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DOMINATION NUMBER OF A BIPARTITE SEMIGRAPH WHEN IT

IS A CYCLE

JYOTI SHETTY1, G. SUDHAKARA1, §

Abstract. Semigraph is a generalization of graph, with two or more vertices on edges
which allows multiplicity in every concept of graph when it comes to semigraph. When
number of vertices on the edges are restricted to two the semigraph is a graph, so every
graph is a semigraph. In this article we deal with the variety of bipartite semigraphs,
namely bipartite, s-bipartite and e-bipartite and bounds for their domination number
(adjacent domination number and end vertex adjacent domination number) in particu-
lar when the semigraph is a cycle and also about possible size of the bipartite sets when
the bipartite semigraph is a cycle.
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1. Introduction

In graph theory a connected graph has no cycle is called a tree and trees are the most
fundamental graphs both because of their simplicity and the applications they have got
in different fields. A graph which has a spanning cycle is called Hamiltonian and checking
whether a given graph is Hamiltonian or not is a celebrated NP-complete problem. A
graph which does not contain any odd cycle is a bipartite graph and the class of bipartite
graphs is a most vibrant class of graphs. A graph on n vertices which contains cycle
of all length k, 3 ≤ k ≤ n, is called a pancyclicgraph, length of the smallest cycle in a
graph, whenever such a cycle exists, is called girth of the graph and is an important graph
parameter. Thus, cycle plays an important role in the theory of graphs. Probably, they
are next to trees in the order of importance. In case of semigraphs there are many types
of cycles possible because of the different types of vertices in it.

One of the most important concept both because of the beauty and applicability, is
that of domination in the theory of graphs. Domination number is a widely studied graph
parameter.
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In this article, some results on domination number of cycle semigraphs are studied. Some
results on the size of the partite set in a bipartite cycle semigraph are also established.

Definitions regarding semigraph and concept of semigraph we have referred to [1] and
in particular for types of domination set and its bound we have referred [2] and graph
theory from [3]. More about semigraph we refer interested readers to [4, 5, 6, 7, 8].

Definition 1.1. A semigraph G is a pair (V,E) where V is a nonempty set whose elements
are called vertices of G, and E is a set of k-tuples of distinct vertices, called edges of G,
for various k ≥ 2, satisfying the following conditions.

(1) Any two edges of G can have at most one vertex in common.
(2) Two edges (a1, a2, ..., ap) and (b1, b2, ..., bq) are said to be equal if and only if

• p = q and
• either ai = bi for 1 ≤ i ≤ p or ai = bp−i+1 for 1 ≤ i ≤ p.

Note 1.1. The edges are usually denoted by e with a suffix. By (2) above, edges e1 =
(u1, u2, . . . , uk) and e2 = (uk, uk−1, . . . , u1) are same. Let Ei denote the set of vertices on
the edge ei and the cardinality of Ei is called the size of the edge ei and it is denoted by
|Ei|.

Let G(V,E) be a semigraph and let e = (u1, u2, . . . , uk) be an edge of G. Then u1 and
uk are called the end vertices and ui, 2 ≤ i ≤ k − 1, are called the mid vertices of e. Two
vertices v1 and v2 of G are adjacent ( v1 ∼ vk) if there is an edge containing both of them.
An edge is said to be incident on every vertex lying on it. Two edges of G are adjacent
if they have a vertex in common. Two vertices on an edge are consecutively adjacent if
they are consecutive on the edge containing them.

Like a graph, a semigraph G also has a geometric representation on plane. Vertices of
G are represented either by dots or by small circles according as whether they are end
vertices or mid vertices of the edge containing them and edges of G by curves passing
through all the vertices on them. When a mid vertex v of an edge e1 is an end vertex
of another edge, say e2, then a small tangent is drawn to the circle representing vertex v
where e2 meets v. Figure 1 in Example 1.1 gives semigraph G and its representation on
plane.

