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FIXED POINT THEOREMS FOR MULTIVALUED WORDOWSKI

TYPE CONTRACTIONS IN B-METRIC SPACES WITH AN

APPLICATION TO INTEGRAL INCLUSIONS

HEDDI KADDOURI1, SAID BELOUL2, §

Abstract. The aim of this work is to give some fixed point results for set valued F-
contractions combined with the concept of αs-admissible in b-metric spaces. some con-
sequences are established on b-metric spaces endowed with a partial ordering, graph. An
example and an application to integral inclusions are given to demonstrate the usability
of our results.
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1. Introduction

The metric spaces were generalized to some types, and an important one of these gen-
eralizations so called b-metric spaces, which have been introduced by Bakhtin [7] and
Czerwik [11]. Later, some fixed point results were obtained in such spaces, for single
valued or set valued mappings, for instance see [1, 6, 10, 12]. On other hand Wordowski
[25] introduced a new contraction type called F-contraction (or Wordowski contraction),
which considered as a generalization of Banach contraction and in this way many works
were done.
The concept of α-admissible in the setting of metric spaces was introduced by Samet et al.
[21], where they proved some fixed point theorems for α− ψ-contractive mappings, some
results were obtained via such concepts, see [4,13, 15, 19]. Later Ali et al. [2] introduced
the concept of αs-admissible in the setting of b-metric spaces.

In this paper, we present an existence theorem of multivalued fixed point in b-metric
space, using F-contractions concept combined with the notion of αs-admissible. As con-
sequences, we present an existence of multivalued fixed point theorem in ordered b-metric
spaces and another theorem in b-metric spaces endowed with graph. We give also an ex-
ample and an application to the existence of the solution for a Fredholm integral inclusion.
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2. Preliminaries

Before going towards our findings, we need the following definitions and notions.

Definition 2.1 (2). Let X be a nonempty set. A mapping d : X ×X → [0,∞) is said to
be a b-metric on X if for all x, y, z ∈ X, we have a real number s ≥ 1 such that:

(b1) : d(x, y) = 0 if and only if x = y ;
(b2) : d(x, y) = d(y, x);
(b3) : d(x, z) ≤ s [d(x, y) + d(y, z)].

Then the triplet (X, d, s) is said to be a b-metric space.
Note that every metric space is a b-metric but the converse is not always true.

Example 2.1. Let X = [0,∞) and d : X × X → [0;∞), d(x, y) = |x − y|2 for each
x, y ∈ X. Clearly, (X, d, 2) is a b-metric space, but not a metric space.

Let (X, d, s) be a b-metric space. The closed and bounded sets in X are defined in a
similar manner as for a metric space. We denote by CB(X) the family of all bounded and
closed subsets of X.
Let x ∈ X and A ⊂ X, D(x,A) = inf{d(x, a), a ∈ A}. For A,B ∈ CB(X), the function
H : CB(X)× CB(X)→ [0;∞)

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

is said to be a Hausdorff b-metric [11] induced by the b-metric d.
Also, denote the family of nonempty and closed subsets of X by CL(X), the function
H : CL(X)× CL(X)→ [0;∞], given by

H(A,B) =

max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
if the maximum exists;

∞, otherwise,

is said to be a generalized Hausdorff b-metric induced by b-metric d.

Lemma 2.1 (2). Let (X, d, s) be a b-metric space. For any A,B ∈ CB(X) and any
x, y ∈ X the following properties are satisfied.

(1) : D(x,A) ≤ d(x, a) for each a ∈ A;
(2) : D(x,B) ≤ H(A,B) for each x ∈ X;
(3) : D(x,A) ≤ s [d(x, y) +D(y,A)] .

Lemma 2.2. [?] Let (X, d, s) be a b-metric space and A,B ∈ CL(X) with H(A,B) > 0.
Then, for each b ∈ B, there exists a = a(b) ∈ A such that

d(a, b) ≤ sH(A,B).

Lemma 2.3 (12). Let (X, d, s) be a b-metric space and A,B ∈ CL(X). For each ε > 0
and all b ∈ B, there exists a ∈ A such that

d(a, b) ≤ H(A,B) + ε.

