Assume that each dual annihilator is a direct factor of X. Let x ∈ X. Then (x)+ is a
direct factor of X. Then there exists a filter G such that (x)+∩G = {1} and (x)+∨G = X.
Since (x)+∩G = {1}, we get G ⊆ (x)++. Hence X = (x)+∨G ⊆ (x)+∨(x)++. Conversely,
assume the condition. Let x ∈ X. Clearly (x)+ ∩ (x)++ = {1} and by the assumption
(x)+ ∨ (x)++ = X. Therefore (x)+ is a direct factor of X. �

Theorem 4.2. Let X be a self-distributive and commutative BE-algebra such that each
dual annihilator is a direct factor of X. Then for any two P,Q ∈ P(X) with P 6= Q,
there exists a, b ∈ X such that P ∈ K(a) and Q ∈ K(b) with K(a) ∩K(b) = ∅ if and only
if for any two distinct prime regular filters P ′, Q′ in X, there exists a, b ∈ X such that
(a)+ ⊆ P ′ and (b)+ ⊆ Q′ and there does not exist any R ∈ P(X) such that a ∨ b /∈ R.

Proof. Assume that for any two P,Q ∈ P(X) with P 6= Q, there exists a, b ∈ X such that
P ∈ K(a) and Q ∈ K(b) with K(a) ∩K(b) = ∅. Let P ′, Q′ be two distinct prime regular
filters of X. Then there exists two open sets K(a) and K(b) such that P ′ ∈ K(a) and
Q′ ∈ K(b) and K(a)∩K(b) = ∅. Since P ′ ∈ K(a) = K((a)++), we get (a)++ * P ′. Choose
x ∈ (a)++ and x /∈ P ′. Hence (a)+ ⊆ (x)+ and (x)+ ⊆ P ′. Hence (a)+ ⊆ P . Similarly, we
obtain (b)+ ⊆ Q′. Suppose there exists a prime regular filter R such that a∨ b /∈ R. Then
R ∈ K(a ∨ b) = K(a) ∩K(b), which is a contradiction to that K(a) ∩K(b) = ∅.

Conversely, assume the condition. Let P,Q be two distinct elements of P(X). Then
by the assumption, there exists a, b ∈ X such that (a)+ ⊆ P and (b)+ ⊆ Q. Hence by
the assumption, we get (a)+ and (b)+ are direct factors of X. Therefore by the above
proposition, we get (a)+∨ (a)++ = X = (b)+∨ (b)++. Suppose a ∈ P . Since P is a regular
filter, we get (a)++ ⊆ P . Hence X = (a)+ ∨ (a)++ ⊆ P , which is a contradiction. Hence
a /∈ P . Similarly, we get b /∈ Q. Hence P ∈ K(a) and Q ∈ K(b). Suppose K(a)∩K(b) 6= ∅.
Then there exists a prime regular filter R such that R ∈ K(a) ∩K(b) = K(a ∨ b). Hence
a ∨ b /∈ R, which is a contradiction. Thus the proof is completed. �

Theorem 4.3. Let Y be a non-empty subset of P(X) such that
⋂
P∈Y

P = {1}. Then for

any two P,Q ∈ Y with P 6= Q, there exists a, b ∈ X such that P ∈ K(a) and Q ∈ K(b)
with K(a) ∩ K(b) = ∅ if and only if for each P ∈ Y, P is the unique member in Y that
containing O(P ).

Proof. Assume that for any two P,Q ∈ Y with P 6= Q, there exists a, b ∈ X such that
P ∈ K(a) and Q ∈ K(b) with K(a) ∩K(b) = ∅. Let P ∈ Y . Clearly O(P ) ⊆ P . Suppose
Q ∈ Y such that O(P ) ⊆ Q and P 6= Q. Then there exist a, b ∈ X such that P ∈ K(a)
and Q ∈ K(b) and K(a ∨ b) = K(a) ∩ K(b) ∩ Y = ∅. Hence a ∨ b ∈ R for all R ∈ Y .
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Since
⋂
P∈Y

P = {1}, we get a ∨ b = 1. Since a /∈ P , we get b ∈ O(P ) ⊆ Q, which is a

contradiction to that b /∈ Q. Hence P is the unique member in Y such that O(P ) ⊆ P .

Conversely, assume that P is the unique member in Y such that O(P ) ⊆ P . Let P1 and
P2 be two distinct elements in Y . Hence by hypothesis, we get O(P1) * P2. Then choose
x ∈ O(P1) such that x /∈ P2. Since x ∈ O(P1), there exists y /∈ P1 such that x ∨ y = 1.
Thus P1 ∈ K(y) and P2 ∈ K(x). Then clearly K(x) ∩K(y) ∩ Y = K(x ∨ y) ∩ Y = ∅. �

Conclusion: In this paper, we introduced the notion of regular filters of self-distributive
and commutative BE-algebras and obtained some sufficient conditions for a prime filter
to become a regular filter. In addition, we have established some equivalent conditions for
a filter of a self-distributive and commutative BE-algebra to become a regular filter. We
think such results are very useful for the further characterization of prime regular filters
in terms of congruences of this structure.

Now, in the following diagram we summarize the results of this paper and the past
results in this field and we give the relations among prime filters, dual annihilator filters,
minimal prime filters. The mark A → B means that A implies B. A condition with the
mark A→ B indicates that A conclude B with the condition.

For the future research, we investigate some new filters of commutative BE-algebras with
the help of dual annihilator filter and regular filters.

Acknowledgements: The authors would like to thank the referees for their valuable
suggestions and comments that improved the presentation of this article.
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