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COEFFICIENT ESTIMATES FOR BI-UNIVALENT MA-MINDA TYPE

FUNCTIONS ASSOCIATED WITH q-DERIVATIVE

HAMID SHAMSAN1, READ S. A. QAHTAN1, S. LATHA1, §

Abstract. In this article, we consider a new subclasses of analytic and bi-univalent func-
tions associated with q-derivative in the open unit disk. We obtain coefficient bounds for
the Taylor-Maclaurin coefficients |a2| and |a3| of the functions from these new subclasses.
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1. Introduction

Let the collection of functions f that are analytic in the open unit disk U = {z : z ∈
C and |z| < 1}, and normalized by conditions f(0) = f ′(0) − 1 = 0 be denoted by the
symbol A. Equivalently, if f ∈ A, then the Taylor-Maclaurin series representation has the
form:

f(z) = z +
∞∑
n=2

anz
n, z ∈ U . (1)

Furthermore, let us name by S the most basic sub-collection of the set A that are uni-
valent in U . The well-known Köebe one-quarter theorem [7] ensures that the image of U
under every univalent function f ∈ A contains a disk of radius 1

4 . Hence, every univalent

function f has an inverse f−1 satisfying f−1(f(z)) = z, z ∈ U and

f−1(f(ω)) = ω,

(
|ω| < r0(f), r0(f) ≥ 1

4

)
,

where

g(ω) = f−1(ω) = ω − a2ω2 + (2a22 − a3)ω3 − (5a32 − 5a2a3 + a4)ω
4 + .... (2)

A function f ∈ A is said to be bi-univalent in U if f and f−1 are univalent in U . Let σ
denote the class of bi-univalent functions defined in the unit disk U . The familiar Köebe
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function is not an element of σ because it univalently maps the unit disk U onto the entire
complex plane minus a slit along the line from −1

4 to −∞. Hence, the image domain
does not contain the unit disk U . In 1985, Louis de Branges [6] proved the celebrated
Bieberbach conjecture, which states that, for each f ∈ S given by the Taylor-Maclaurin
series expansion (1), the following coefficient inequality is true

|an| ≤ n (n ∈ N− {1}),
where N is the set of positive integers. The class of analytic bi-univalent functions was
first introduced and studied

by Lewin [9] who proved that |a2| < 1.51. Later, Brannan and Clunie [4] improved
Lewin’s result to |a2| ≤

√
2. Brannan and Taha [5] and Taha [15] considered certain

subclasses of bi-univalent functions similar to the familiar subclasses of univalent functions
formed by strongly starlike, starlike, and convex functions. They introduced bi-starlike
functions and bi-convex functions and established non-sharp estimates for the first two
Taylor-Maclaurin coefficients |a2| and |a3|. For two analytic functions f and g in U , the
subordination between them is written as f ≺ g. The function f(z) is subordinate to
g(z) if there is a Schwarz function w with w(0) = 0, |w(z)| < 1, for all z ∈ U , such that
f(z) = g(w(z)) for all z ∈ U . The q-difference operator which was introduced by Jackson
[8] (see also [2, 3, 12, 14, 16, 17]) is defined as

Dqf(z) =
f(z)− f(qz)

z(1− q)
, z ∈ U − {0}. (3)

In addition, the q-derivative at zero defined for |q| > 1, Dqf(0) = Dq−1f(0). In some
literature the q-derivative at zero is defined as f ′(0) if it exists.
Equivalently (3), may be written as

Dqf(z) = 1 +
∞∑
n=2

[n]qanz
n−1, z 6= 0,

where

[n]q =

{
1−qn
1−q , q 6= 1

n, q = 1.

Making use of the q-derivative, we define the subclasses S∗q (α) and Kq(α) of the class A
for 0 ≤ α < 1 by

Definition 1.1. A function f of the form (1) is in the class S∗q (α), if and only if

<
{
zDqf(z)

f(z)

}
> α, for all z ∈ U .

Definition 1.2. A function f of the form (1) is in the class Kq(α), if and only if

<

{
1 +

qzD2
qf(z)

Dqf(z)

}
> α, for all z ∈ U .