Definition 2.2 (10). Let s ≥ 1 be a real number. We denote by Fs the family of all
functions F : R+ → R with the following properties:

(F1) : F is strictly increasing;
(F2) : For each sequence {αn} ⊂ R+, lim

n→∞
αn = 0 if and only if lim

n→∞
F (αn) = −∞;

(F3) : There exists k ∈ (0, 1) such that lim
α→0+

(α)kF (α) = 0;
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(F4) : For each sequence {αn} ⊂ R+ such that τ + F (sαn) ≤ F (αn−1) for n ∈ N and
some τ > 0, then τ + F (snαn) ≤ F (sn−1αn−1).

Example 2.2. (1) : Let F : (0,∞)→ R be defined by F (t) = t+ ln t. Clearly, F ∈ Fs.
(2) : Let F : (0,∞)→ R be defined by F (t) = ln t. F ∈ Fs

Definition 2.3 (24). Let X be a nonempty set and let T : X → X, α : X ×X → [0,∞)
be two mappings.For a giver real number s ≥ 1, T is weak α-admissible of type S if for
x ∈ X and α(x, Tx) ≥ s, then α(Tx, TTx) ≥ s.

Definition 2.4 (2). Let (X, d, s) be a b-metric space and α : X ×X → [0,+∞) be a given
function. A mapping T : X → CL(X) is an
(1) αs-admissible, if for each x ∈ X and y ∈ Tx with α(x, y) ≥ s2, we have α(y, z) ≥ s2

for each z ∈ Ty.
(2) α∗s-admissible, if for x, y ∈ X with α(x, y) ≥ s we have α∗(Tx, Ty) ≥ s2, where
α∗(Tx, Ty) = inf {α(a, b) : a ∈ Tx, b ∈ Ty} .

Throughout this paper, we will denote by Φ the set of all continuous functions ψ :
[0,+∞)→ [0,∞) satisfying :

(1) : ψ is nondecreasing;
(2) : ψ(t) = 0 if and only if t = 0;

(3) :
∞∑
n=1

snψn(t) <∞, for all t ∈ [0; +∞).

Clearly, if ψ ∈ Φ, then ψ(t) ≤ t, for all t ∈ [0; +∞).

3. Main results

Theorem 3.1. Let (X, d, s) be a complete b-metric space, α : X ×X → [0,∞)
a function. Let T : X → CB(X) be a multi-valued mapping such that

τ + F (s3H(Tx, Ty)) ≤ F (ψ(Ms(x, y))), (1)

for all x, y ∈ X, with α(x, y) ≥ s2 and H(Tx, Ty) > 0, where F ∈ Fs, ψ ∈ Φ and

Ms(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2s

}
. (2)

Suppose that the following conditions hold:

(i) T is αs admissible;
(ii) There exist x0 ∈ X, and x1 ∈ Tx0 such that α(x0, x1) ≥ s2;
(iii) For every sequence {xn} in X converges to x in X and α(xn, xn+1) ≥ s2, for all

n ∈ N, then α(xn, x) ≥ s2, for all n ∈ N.
Then T has a fixed point.

Proof. By the hypothesis (ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ s2.
If x0 = x1, so x0 ∈ Tx0 and x1 is a fixed point of T , which completes the proof. Suppose
x0 6= x1 and x0 /∈ Tx0, so H(Tx0, Tx1) > 0.

By Lemma 2.2, there exists x2 ∈ Tx1 such that

d(x1, x2) ≤ s2H(Tx0, Tx1),

which implies

sd(x1, x2) ≤ s3H(Tx0, Tx1).
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F is strictly increasing and ψ(t) ≤ t for all t ≥ 0, we get

F (sd(x1, x2)) ≤ F (s3H(Tx0, Tx1))

≤ F
(
ψ(Ms(x0, x1))

)
− τ

≤ F (Ms(x0, x1))− τ.

This yields,

F (sd(x1, x2)) ≤ F (Ms(x0, x1))− τ, (3)

where

Ms(x0, x1) = max

{
d(x0, x1), D(x0, Tx0), D(x1, Tx1),

D(x0, Tx1) +D(x1, Tx0)

2s

}
≤ max

{
d(x0, x1), d(x0, x1), D(x1, Tx1),

D(x0, Tx1) + d(x1, x1)

2s

}
≤ max

{
d(x0, x1), D(x1, Tx1),

D(x0, Tx1)

2s

}
.

