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A NOTE ON EXTENDED BETA FUNCTION INVOLVING
GENERALIZED MITTAG-LEFFLER FUNCTION AND ITS
APPLICATIONS

NABIULLAH KHAN', SADDAM HUSAIN?, §

ABSTRACT. The main object of this paper is to introduce a new extension of beta func-
tion involving generalized Mittag-leffler function and study its important properties, like
integral representation, summation formula, derivative formula, beta distribution, trans-
form formula. Using this definition, we introduce new extended hypergeometric and
confluent hypergeometric function.
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1. INTRODUCTION

Recently, Many extensions and generalization of special functions (such as beta function,
hypergeometric function and confluent hypergeometric function) have been considered by
several authors (see [2, 3, 4, 5, 6, 7, 9, 10, 11]). In this paper, we study another extension
of Euler beta function and investigate various formulas, such as integral representation,
summation formula, derivative formula. Further, we obtain beta distribution and its
some statistical formulas. We extend also the definition of hypergeometric and confluent
hypergeometric function and study its various properties.

Throughout the paper, we take C, R, R and RS’ be the sets of complex numbers, real
numbers, positive real numbers and positive real number including zero respectively.

Definition 1.1. The classical gauss hypergeometric function (see [1]) is defined as

Pt i), = Y (Pl 2 )

n=0
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where (6), (0 € C) is the Pochhammer symbol defined by

T +n)
0, =T, ®
The confluent hypergeometric function (see [1]) is defined by
L (61),, W™
O(01300; w) =Y EQ;; = (3)
n=0 no

Definition 1.2. The Gamma function I'(w) developed by Euler [1] with the intent to
extend the factorials to values between the integers is defined by the definite integral

I(w) = /0 T et lat (Rw) > 0). (4)

Among various extensions of gamma function, we mention here the extended gamma func-

tion [2] defined by Chaudhry and Zubair

T)(w) = / e (- 2) dt (R(p) > 0). (5)
0 t
Definition 1.3. The Euler beta function B(61,02) (see [1]) is defined by
B(01,0:) = fol =1 (1 =)0 dt (6)
TOOT(02) _ (61—1)! (05—1)! M)
L(61+62) —  (01+62—1)! >

where

(R(01) > 0, R(62) > 0).
In 1997, Choudhary et al. [3] introduced an extension of beta function defined by

1
BP(61,05) :/ 9171 (1 — )%~ exp <_t(1p—t)> dt, (8)

0

where
(R(p) = 0, %(01) > 0, R(62) > 0).
Chaudhary et al. [4] used new extended beta function BP(6;,62) to introduced an
extended hypergeometric and confluent hypergeometric function defined respectively as

AR = By (02 +n,03 — 02) w"
F, (61,09;03;,w) = nEZO (01)n B0.05—03) 7l 9)
(p>0, |w <1, R(03) > RN(62) >0),
and
. B (92+n 93—92) wn”
D, (65;05;w) = P ’ - 10
p (027053 ,;) B(0q,05 —05)  n! (10)

(p =0, R(03) > R(b2) > 0).

In 2018, Shadab et al. [11] introduced an extended beta function in terms of classical
Mittag-Leffler function defined as

BP(0y,0,) = /1 "1 -l E, (_t(lp— t)> dt (11)

0
(R(61) > 0, R(62) > 0,R(p) > 0; a € RY),
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where E,(.) is the classical Mittag-Leffler function defined as [8]

Ea) =3 s (12)

where
(we C,aeRY).

Shadab et al. [11] used extended beta function to introduced a new extended hyperge-
ometric and confluent hypergeometric function defined respectively as

> BZ(Gngn,Gg —09) W"

Fp,a (01792;93;5‘]) = Z (01)71 B(¢92 05 — 02) F (13)

n=0

(@ e RT, pe Ry, w| <1, R(03) > R(02) > 0),

and
> B§(92+n,6’3 *92) w™
D, (09;03;w) = E — 14
pe (0230500 =2 g, 003l (14)

(a €eRT, pe Ry, |w| <1, R(f3) > R(62) > 0).

2. A NEW EXTENSION OF BETA FUNCTION

Here we introduce a new extension of extended beta function B5 (61, 62) and investigate
various properties and representations

1
BPHY _ b1-1(1 _po-1p _ b 1
a,B (ela 62) /0 t ( t) o, t“(l _ t)u dt ( 5)

(R(61) > 0, R(02) > 0;, 3 € Ry 5 p1, v € RT),

where E, g(.) is the generalized Mittag-Leffler function defined as [12]

o wn
Ea;ﬁ (Ld) = nz:() F(Oz?’L +B)a (16)
where
(o, B € Ra',w e C).