Observe that f ∈ Kq(α) if and only if zDqf ∈ S∗q (α)
and

lim
q→1−

S∗q (α) = S∗(α),

lim
q→1−

Kq(α) = K(α),

where S∗(α), K(α) are the classes of starlike and convex functions of order α respectively.
These classes is introduced and studied by Seoudy and Aouf [13]. In the present work, we
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deduce estimates for the initial coefficients |a2| and |a3| of two new subclass of the class of
bi-univalent functions σ. Let ϕ be an analytic function with positive real part in U such
that ϕ(0) = 1, ϕ(0) > 0 and ϕ(U) is symmetric with respect to real axis. Such a function
has a series expansion of the form

ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + ..., (B1 > 0). (4)

With this brief introduction, we define the following class of bi-univalent functions and
finding the coefficient estimates with the help of q-derivative.
In order to derive our main results, we have to recall here the following lemma.

Lemma 1.1. [11] If the function p ∈ P is given by the series

p(z) = 1 + c1z + c2z
2 + c3z

3 + ..., (5)

where P is the family of all functions p(z) analytic in U and satisfy <{p(z)} > 0. Then
the following sharp estimate holds:

|cn| ≤ 2 (n = 1, 2, ...)

2. Main results

Definition 2.1. A function f ∈ σ is said to be in the class Hσ,q(ϕ) if the following
subordinations hold
Dqf(z) ≺ ϕ(z) and Dqg(ω) ≺ ϕ(ω), where g(ω) = f−1(ω).

Theorem 2.1. Let f ∈ Hσ,q(ϕ) and given by (1). Then

|a2| ≤
B

3
2
1√

|[3]qB2
1 − [2]2qB2 + [2]2qB1|

and |a3| ≤
B1

[3]q
+
B2

1

[2]2q
. (6)

Proof. Let f ∈ Hσ,q(ϕ) and g = f−1. Then there are holomorphic functions r, s : U → U ,
with r(0) = s(0) = 0, satisfying

Dqf(z) = ϕ(r(z)) and Dqg(ω) = ϕ(s(ω)). (7)

Define the functions p1 and p2 by

p1(z) = 1+r(z)
1−r(z) = 1 + c1z + c2z

2 + ... and p2(z) = 1+s(z)
1−s(z) = 1 + b1z + b2z

2 + ...,

or, equivalently,

r(z) =
p1(z)− 1

p1(z) + 1
=

1

2

(
c1z + (c2 −

c21
2

)z2 + ...

)
(8)

and

s(z) =
p2(z)− 1

p2(z) + 1
=

1

2

(
b1z + (b2 −

b21
2

)z2 + ...

)
. (9)

It is clear that p1 and p2 are analytic in U and p1(0) = p2(0) = 1. Also p1 and p2 have
positive real part in U and hence |bi| ≤ 2 and |ci| ≤ 2, (i ∈ N).
Clearly, upon substituting from (8) and (9) into (7), if we make use of (4), we obtain

Dqf(z) = ϕ

(
p1(z)− 1

p1(z) + 1

)
= 1 +

1

2
B1c1z +

(
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

)
z2 + ... (10)

and

Dqg(ω) = ϕ

(
p2(ω)− 1

p2(ω) + 1

)
= 1 +

1

2
B1b1ω +

(
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

)
ω2 + ... (11)

Since f ∈ σ has the Maclaurin series given by (1), a computation shows that its inverse
g = f−1 has the expansion g(ω) = f−1(ω) = ω − a2ω2 + (2a22 − a3)ω3 + .... Since
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Dqf(z) = 1 + [2]qa2z + [3]qa3z
2 + ... and Dqg(ω) = 1− [2]qa2ω + [3]q(2a

2
2 − a3)ω2 + ...,

it follows from (10) and (11) that

a2 =
B1c1
2[2]q

. (12)

[3]qa3 =
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1. (13)

a2 =
B1b1
−2[2]q

. (14)

[3]q
(
2a22 − a3

)
=

1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1. (15)

From (12) and (14), we obtain

c1 = −b1, (16)

and

2a22 =
B2

1(c21 + b21)

4[2]2q
. (17)

Now, by adding equation (13) and equation (15) and using (17), we get

a22 =
B3

1 (b2 + c2)

4
[
[3]qB2

1 − [2]2qB2 + [2]2qB1

] .
Applying Lemma 5 for the coefficients b2 and c2, we immediately have

|a2| ≤
B

3
2
1√

|[3]qB2
1 − [2]2qB2 + [2]2qB1|

.