Since

D(x0, Tx1)

2s
≤ s [d(x0, x1) +D(x1, Tx1)]

2s

≤ [d(x0, x1) +D(x1, Tx1)]

2
≤ max {d(x0, x1), D(x1, Tx1)} ,

we get

Ms(x0, x1) ≤ max {d(x0, x1), D(x1, Tx1)} .

If max {d(x0, x1), D(x1, Tx1)} = D(x1, Tx1), then

F (D(x1, Tx1) < F (s3H(Tx0, Tx1)

≤ F (ψ(D(x1, Tx1)))− τ
≤ F (D(x1, Tx1))− τ
< F (D(x1, Tx1)).

This yields, F (D(x1, Tx1)) < F (D(x1, Tx1)), From (F1) we get D(x1, Tx1) < D(x1, Tx1),
which is a contradiction. Consequently, we obtain

F (sd(x1, x2)) ≤ F (d(x0, x1))− τ. (4)

Proceeding as before, assume that x1 6= x2 and x1 /∈ Tx1. Thus d(x2, Tx2) > 0, and
H(Tx1, Tx2) > 0.
Since α(x0, x1) ≥ s2, and T is αs-admissible, we get α(x1, x2) ≥ s2, for x2 ∈ Tx1. Also,
by Lemma 2.2, there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ s2H(Tx1, Tx2),

which implies

sd(x2, x3) ≤ s2H(Tx1, Tx2).
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Since F is strictly increasing and ψ(t) ≤ t for all t ≥ 0, we get

F (sd(x2, x3)) ≤ F (s3H(Tx1, Tx2))

≤ F
(
ψ(Ms(x1, x2))

)
− τ

≤ F (Ms(x1, x2))− τ,

which gives

F (sd(x2, x3)) ≤ F (Ms(x1, x2))− τ, (5)

where

Ms(x1, x2) = max

{
d(x1, x2), D(x1, Tx1), D(x2, Tx2),

D(x1, Tx2) +D(x2, Tx1)

2s

}
≤ max

{
d(x1, x2), D(x2, Tx2),

D(x1, Tx2)

2s

}
.

Since

D(x1, Tx2)

2s
≤ max {d(x1, x2), D(x2, Tx2)} ,

we get

Ms(x1, x2) ≤ max {d(x1, x2), D(x2, Tx2)} .
If max {d(x1, x2), D(x2, Tx2)} = D(x2, Tx2), then

F (D(x2, Tx2) < F (s3H(Tx1, Tx2)

≤ F (ψ(D(x2, Tx2)))− τ
≤ F (D(x2, Tx2))− τ < F (D(x2, Tx2)),

which implies, F (D(x2, Tx2)) < F (D(x2, Tx2)). From (F1) we getD(x2, Tx2) < D(x2, Tx2),
which is a contradiction. Consequently, we obtain

F (sd(x2, x3)) ≤ F (d(x1, x2))− τ (6)

By continuing in this manner, we can construct a sequence {xn} ⊂ X such that xn 6=
xn+1 ∈ Txn, α(xn, xn+1) ≥ s2 and

F (sd(xn, xn+1)) ≤ F (d(xn−1, xn))− τ, for all n ∈ N. (7)

Let bn := d(xn, xn+1) for all n ∈ N ∪ {0}. Thus, from (F4) and using (7), we get

F (snbn) ≤ F (bn−1)− τ ≤ · · · ≤ F (b0)− nτ, for all n ∈ N (8)

Letting n→∞ in (3.8), we get limn→∞ F (snbn) = −∞. Then, by property (F2), we have

lim
n→∞

snbn = 0. (9)

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(snbn)kF (snbn) = 0. (10)

By (8), for all n ∈ N, we infer that

(snbn)kF (snbn)− (snbn)kF (b0) ≤ −(snbn)knτ ≤ 0. (11)

Letting n→∞ in (11) and using (10), we get

lim
n→∞

n(snbn)k = 0.
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By the definition of limit, there exists n1 ∈ N such that n(snbn)k ≤ 1, for all n ≥ n1.
Thus, we have

snbn ≤
1

n1/k
, for all n ≥ n1. (12)

To prove that {xn} is a Cauchy sequence, let m > n ≥ n1. Then, using the triangular
inequality and (12), we have

d(xn, xm) ≤
m−1∑
j=n

sjd(xj , xj+1)

=
m−1∑
j=n

sjbj ≤
m−1∑
j=n

1

j1/k

≤
∞∑
j=n

1

j1/k
<∞.