Remark 2.1. If we take « = 1,8 = 1,u = 1,v = 1, in the integral representation of (15)
we obtain BP(61,02) [3]

BY (61, 05) = BP(01,02) = B(61,02; p). (a7)

If we take B = 1, = 1,v = 1, in the integral representation of (15) we obtain Bh(61,62)
[11]

35’711’1(91, 02) = Bg(el, (92) (18)
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3. PROPERTIES OF BZ”’;’”(QDHQ)

In this section we obtain some interesting relation of summation formulas for BY's" (61, 02).

Theorem 3.1. The following integral representations holds:

Jus

Bgﬁfg”(el,@) = 2/02 cos?1 71 ¢ sin?P2~1 ¢ Eu [—p(sec2¢)“(005602¢)l’] de, (19)

, o) u9171 (1 + u)N+V
B 01,00 = [t B |0 ) (20)
ap U1 . Tl At ur(l - u)

(R(p) >0, R(A1) >0, R(62) >0,0,8 € R ;v € RT).

Proof. Let t = cos®0,t = THer b= HT“, respectively in equation (15), we obtain the above

representations. ]

Remark 3.1. If we take a = 1,8 = 1, u = 1,v = 1, in the integral representation of
Theorem (3.1), we obtain corresponding integrals for B(61,02;p) in [3].

If we take 8 = 1,u = 1,v = 1, in the integral representation of Theorem (3.1), we
obtain corresponding integrals for Bh(01,02) in [11].

Theorem 3.2. The following summation formula for BZ’%’V(Hl, 02) hold:

v " n v
B (01,05) = Y <k> BIAY(0y + 0y +n— k) (n € No). (22)
k=0

Proof. We find from (15) that
1
sH — — p

B%u(el,eg) = /O (1 — )2 4 (1 - t)|Eap <_t#(1—t)V> dt

= Bg’fé’”(el +1, 92) + BZZ‘E”(GM 0o + 1) (23)

Repeating the same argument to the above two terms in (23), we obtain

BRI3Y (01, 02) = BYs" (01 + 2,02) (24)

+ 2B (01 + 1,00 + 1) + BEY (61,02 + 2)

Continuing this process, by using mathematical induction we get the desired result (22).

]
Theorem 3.3. The following summation formula for BL'3"(61,02) hold:
BPEY (0,1 — 0y) = i O2)n ponvig 4 1) (25)
a,f 1, 2) — nl a,B 1 )
n=0

(R(p) > 07 §R(el) > 07 §)%(92) > Ovaaﬁ € R+;:U’7V € R+)
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Proof. To prove above result, we make use of the generalized binomial theorem defined as

(s

n=0

(It < 1). (26)

We find
t91 +n—1

1 o
p?/‘/?” _ — _L
Ba,ﬂ (91, 1 92) /0 n§:0(62)n nl Ea,ﬁ ( t“(l _ t)”) dt.

Interchanging the order of integral and summation in the above equation and using (15),
we get the desired result (25). O

Theorem 3.4. The following summation formula for BZ’%’V(Hl, 02) hold:

BUAY (01,00) = 3 BUAY (61 4,02+ 1), 27)

n=0
(R(p) >0, R(A1) >0, R(62) >0,0,8 € R ;v € RT).
Proof. Using the relation

(1-t)%21 = (1 -1)% i " () < 1), (28)
n=0

in (15), we obtain

1 00
BPEY (0, 05) = | (1= St 1g o (——P ) gt
2500 = [0y (v

n=0

LS|
B (01, 05) = L ol L e
e =3 a0 o~ )

Which in view of (15), we get the desired result (27). O

Remark 3.2. In case a =1, =1,u=1,v =1 of (22) for n=1, (25) and (27) reduces
to corresponding results in [3].

In case B = 1,0 = 1,v =1 of (22) for n=1, (25) and (27) reduces to corresponding
results in [11].

4. BETA DISTRIBUTION OF Bg"é’”(ﬁl,eg)

We now define the beta distribution of (15), and obtain its mean, variance, moment
generating function and cummulative distribution.

For BZ’%’V(&, 02), the beta distribution is given by

1 01—1 02—1
f(t) _ Wt 1 (1 — t) 2 Eaﬂ (—4,5”(1})_1&*)1,) (0 <t< 1), (29)
0 otherwise.
(01,02 €R; p,o, B € RT; v € RT).
For d € R, the d* moment of a random variable X as
Brs” (01 +d, 0s)

E(X%) =
( ) BZ,:;,V(GI’ 92) b

(30)
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(01,00 €R; p>0,a,8 € RT; v € RT).