This gives us the bound on |a2| as asserted in (18). Next, in order to find the bound on
|a3|, by subtracting (15) from (13) and also from (16), we get c21 = b21, hence

a3 =
1

4[3]q
B1(c2 − b2) +

1

4[2]2q
(B2

1c
2
1).

Using (17) and applying Lemma 5 once again for the coefficients b2 and c2, we have

|a3| ≤
B1

[3]q
+
B2

1

[2]2q
.

This completes the proof of Theorem 2.1. �

As q → 1−, we get the following result, introduced by Rosihan et al. [1].

Corollary 2.1. Let f ∈ Hσ(ϕ) and given by (1). Then

|a2| ≤
B

3
2
1√

|3B2
1 − 4B2 + 4B1|

and |a3| ≤
B1

3
+
B2

1

4
. (18)

Definition 2.2. A function f ∈ σ is said to be in the class ST σ,q(α,ϕ), α ≥ 0, if the
following subordinations hold

zDqf(z)

f(z)
+
αz2D2

qf(z)

f(z)
≺ ϕ(z), (z ∈ U),
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and
ωDqg(ω)

g(ω)
+
αω2D2

qg(ω)

g(ω)
≺ ϕ(ω), (ω ∈ U),

where g(ω) = f−1(ω).

Theorem 2.2. Let f given by (1) be in the class ST σ,q(α,ϕ). Then

|a2| ≤
B

3
2
1√∣∣∣∣[([3]q − [2]q) + [2]q([3]q − 1)α

]
B2

1 + (B1 −B2)
[
([2]q − 1) + [2]qα

]2∣∣∣∣
. (19)

and

|a3| ≤
B1 + |B2 −B1|[

([3]q − [2]q) + [2]q([3]q − 1)α
] . (20)

Proof. Let f ∈ ST σ,q(α,ϕ). Then there are holomorphic functions r, s : U → U , with
r(0) = s(0) = 0, satisfying

zDqf(z)

f(z)
+
αz2D2

qf(z)

f(z)
= ϕ(r(z)), (z ∈ U), (21)

and
ωDqg(ω)

g(ω)
+
αω2D2

qg(ω)

g(ω)
= ϕ(s(ω)), (ω ∈ U), (22)

where g(ω) = f−1(ω). By (21), we have
z + [2]qa2(1 + α)z2 + [3]qa3(1 + [2]qα)z3 + ... ={

1 +
1

2
B1c1z +

(
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

)
z2 + ...

}{
z + a2z

2 + a3z
3 + ...

}
.

Equating the coefficients on both sides we have[
([2]q − 1) + [2]qα

]
a2 =

B1c1
2

. (23)[
([3]q − 1) + [2]q[3]qα

]
a3 −

[
([2]q − 1) + [2]qα

]
a22 =

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1. (24)

Also, from (22), we have

ω − [2]qa2(1 + α)ω2 + [3]q(2a
2
2 − a3)(1 + [2]qα)ω3 + ... ={

1+
1

2
B1b1ω+

(
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

)
ω2+...

}{
ω−a2ω2+(2a22−a3)ω3+...

}
.

Equating the coefficients on both sides we have

−
[
([2]q − 1) + [2]qα

]
a2 =

B1b1
2

. (25)[
(2[3]q − [2]q1−)+(2[2]q[3]q − [2]q)

]
a22−

[
([3]q − 1)+[2]q[3]qα

]
a3 =

1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1.

(26)
From (23) and (25), we obtain

c1 = −b1, (27)
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and

2a22 =
B2

1(c21 + b21)

4 [([2]q − 1) + [2]qα]2
. (28)

Now, by adding equation (24) and equation (26) and using (28), we get

a22 =
B3

1 (b2 + c2)

4

[(
([3]q − [2]q) + [2]q ([3]q − 1)α

)
B2

1 + (B1 −B2)

(
([2]q − 1) + [2]qα

)2] .
Applying Lemma 5 for the coefficients b2 and c2, we immediately get

|a22| ≤
B3

1∣∣∣∣( ([3]q − [2]q) + [2]q ([3]q − 1)α

)
B2

1 + (B1 −B2)

(
([2]q − 1) + [2]qα

)2∣∣∣∣
.