Since it is a partial sum of a convergent series. For n,m→∞ we get d(xn, xm)→ 0. Hence
{xn} is a Cauchy sequence. Since (X, d) is complete metric space, so {xn} is convergent
to some z ∈ X.
Now we claim z ∈ Tz, we have α(xn, z) ≥ s2. If there exists p ∈ N such d(xp+1, T z) = 0,
then from the uniqueness of limit, d(z, Tz) = 0 and so z ∈ Tz. Otherwise there exists
n2 ∈ N such that d(xn+1, T z) > 0 which gives H(Txn, T z) > 0 for all n > n2. Thus, we
have

F (d(xn+1, T z)) ≤ F (H(Txn, T z))

≤ F (s3H(Txn, T z))

≤ F (ψ(Ms(xn, z))− τ
≤ F (Ms(xn, z))− τ

Since F is strictly increasing, we get

d(xn+1, T z) < Ms(xn, z),

where

Ms(xn, z) = max

{
d(xn, z), D(xn, Txn), D(z, Tz),

D(xn, T z) +D(z, Txn)

2s

}
≤ max

{
d(xn, z), d(xn, xn+1), D(z, Tz),

D(xn, T z) + d(z, xn+1)

2s

}
.

for all n > n2. Letting n→∞ in the previous inequality, we obtain

d(z, Tz) ≤ d(z, Tz),

which gives that d(z, Tz) = 0. This completes the proof. �

Since each α∗s-admissible mapping is also αs-admissible, we obtain following result.

Corollary 3.1. Let (X, d, s) be a complete b-metric space, α : X × X → [0,+∞) be a
function and T : X → CB(X) be a multivalued mapping. Assume that the following
conditions hold:

(i) T is an α∗s-admissible.
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ s2.
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(iii) For every sequence {xn} ⊂ X converges to some x in X and α∗(xn, xn+1) ≥ s2,
for all n ∈ N . Then α∗(xn, x) ≥ s2, for all n ∈ N.

(iv) There exist F ∈ F , ψ ∈ Φ and τ > 0 such that

τ + F (s3H(Tx, Ty)) ≤ F (ψ(Ms(x, y))),

where

Ms(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2s

}
.

Then T has a fixed point.

Example 3.1. Let X = {1, 2, 4} and d(x, y) = |x − y|2. Define T : X → CB(X) and
α : X ×X → [0,∞) by

Tx =

{
{2}, x ∈ {1, 2}
{1}, x = 4

and

α(x, y) =

{
4, (x, y) ∈ {(1, 2), (1, 4)}
0, otherwise.

Taking F (x) = lnx+ x, ψ(t) = t, τ = 1
5 , we need to show that

8H(Tx, Ty)e8H(Tx,Ty) ≤ ψ(M2(x, y))eψ(M2(x,y))e−
1
5 ,

for all x, y ∈ X with H(Tx, Ty) > 0 and α(x, y) ≥ 4.

(1) For x = 1 and y = 2, we have

H(T1, T2) = 0, d(1, 2) = 1, ψ(d(1, 2)) = d(1, 2) = 1,

then

8H(T1, T2)e8H(T1,T2) ≤ ψ(d(1, 2))eψ(d(1,2))e−
1
5

≤ ψ(M(1, 2))eψ(d(1,2))e−
1
5 .

(2) For x = 1 and y = 4, we have

H(T1, T4) = 1, d(1, 4) = 9, and ψ(d(1, 4)) = d(1, 4) = 9,

then

8H(T1, T4)e8H(T1,T4) ≤ ψ(d(1, 4))eψ((d(1,4))e−
1
5

≤ ψ(M2(1, 4))eψ((d(1,4))e−
1
5 .