When d = 1, we get the mean of the distribution as a particular case of (30) given by

BPY 6y +1,6
o= E(x) = Do 1110
Ba’fé’ (91,92)

(31)
The variance of the distribution is defined by

2
s , B 00 B 00+ 2.00) = {BUS 00+ 1.00))
o? = B(X?) - {E(X)}* = - ) - (32
{BZ’,’/}’ (91,92)}

The moment generating function of the distribution is defined as

o0

t" 1 "
Mt:g 7}EXn:7§ BP9 05) —
¥ = (X™) BZ’%’V(91,92) n=0 g Br . 2)n! (33)
The cummulative distribution is defined as
BP,H,V (91 92)
x7a718 ’
F(z) = o8l 2 (34)
Bg’,’fi (61702)
where
BPIY(0y,0)) = | 7 (1= By (-2 ) dt 35
m7a’ﬁ( 1 2) 0 ( ) 7,8 tu(l _t)y ( )

(p>0, —00 < p,v < 0)

is the extended incomplete beta function.

5. GENERALIZATION OF EXTENDED HYPERGEOMETRIC AND CONFLUENT
HYPERGEOMETRIC FUNCTIONS

Here, we introduce a generalization of extended hypergeometric and confluent hyperge-
ometric functions in terms of B'y" (61, 62).

The extended hypergeometric function is defined as
= BRI (02 + ., 05 — 02) n

FRiY (61,05 05 0) = 2:% O =BGt al" (36)
(p>0, lw <1, a, B, v >0, R(f3) > R(O2) > 0).
The confluent hypergeometric function is defined as
DY1SY (023 055 w) = i Bas™ (02 41,03 = 0) o (37)

B(0y,05 —65)  nl’

n=0
(p >0, o, B, pu, v >0, %(93) > %(92) > 0).

Remark 5.1. Incasea =1, =1,u=1,v =1 1in (36) and (37), we obtain corresponding
result in [4].
In case f=1,p=1,v=1in (36) and (37), we obtain corresponding result in [11].
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6. INTEGRAL REPRESENTATION AND DERIVATIVE FORMULA FOR EXTENDED GAUSS
HYPERGEOMETRIC FUNCTIONS

Theorem 6.1. The following integral representations for the extended hypergeometric
function Fsg” (01,02;03;w) and confluent hypergeometric function @Z’fé’” (02; 03;w) holds:

1
FPEY (01,0003 0) =——
a,B ( 1,02, 3aw) B(92,93*92)
Yo 63—62—1 ] b (38)
2 (1 =) (1 —wt) M By | ————— ) dt,
X/O ( ) ( w) 7B< t“(l—t)y>
(p e RS, o, By, v € RT; and |arg(1l — w)| < m; R(63) > R(62) > 0),
and .
PPHY (92‘ 0s; Z) =
@B T B(02,05 — 0
(602,03 — 6) (39)

1
02—1 1— 03—02—1 2t g _L
></0 921 (1) e a75< t#(l_t)y>dt,
(p RS, B, 1, v € RT; R(65) > R(62) > 0).

Proof. By using the definition of B’y (61,02) in (15) into (36) and interchanging the
order of integration and summation, which is verifed under the condition here, we have

1
Fpnuvz/ 0 9 .9 . —
a,B (1’ 2 3,&)) B(92,03—92)
x/l o1 (1 gt g (-2 ) S (0, E
0 @B\ (1 =ty Un =pr %%

n=0

(40)
Using the binomial theorem in (28) to the summation formula in (40), we get the desired
result (38).

Similarly, we can obtain (39). O

Remark 6.1. Incasea=1,5=1,u=1,v =1 in (38) and (39), we obtain corresponding
result in [4].
In case f=1,p=1,v =1 in (38) and (39) , we obtain corresponding result in [11].

Theorem 6.2. The following derivative formula for extended Gauss hypergeometric and
confluent hypergeometric function holds:

d” v 0 n 0 n v
Ton {Fs:g’ (01,02; Qg;w)} = (1()93()2) Fg:g’ (01 +n,00+n;05+n;w) (neNy),
(41)
and
d"” v 02)n v
o {@Z’fg (02; 03;w)} = Eeii Z’fg (02 +n;03 +n; w) (n e Np), (42)
where

(p > 0,0C,B,/L,Z/ € R—’_; %(93) > 8%(92) > 0)
Proof. Differentiating (36) and (37) with respect to w and using the following formula

0
B(6,05 — 03) = £3(92 11,05 — 03) and (0)ns1 = 0(0 + 1)y, (43)
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we obtain the derivative formulas (41) and (42) for n=1. Easily applying the same process,
we get the desired results (41) and (42). O

Remark 6.2. Incasea=1,=1,u=1,v=11in (41) and (42), we obtain corresponding
result in [4].
In case f=1,p=1,v =1 in (41) and (42), we obtain corresponding result in [11].