Since B1 > 0, the last inequality gives the desired estimate on |a2| given in (19). Next, in
order to find the bound on |a3|, by subtracting (26) from (24) and also from (27), we get
c21 = b21, hence

a3 =

B1

[(
(2[3]q − [2]q − 1) + [2]q(2[3]q − 1)α

)
c2 +

(
([2]q − 1) + [2]qα

)
b2

]
4

[
([3]q − 1) + [2]q[3]qα)

][
([3]q − [2]q) + [2]q([3]q − 1)α

]

+

b21(B2 −B1)

[
([3]q − 1) + [2]q[3]qα

]
8

[
([3]q − 1) + [2]q[3]qα)

][
([3]q − [2]q) + [2]q([3]q − 1)α

] .
Using (28) and applying Lemma 5 once again for the coefficients b2 and c2, we obtain

|a3| ≤
B1 + |B2 −B1|[

([3]q − [2]q) + [2]q([3]q − 1)α
] . .

This is precisely the estimate in (20). �

As q → 1−, we get the following result, introduced by Rosihan et al. [1].

Corollary 2.2. Let f given by (1) be in the class ST σ(α,ϕ). Then

|a2| ≤
B

3
2
1√∣∣[(1 + 4α)B2

1 + (B1 −B2)(1 + 2α)2
∣∣ ,

and

|a3| ≤
B1 + |B2 −B1|

(1 + 4α)
.

As q → 1− and for α = 0, we get the following coefficient estimates for Ma-Minda
bi-starlike functions [10].

Corollary 2.3. Let f given by (1) be in the class ST σ(ϕ). Then

|a2| ≤
B

3
2
1√∣∣B2

1 + (B1 −B2

∣∣ ,
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and

|a3| ≤ B1 + |B2 −B1|.

Definition 2.3. A function f ∈ σ is said to be in the class Mσ,q(α,ϕ), α ≥ 0, if the
following subordinations hold

(1− α)
zDqf(z)

f(z)
+ α

(
1 +

qzD2
qf(z)

Dqf(z)

)
≺ ϕ(z), (z ∈ U),

and

(1− α)
ωDqg(ω)

g(ω)
+ α

(
1 +

qωD2
qg(ω)

Dqg(ω)

)
≺ ϕ(ω), (ω ∈ U),

where g(ω) = f−1(ω).

Theorem 2.3. Let f given by (1) be in the classMσ,q(α,ϕ). Then

|a2| ≤
√

2B3
1√∣∣∣∣MB2

1 + 2(B1 −B2)

(
([2]q − 1) + ((q − 1)[2]q + 1)α

)2∣∣∣∣
. (29)

and

|a3| ≤
2
(
B1 + |B2 −B1|

)(
2([3]q − [2]q) +

[
(2[3]q − [2]q)(q[2]q − 1)− [2]q(2− [2]q(q + 1))

]
α

) .
(30)

where M =

(
2([3]q − [2]q) +

[
(2[3]q − [2]q)(q[2]q − 1)− [2]q(2− [2]q(q + 1))

]
α

)
Proof. Let f ∈ Mσ,q(α,ϕ). Then there are holomorphic functions r, s : U → U , with
r(0) = s(0) = 0, satisfying

(1− α)
zDqf(z)

f(z)
+ α

(
1 +

qzD2
qf(z)

Dqf(z)

)
= ϕ(r(z)), (z ∈ U), (31)

and

(1− α)
ωDqg(ω)

g(ω)
+ α

(
1 +

qωD2
qg(ω)

Dqg(ω)

)
= ϕ(s(ω)), (ω ∈ U), (32)

where g(ω) = f−1(ω). By (31), we have

z+a2

(
2[2]q +([2]q(q−1)+1)α

)
z2 +

{
[2]q

(
[2]q +2α− [2]qα

)
a22 +[3]q

(
(2−α+[2]qα)+

qα

)
a3

}
z3 + ...

=

{
1 +

1

2
B1c1z +

(
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

)
z2 + ...

}{
z+([2]q+1)a2z

2+
[
[2]qa

2
2+([3]q+1)a3

]
z3+...

}
.

Equating the coefficients on both sides we have[
([2]q − 1) + ([2]q(q − 1) + 1)α

]
a2 =

B1c1
2

. (33)[
([3]q−1)+([2]q[3]q−[3]q+q)α

]
a3−

[
([2]q−1)+([2]2q−[2]q+1)α

]
a22 =

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1.