It is easy to see that T is an αs-admissible and there exist x0 = 4 and x1 = 1 ∈ Tx0 such
that α (x0, x1) ≥ 4. Also, it is obvious that T is α-lower semi-continuous. Consequently,
all conditions of Theorem 3.1 are satisfied. Then T has a fixed point which is 2.

Now, we give new fixed point results on a b-metric space endowed with a partial order-
ing/graph, by using the results provided in previous section. Define

α : X ×X → [0,+∞), α (x, y) =

{
s2, if x � y,
0, otherwise.

Then the following result is a direct consequence of our results.

Theorem 3.2. Let (X,�, d) be a complete ordered b-metric space and T : X → CB(X)
be a multivalued mapping. Assume that the following assertions hold.

(1) For each x ∈ X and y ∈ Tx with x � y, we have y � z for all z ∈ Ty;
(2) There exist x0 ∈ X and x1 ∈ Tx0 such that x0 � x1;
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(3) For x ∈ X and a sequence {xn} in X with
limn→∞ d(xn, x) = 0 and xn � xn+1 for all n ∈ N, implies

lim inf
n→∞

d(xn, Txn) ≥ d(x, Tx)

or, for every sequence {xn} in X such that xn → x ∈ X and xn � xn+1 for all
n ∈ N, we have xn � x for all n ∈ N;

(4) There exist F ∈ Fs, ψ ∈ Φ and τ > 0 such that

τ + F (s3H(Tx, Ty)) ≤ F (ψ(Ms(x, y))),

where

Ms(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2s

}
.

Then T has a fixed point.

Now, we present the existence of fixed point for multivalued mappings from a b-metric
space X, endowed with a graph, into the space of nonempty closed and bounded subsets
of the metric space. Consider a graph G such that the set V (G) of its vertices coincides
with X and the set E (G) of its edges contains all loops; that is, E (G) ⊇ ∆, where
∆ = {(x, x) , x ∈ X}. We assume G has no parallel edges, so we can identify G with the
pair (V (G) , E (G)).

We define the function

α : X ×X → [0,+∞), α (x, y) =

{
s2, if (x, y) ∈ E (G) ,

0, otherwise.

Theorem 3.3. Let (X, d, s) be a complete b-metric space endowed with a graph G and
T : X → CB(X) be a multivalued mapping. Assume that the following conditions hold:

(1) For each x ∈ X and y ∈ Tx with (x, y) ∈ E(G), we have (y, z) ∈ E(G) for all
z ∈ Ty;

(2) There exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E(G);
(3) For every sequence {xn} in X such that xn → x ∈ X and (xn, xn+1) ∈ E(G) for

all n ∈ N, we have (xn, x) ∈ E(G) for all n ∈ N;
(4) There exist F ∈ Fs, ψ ∈ Φ and τ > 0 such that

τ + F (s3H(Tx, Ty)) ≤ F (ψ(Ms(x, y))), (13)

where

Ms(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2s

}
.

Then T has a fixed point.

4. Application

In this section, we apply our obtained results to prove existence theorem of solution
for an integral inclusion of Fredholm-type . For this purpose, let X := C([a, b],R) be the
space of all continuous real valued functions on [a, b]. Note that X is complete b-metric
space by considering d(x, y) = supt∈[a,b] |x(t)− y(t)|2 with s = 2.
Consider now the following problem

x(t) ∈ h(t) +

∫ b

a
P (t, s, x(s))ds, t ∈ J = [a, b]. (14)

where h ∈ X and P : J × J × R→ CB(R).
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Our hypotheses are on the following data:

(A) : For each x ∈ X, the multivalued operator Px(t, s) := P (t, s, x(s)), (t, s) ∈ J × J
is lower semi-continuous;

(B) : There exists a continuous function η : J × J → [0,+∞) such that

|qx1(t, s)− qx2(t, s)|2 ≤ η(t, s)|x1(s)− x2(s)|2.
For all x1, x2 ∈ X with (x1, x2) ∈ E(G) and x1 6= x2, all qx1 ∈ Px1 , qx2 ∈ Px2 and
for each (t, s) ∈ J × J ;

(C) : there exists τ > 0 such that

sup
t∈J

∫ b

a
|η(t, s)|ds ≤ e−τ

8
;

(D) : There exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E(G).
(E) : For each x ∈ X and y ∈ Tx with (x, y) ∈ E(G), we have (y, z) ∈ E(G) for all

z ∈ Ty;
(F) : For every sequence {xn} in X such that xn → x ∈ X and (xn, xn+1) ∈ E(G) for

all n ∈ N, we have (xn, x) ∈ E(G) for all n ∈ N.