Example 1.1. Consider a nonempty set V (G) = {u1, u2, u3, u4, u5, u6, u7, u8} and collec-
tion of subsets of distinct elements of V given by E(G) = {(u4, u8, u7, u6), (u4, u5, u3),
(u1, u5, u2, u6), (u2, u3)}. Then (V,E) is a semigraph which has a geometric representation
as shown in Figure 1.
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Figure 1. A semigraph and its representation on plane with vertex
set V (G) = {u1, u2, u3, u4, u5, u6, u7, u8} and edge set E(G) = {e1 =
(u4, u8, u7, u6), e2 = (u4, u5, u3), e3 = (u1, u5, u2, u6), e4 = (u2, u3)}
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Since an edge of a semigraph can have two or more vertices on it, the concept of degree
of a vertices has following variations.

Definition 1.2. Let G(V,E) be a semigraph and v be a vertex of G.

(1) Degree of v, denoted by deg v, is the number of edges having v as an end vertex.
(2) Edge degree of v, denoted by dege v, is the number of edges containing v.
(3) Adjacent degree of v, denoted by dega v, is the number of vertices adjacent to v.
(4) Consecutive adjacent degree of v, denoted by degca v, is the number of vertices

which are consecutively adjacent to v.

Definition 1.3. The following graphs, associated with a semigraph G, are defined on the
same vertex set V (G),

(1) End vertex graph Ge : Two vertices are adjacent in Ge if they are end vertices of
an edge in the semigraph G. The number of edges in Ge is same as that of the
number of edges in G.

(2) Adjacency graph Ga : Two vertices are adjacent in Ga if they are adjacent in the
semigraph G.

(3) Consecutive adjacency graph Gca : Two vertices are adjacent in Gca if they are
consecutively adjacent in semigraph G.

Definition 1.4. A semigraph G is said to be a zig-zag semigraph if the vertex set V (G) =
{u1, u2, . . . , uk, uk+1, uk+2, . . . , u2k−1} and the edge set E(G) = {(u1, u2, . . . , uk), (u1, uk+1),
(u2, uk+1), (u2, uk+2), . . . , (uk−1, u2k−2), (uk−1, u2k−1), (uk, u2k−1)}.
Definition 1.5. A v0 − vn walk in a semigraph G = (V,E) is sequence of vertices P :
v0v1v2 . . . vn such that any two consecutive vertices in P are adjacent. A v0 − vn walk P
is a path in which all the vertices are distinct.

As noted earlier in the introduction, bipartite graphs are one class of important graphs.
In bipartite graphs, the vertex set of a graph G is partitioned into two parts, say V1 and
V2, in such a way that every edge in G has one end vertex in V1 and other end vertex in
V2. The partite sets are independent. So, before the definition of bipartite semigraphs,
independent sets in case of semigraphs have been defined.

Definition 1.6. Let G(V,E) be a semigraph A non-empty subset S of V (G) is said to
be independent if it does not contain all the vertices of any edge of G. If S does contain
all the vertices of any edge of G. If S does not contain both the end vertices of any edge
then it is called e-independent and S is strongly independent if it contains no two adjacent
vertices of G.

Depending upon the nature of independence of the partite sets, a bipartite semigraph
G(V,E) with V = V1 ∪ V2 can be of following types.

(1) Bipartite Semigraph: G is bipartite if both V1 and V2 are independent.
(2) e-Bipartite Semigraph: G is e-bipartite if both V1 and V2 are e-independent.
(3) Strongly Bipartite Semigraph: G is s-bipartite if both V1 and V2 are strongly inde-

pendent.

Note 1.2. The only semigraphs which are strongly bipartite are bipartite graphs.

Note 1.3. Every e-bipartite semigraph is bipartite but not conversely.

Proposition 1.1. [1] A semigraph G is e-bipartite if and only if its end vertex graph Ge
is bipartite.

Proposition 1.2. [1] Let G be a semigraph which is a cycle having at least one edge of
cardinality three. Then G is bipartite.
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The following definition and results on domination in semigraph are taken from the
article[2].

Definition 1.7. Let G(V,E) be a semigraph and Ve be the set of all end vertices of G. A
set D ⊆ V is called adjacent dominating set (ad-set) if for every v ∈ V −D there exists a
u ∈ D such that v is adjacent to u in G. The adjacency domination number γa = γa(G)
is the minimum cardinality of an ad-set of G. A set D ⊆ Ve is called end vertex adjacent
dominating set (ead-set) if (i) D is an ad-set and (ii) Every end vertex v ∈ V − D is
e-adjacent (two vertices are e-adjacent if they are the end vertices of an edge in G) to
some end vertex v ∈ D in G. The end vertex adjacency domination number γea = γea(G)
is the minimum cardinality of an ead-set of G.