(34)
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Also, from (32), we have

ω −
(

2[2]q + ([2]q(q − 1) + 1)α

)
a2ω

2+{[
(4[3]q+[2]2q)+((q+1)[2]q−2[3]q+2[2]2q+2q[2]q[3]q)α

]
a22+

[
−2[3]q+([3]q−q[2]q[3]q−1)α

]
a3

}
ω3+...

=

{
1+

1

2
B1b1ω+

(
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

)
ω2+...

}{
ω−([2]q+1)a2ω

2+
[
[3]q(2a22−a3)+[2]qa

2
2+2a22−a3

]
ω3+...

}
.

Equating the coefficients on both sides we have

−
[
([2]q−1)+([2]q(q−1)+1)α

]
a2 =

B1b1
2

. (35)

[
(2[3]q−[2]q−1)+((2[3]q−[2]q)(q[2]q−1)+1)α

]
a22−

[
([3]q−1)−([3]q(q[2]q−1)+1)α

]
a3 =

1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1.

(36)

From (33) and (35), we obtain

c1 = −b1, (37)

and

2a22 =
B2

1(c21 + b21)

4 [([2]q − 1) + ([2]q(q − 1) + 1)α]2
. (38)

Now, by adding equation (34) and equation (36) and using (38), we get

a22 =
B3

1 (b2 + c2)

2

[
MB2

1 + 2(B1 −B2)

(
([2]q − 1) + ((q − 1)[2]q + 1)α

)2] ,

where M =

(
2([3]q − [2]q) +

[
(2[3]q − [2]q)(q[2]q − 1)− [2]q(2− [2]q(q+ 1))

]
α

)
. Applying

Lemma 5 for the coefficients b2 and c2, we immediately get

|a22| ≤
2B3

1∣∣∣∣MB2
1 + 2(B1 −B2)

(
([2]q − 1) + ((q − 1)[2]q + 1)α

)2∣∣∣∣ .
which yields the desired estimate on |a2| as described in (29). Next, in order to find the

bound on |a3|, by subtracting (36) from (34) and also from (37), we get c21 = b21, hence

a3 =

B1

[(
(2[3]q − [2]q − 1) + ((2[3]q − [2]q)(q[2]q − 1) + 1)α

)
c2 +

(
([2]q − 1) + ([2]2q − [2]q + 1)α

)
b2

]
2

[
2([3]q − [2]q) +

[
2[3]q(q[2]q − 1) + [2]q(2− [2]q(q + 1))

]
α

][
([3]q − 1) + ([2]q[3]q − [3]q + 1)α

]

+

b21(B2 −B1)

[
(2[3]q − 1) + (2[3]q(q[2]q − 1)− [2]2q(q + 1) + 2)α

]
2

[
2([3]q − [2]q) +

[
2[3]q(q[2]q − 1) + [2]q(2− [2]q(q + 1))

]
α

][
([3]q − 1) + ([2]q[3]q − [3]q + 1)α

] .
Using (38) and applying Lemma 5 once again for the coefficients b2 and c2, we obtain

|a3| ≤
2
(
B1 + |B2 −B1|

)(
2([3]q − [2]q) +

[
(2[3]q − [2]q)(q[2]q − 1)− [2]q(2− [2]q(q + 1))

]
α

) .
This is precisely the estimate in (30). �
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As q → 1−, we get the following result, introduced by Rosihan et al. [1].

Corollary 2.4. Let f given by (1) be in the classMσ(α,ϕ). Then

|a2| ≤
B1

√
B1√∣∣(1 + α)B2

1 + (B1 −B2)(1 + α)2
∣∣ ,

and

|a3| ≤
B1 + |B2 −B1|

(1 + α)
.

As q → 1− and for α = 0, we get the coefficient estimates for Ma-Minda bi-starlike
functions, while for α = 1, we get the following estimates for Ma-Minda bi-convex functions
[10].

Corollary 2.5. Let f given by (1) be in the class CVσ(ϕ). Then

|a2| ≤
B

3
2
1√

2
∣∣B2

1 + 2B1 − 2B2

∣∣ ,
and

|a3| ≤
1

2
(B1 + |B2 −B1|).
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