Theorem 4.1. Under assumptions (A)− (F ) the integral inclusion (14) has a solution in
X.

Proof. We have to show that the operator T satisfies all conditions of Theorem 3.3.
Consider the set-valued operator T : X → CB(X) as follows

Tx(t) =

{
y ∈ X : y ∈ h(t) +

∫ b

a
P (t, s, x(s))ds, t ∈ J

}
.

Note that the integral inclusion (14) has a solution if and only if T has a fixed point in X.
For the set-valued operator Px(t, s) : J × J → CB(R), it follows from Michaels selection
theorem for x ∈ X there exists a continuous operator qx : J × J → R such that qx(t, s) ∈
Px(t, s) for all t, s ∈ J × J. It follows that h(t) +

∫ b
a qx(t, s)ds ∈ Tx, so Tx is non-empty

for all x ∈ X. Since h and qx are continuous on J, resp. J2, their ranges are bounded and
closed and hence Tx is bounded, i.e., T : X → CB(X).
Let x1, x2 ∈ X with (x1, x2) ∈ E(G) and x1 6= x2, and let v1 ∈ Tx1. Then

v1(t) ∈ h(t) +

∫ b

a
P (t, s, x1(s))ds, t ∈ J.

It follows that

v1(t) = h(t) +

∫ b

a
qx1(t, s)ds, (t, s) ∈ J × J,

where qx1(t, s) ∈ Px1(t, s).
From (B), there exists w(t, s) ∈ Px2(t, s) such that

d(qx1(t, s)− w(t, s)) ≤ η(t, s) · |x1(s)− x2(s)|2,
for all (t, s) ∈ J × J . Consider the multivalued operator L defined by

L(t, s) = Px2(t, s) ∩ {z ∈ R : |qx1(t, s)− z| ≤ η(t, s) · |x1(s)− x2(s)|2},
for all (t, s) ∈ J × J . Since, by (A), L is lower semi-continuous, there exists a continuous
function qx2(t, s) ∈ L(t, s) for t, s ∈ J . Thus, we have

v2(t) = h(t) +

∫ b

a
qx2(t, s)ds ∈ h(t) +

∫ b

a
P (t, s, x2(s))ds, t ∈ J
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and

|v1(t, s)− v2(t, s)|2 ≤
∫ b

a
|qx1(t, s)− qx2(t, s)|2ds

≤
∫ b

a
η(t, s)|x1(s)− x2(s)|2ds

≤ sup
s∈[a,b]

|x1(s)− x2(s)|2
∫ b

a
η(t, s)ds

= d(x1, x2)

∫ b

a
η(t, s)ds

≤ e−τ

8
d(x1, x2).

Consequently, we have

8d(v1, v2) ≤ e−τd(x1, x2),

which implies that

8H(Tx1, Tx2) ≤ e−τd(x1, x2).

Taking logarithm of two sides in above inequality we get

τ + ln(8H(Tx1, Tx2)) ≤ ln(d(x1, x2))

≤ ln(M2(x1, x2)),

for all x1, x2 ∈ X with (x1, x2) ∈ E(G) and x1 6= x2, Thus, we observe that the operator
T satisfies condition (13) with F (t) = ln t and ψ(t) = t. All other conditions of Theorem
3.3 immediately follows by the hypothesis. Therefore, T has a fixed point, that is, the
Fredholm-type integral inclusion (14) has a solution in X. �

5. Conclusions

In this study, we have established some fixed point results for a set valued contrac-
tion of Wordowski type combined with α-admissibility property and Geraghty contractive
condition in the setting of b-metric spaces. An example has been given to illustrate the
usability of our results. We have also gave some consequences on b-metric spaces endowed
with partial ordering, graph. We have also furnished an application of the existence of
solutions for fredholm-type integral inclusions results.
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