Proposition 1.3. Let Pn denote path semigraph and Cn, cycle semigraph with n vertices
containing k end vertices and r mid vertices such that k + r = n and let Gn = Pn or Cn.
Then,

γa(Gn) = γea(Gn) ≤
⌈n

3

⌉
.

Note 1.4. A cycle in a semigraph is a closed path. A cycle semigraph is a semigraph
which is a cycle.

Proposition 1.4. For any semigraph G with n vertices containing k end vertices and r
mid vertices such that k + r = n without isolated vertices, then⌈

n

δa + 1

⌉
≤ γa(G), where δa is the maximum adjacency degree of vertices in G.

For domination numbers associated with semigraphs, one may also refer to [8, 9, 10, 11].

2. Main Results

Lemma 2.1. A cycle semigraph G is s-bipartite if and only if G has even number of
vertices.

Proof. Follows directly from the note 1.2 �

Definition 2.1. Let G(V,E) be a semigraph and φ 6= S ⊆ V . Then S is called a (consec-
utively adjacent) ca-independent set if it does not contain two vertices which are consecu-
tively adjacent on some edge of G. The semigraph G is ca-bipartite if the vertex set of G
can be partitioned in to {V1, V2} such that both V1 and V2 are ca-independent.

Lemma 2.2. A cycle semigraph G is ca-bipartite if and only if G has even number of
vertices.

Proof. Let G be a cycle semigraph which is ca-bipartite. i.e V (G) has a partition {V1, V2}
such that Vi is ca-independent for i=1,2. Let V (G) = {v1, v2, . . . , vn} and E(G) =
{e1, e2, . . . , em}. Let e1, e2, . . . , em be the edges of the cycle in that order v1, v2, . . . , vn
be the vertices of these edges in that order. Then, suppose v1 ∈ V1. Then every even
suffixed vertex is in V2 and every odd suffixed vertices are in V1. Since vn is adjacent to
v1, vn ∈ V2. Hence n is even set of vertices of a cycle semigraph G.

Coversely, let {v1, v2, . . . , vn}, where n is even be the set of vertices of the cycle semi-
graph G which appears in that order with vn adjacent to v1. Define a partition {V1, V2}
of V as follows.V1 contains all odd suffix vertices and V2 contains the remaining vertices.
Since n is even vn ∈ V2 and V1 and V2 are ca-independent. Hence G is ca-bipartite. �

The following lemma characterizes e-bipartite cycles.
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Lemma 2.3. A cycle semigraph G is e-bipartite if and only if G has even number of edges.

Proof. Note that, for a cycle semigraph G the end vertex graph Ge is a cycle graph, number
of edges in Ge is same as the number of edges in G. By proposition 1.1, a semigraph G
is e-bipartite if and only if its end vertex graph Ge is a bipartite graph. Thus it follow
that, a cycle semigraph G is e-bipartite if and only if the corresponding cycle graph Ge is
bipartite and the result of this follows from the fact that a bipartite cycle graph has even
number of edges. �

Theorem 2.1. Let G(V,E) be a cycle semigraph. Then there exists a partition {V1, V2}
of V (G) such that the partite sets V1 and V2 are both e-independent and ca-independent if
and only if G has even number of vertices and every edge is of even size.

Proof. If a partition {V1, V2} of V (G) is ca-independent then from Lemma 2.2 G has even
number of vertices. If a partition {V1, V2} of V (G) is e-independent then from Lemma 2.3
G has even number of edges.

The partition {V1, V2} is ca-independent and e-independent, hence in any edge of G,
consecutive vertices should not belong to the same partite set, and both end vertices of
the edge should not belong to the same partite set, hence each edge must be of even size.
Therefore, G has even number of vertices, even number of edges and all edges are of even
size.