7. TRANSFORMATION AND SUMMATION FORMULAS

Theorem 7.1. The following formulas for the extended hypergeometric and confluent
hypergeometric function holds:

12 —a v w
Fg” (01,0203 w) = (1 —w) " FR <91,93 — 6; 03; —1_> (44)
v 1 a P,V
01,0203, 1 — — | =w* Flg" (61,05 — 02;03; 1 — w) (45)
Fs:g’y <91,92,03, 1+> = (1 —i—w)a Fg:g’y (01793 — 0o; 03; —OJ) (46)
015" (6,035 w) = € 5" (03 — 02; 057 —w) . (47)

(p € RY, v € RT; o, B € RY; |w] < 1; R(63) > R(62) > 0),

Proof. Replacing t by 1- t and substituting

w —
lI—wl—-t)]"=1-w)™ <1 + 1_wt>
n (38), we obtain

(1—w)
B(62,03 — 02)
1

w —0 P
t92_1 1-—t¢ O3—02—1 (1 775 E - | dt
X /0‘ ( ) + 1 o a,ﬁ t”’(l _ t)y I

FRR" (01, 02;03; w) =
(48)

L (l—w)™
 B(6,03 — 62)
Yoo 05—02—1 —w \T" p
A G W U e (6 N ) Y S (N — )
<J oot (1o 25) e ()
(49)

In view of (38), we get the desired result (44).
Replacing w by 1 — 1 and 1% in (44) yield (45) and (46) respectively. O

Similarly as (44), we can establish (47).

Remark 7.1. Incasea=1,5=1,u=1,v =1 in (44) and (47), we obtain corresponding
result in [4].
In case f=1,p=1,v =1 in (44) and (47), we obtain corresponding result in [11].
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Theorem 7.2. The following summation formula hold:

BYIg" (02,03 — 01 — 02)
B(62,03 — 0)

FP (61, 0:63; 1) =

(peR(—)~_7a7/8aM7V7€R+;§R<93_61 _02> >0>

Proof. Putting w = 1 in (38) and using the definition (15), we obtain desired result
(50). O

Remark 7.2. In case « = 1,8 = 1,u = 1,v = 1 with p=0 in (50) , we obtain Gauss
summation formula for oF}.

T(63)0 (05 — 01 — 62)

Fy(01,02;05;1) =
2F1 (61,025 05;1) T(0s — 61T (5 — 02’

(?R(Gg — 91 — 92) > 0)

8. A GENERATING FUNCTION FOR F7'0" (61, 02;03; w)
Theorem 8.1. The following generating function for Fg’g’y (61, 02;03; w) hold:

[e'¢) k
SO0k ELY (01 + 003 550) 1y = (1= 1) F (91792;93; f‘jt) (51)
k=0 ' -

(o, By,v € R p e RYL [t < 1).
Proof. Let L be the left hand side (L.H.S) of (51). From (36), we have

S L (01 + ko By (02 + 1,03 — 03) o\ ¢F
L=S"( : i) R 2
> @ (Z e s (52
k=0 n=0
Using the identity (a)n(a +n)r = (a)r(a + k)n, we get
> (02 +n, 03 — 02) e R\ wn
I = judll
nzo (1) 3(92, 05 — ) kzzo (Or+megy ) r
Bp EY Oy +n, 05— 0 n
S, D OB 0
0 B(GQ, 93 — 92) n!
o BP’H’V(QQ +n, 93 — 92) w 1
—(1—¢)"% ., —of =
Finally by using (36) in (53), we get the right side of (51). O

Remark 8.1. In case a = 1,6 =1,u = 1,v =1 in (51), we obtain corresponding result
in [9].

In case f=1,p=1,v =1 in (51), we obtain corresponding result in [11].
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9. CONCLUSIONS

In this paper, we investigated a new extension of beta function by generalizing the ex-
ponential function to Mittag-Leffler function. Using the extension of beta function, we
developed a new extension of generalized hypergeometric function and confluent hypergeo-
metric function. The results presented in this paper can be specialized to yield several new
and previously known definitions and their corresponding properties. We also remarked
that the generating function obtained in (51) is interesting due to several special functions
and polynomials, in particular, Fox-H function, Jacobi and Laguerre polynomials can be
expressed in terms of hypergeometric and other related functions, which can be easily
exploited to obtain other interesting generating functions.
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