Hence a partition {V1, V2} of V (G) is e-independent and ca-independent if and only if
the semigraph G has even number of edges with every edge of even size.

Conversely, let G be a cycle semigraph with V (G) = {v1, v2, . . . , vn} and E(G) =
{e1, e2, . . . , em} where m is even and |Ei| is even for every i, 1 ≤ i ≤ m. Let the ej be
given by ej = (vj1 , vj2 , . . . , vjkj ) where kj is even and vj1 are end vertices of ej , 1 ≤ j ≤ m.

Let e1, e2, . . . , em be the edges of the cycle semigraph in that order. Now, consider the
bipartition {V1, V2} defined as follows.

Start with the end vertex v1l of e1 in the set V1. Put v1l in V1 when l is odd and v1l in
V2 when l is even. The other end vertex v1k1 of e1 will be in V2 since k1 is even. Since G
is a cycle semigraph, v21 = v1k1 . Put v2r in V2 when r is odd and v2r in V1 when r is even.
Continuing the above above procedure, we observe that every odd suffixed edge, say es
has its starting vertex i.e vs1 in V1 and its end vertex vsks in V2 and every even suffixed
edge, say et has its starting vertex vt1 in V2 and end vertex vtst in V1. Again, since it is a
cycle semigraph, vmkm

= v1k1 .
Since both m and kj for every j, 1 ≤ j ≤ m, are even the above defines a bipartition

{V1, V2} of V (G) such that both V1 and V2 are e-independent and ca-independent. �

Note 2.1. Every ca-bipartite semigraph is bipartite semigraph but not conversely.

Note 2.2. If a cycle semigraph G of order n, where n is an odd integer, is non bipartite
then G has no edge containing a mid-vertex, G is a graph. Since G is a graph γ(G) =

⌈
n
3

⌉
,

[12].

Theorem 2.2. Let G be a bipartite semigraph on n vertices out of which k are end vertices
and r mid vertices with k + r = n. Then,⌈

k

3

⌉
≤ γa(G) =γea(G) ≤

⌈
k

2

⌉
.

Proof. If G be a bipartite semigraph on n vertices out of which k are end vertices and r
mid vertices with k + r = n then G has to be one of the following,
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(1) G is a cycle graph with k even (r = 0)
(2) G is a cycle semigraph with n vertices with n even and r > 0
(3) G is a cycle semigraph with n vertices with k odd and r ≥ 1.

• Case 1: If G is a cycle graph with k even and r = 0.
Then γa(G) = γea(G) = γ(Ge) and γ(Ge) =

⌈
k
3

⌉
.

• Case 2:
– If G is a cycle with n even, r > 0 and only one edge has mid vertices.

Then from Case 1, it follows that, γa(G) =
⌈
k
3

⌉
(choose D such that it contains

an end vertex of the semiedge).
– If G is a cycle with k even, r > 0 and all the edges have mid vertices.

Then γa(G) =
(
k
2

)
(as D has to contain every alternative end vertex of G).

• Case 3:
– If G is a cycle with k odd, r ≥ n and only one edge has mid vertices.

Then from Case 3, it follows that, γa(G) =
⌈
k
3

⌉
.

– If G is a cycle with k odd, r ≥ k and all the edges have mid vertices.
Then γa(G) =

(
k−1
2

)
+ 1 =

(
k+1
2

)
(as D has to contain every alternative end

vertices of G).

�

Definition 2.2. The length of a path P is one more than the number of vertices of P at
which the path changes from one edge to other.

The distance between two vertices in a semigraph G is defined as follows. Let u and v
be vertices in the semigraph G then the distance between u and v, denoted by d(u, v) is
given by,

d(u, v) =

{
0 if u = v
length of the shortest path between u and v if u 6= v.

Example 2.1. Let P be a path in a semigraph G in Fig. 1. given by v = v1(v1, v5)v5
(v5, v4)v4(v4, v8)v8 = v. The P changes edges of G at vertices v5 and v4 on it. Hence
length of path P is 3.

Definition 2.3. Let G(V,X) be a semigraph. A set D ⊆ V is called adjacent dominating
set (ad-set) if for every v ∈ V −D there exists a u ∈ D such that d(u, v) = 1.

Theorem 2.3. If G be a bipartite semigraph on n vertices out of which k are end vertices
and r mid vertices with k + r = n (no mid-end vertices) then there exists an adjacent
dominating set which is independent.

Proof. Let G be a bipartite cycle semigraph with partition {V1, V2}, to prove that both
V1 and V2 are ad-sets. Let v ∈ V1. Since V1 is independent, every edge passing through
v has a vertex u ∈ V2 on it. Hence, d(u, v) = 1, (by definition 2.3) which proves that
V2 = V − V1 is an ad-set. Similarly, V1 is an ad-set. �

Corollary 2.1. If G be a bipartite cycle semigraph on n vertices out of which k are end
vertices and r mid vertices with k + r = n (no mid-end vertices) with partition {V1, V2}
then,

min{|V1|, |V2|} ≥
⌈
k

3

⌉
and max{|V1|, |V2|} ≤

⌈
k − 1

3

⌉
+

⌈
k − 2

3

⌉
+ r

Proof. Let G be a bipartite cycle semigraph with partition {V1, V2}. From Theorem 2.3
both V1 and V2 are adjacent dominating sets of G. And from Theorem 2.2,

⌈
k
3

⌉
≤ γa(G).
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Therefore,

min{|V1|, |V2|} ≥
⌈
k

3

⌉
The number of elements in G, n = |V1|+ |V2| without loss of generality, |V1| ≤ n−

⌈
k
3

⌉
.

For positive integer c and d the following is an established combinatorial result.

c =
⌈ c
d

⌉
+

⌈
c− 1

d

⌉
+ . . .+

⌈
c− d+ 1

d

⌉
.

Considering c = n and d = 3. The above becomes,

k =

⌈
k

3

⌉
+

⌈
k − 1

3

⌉
+

⌈
k − 2

3

⌉
Therefore,

k −
⌈
k

3

⌉
=

⌈
k − 1

3

⌉
+

⌈
k − 2

3

⌉
i.e

(r + k)−
⌈
k

3

⌉
= r +

⌈
k − 1

3

⌉
+

⌈
k − 2

3

⌉

n−
⌈
k

3

⌉
= r +

⌈
k − 1

3

⌉
+

⌈
k − 2

3

⌉
Hence,

|V2| ≤ n−
⌈
k

3

⌉
= r +

⌈
k − 1

3

⌉
+

⌈
k − 2

3

⌉
Therefore,

max{|V1|, |V2|} ≤
⌈
k − 1

3

⌉
+

⌈
k − 2

3

⌉
+ r

�

Arguing in the similar lines, making use of the result of the Proposition 1.4 that⌈
n

δa+1

⌉
≤ γa(G), where δa is the maximum adjacency degree of vertices in G. We get

the following corollary.

Corollary 2.2. If G be a bipartite semigraph on n vertices out of which k are end vertices
and r mid vertices with k + r = n (no mid-end vertices) with partition {V1, V2} then,

min{|V1|, |V2|} ≥
⌈

n

δa + 1

⌉
and max{|V1|, |V2|} ≤

⌈
n− 1

δa + 1

⌉
+ . . .+

⌈
n− δa
δa + 1

⌉
+ r,

where δa is the maximum adjacent degree of vertices in G.

Note 2.3. As in the case of graphs, any semigraph with either one or two edge is bipartite.
In the case of graphs no complete graph with number of vertices greater than or equal to
three is bipartite. But in the case of semigraph, for every n ≥ 3 Ecn is bipartite. It is easy

to note that, for every k ≥ 3, zig-zag semigraph Zk−1
k ,is not bipartite.



174 TWMS J. APP. AND ENG. MATH. V.12, N.1, 2022

3. Conclusion

When a semigraph is a cycle with at least one mid vertex is bipartite, but when it comes
to bounds of the domination number of the bipartite semigraph more analysis is needed
which gives clear picture about the structure of the semigraph. In this article we have
taken the simplest form of a semigraph which is a path in particular a closed path that
is a cycle. We have found the bounds of domination number of the semigraph when it is
a cycle and also realized that the independent sets of bipartite semigraphs are also the
adjacency dominating set of the semigraph.
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