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SOME INEQUALITIES FOR THE GRAPH ENERGY OF DISTANCE

LAPLACIAN MATRIX

GÜLİSTAN KAYA GÖK1, §

Abstract. In this paper, the distance laplacian energy for distance matrix is examined.
Some bounds for the laplacian eigenvalues of distance matrix are expanded including the
distances, the vertices and the edges. Indeed, different inequalities for the distance lapla-
cian energy are found out.
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1. Introduction

Let G be a connected graph with the set of vertices V (G) = {v1, v2, ..., vn} and the set
of edges E(G), where |V (G)| = n and |E(G)| = m. If any vertices vi and vj are adjacent,
then we use the notation vi ∼ vj . For vi ∈ V (G), the degree of the vertex vi denoted by
di, is the number of the vertices adjacent to vi. Let dij be the distance between vertices
vi and vj .

The distance matrix is the core of theories in this paper. This matrix is a symmetric,
square, nonnegative matrix and it is described as a matrix of distances between each pair
of vertices. The investigation of the distance matrix started in the 1970s with Graham
and others. They examined a communication network problem with sequence of loops in
complete graph, tree and cycle.[4] In addition, the distance matrix was applied in various
fields of chemistry. For example, Wiener index was derived by the help of distance matrix.
[8] Also, the graph distance energy was formed by eigenvalues of the distance matrix.[7]

The distance matrix is represented by De(G) = [dij ] in this paper. Let the eigenvalues
of De(G) be λD1 ,λD2 ,...,λDn . The eigenvalues of this symmetric matrix are real and λD1 ≥
λD2 ≥ ... ≥ λDn . By these inequalities, the distance energy of ED = ED(G) of a graph G is
defined as [3] ED(G) =

∑n
i=1 |λDi |.

The laplacian matrix L(G) is described with L(G) = D(G)− A(G) where A(G) is the
adjacency matrix and D(G) is the diagonal matrix of the vertex degrees. A(G) and L(G)
are all real symmetric matrices. Thus, their eigenvalues are real numbers. Define them

1 Department of Mathematics Education, Faculty of Education, Hakkari University, Hakkari, Turkey.
e-mail: gulistankayagok@hakkari.edu.tr; ORCID: https://orcid.org/0000-0001-9059-1606.

§ Manuscript received: February 21, 2020; accepted: June 03, 2020.
TWMS Journal of Applied and Engineering Mathematics, Vol.12, No.1 © Işık University, Department
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first λ1 ≥ λ2 ≥ ... ≥ λn and µ1 ≥ µ2 ≥ ... ≥ µn. The graph laplacian energy LE(G) is

described by LE = LE(G) =
∑n

i=1 |µi −
2m

n
|. (See in [5].)

The distance laplacian energy depends on eigenvalues of distance laplacian matrix.
The distance laplacian matrix equals the difference between D = diag(d1, d2, ..., dn) and
Distance Matrix=De. This matrix is defined as LM = D − De in [1]. Let the distance
laplacian eigenvalues of D(G) be denoted by µD1 ,µD2 ,...,µDn . Since LM(G) is symmetric, its
eigenvalues are real numbers. Thus, µD1 ≥ µD2 ≥ ... ≥ µDn . The distance laplacian energy

is defined in [9] as LED = LED(G) =
∑n

i=1 |µDi −
1

n

∑n
j=1Dj |. Since

∑n
j=1Dj is the sum

of the distances in the distance matrix, then it is specified by LED(G) =
∑n

i=1 |µDi −
2m

n
|

in this paper. For complete graph Kn, LED(Kn) = 2n(n− 1) in [9].
The narrative order of this study is as follows. Firstly, some lemmas are given for use

in main results. After, eigenvalues of LD(G) are examined and the important connections
are formed in terms of the distances and the eigenvalues. Also, some bounds for distance
laplacian energy are obtained using different relations. Then, interesting inequalities are
found for the complement of distance laplacian energy. In addition, two inequalities are
presented about laplacian distance energy of cartesian and inner product of two distance
laplacian matrices.

2. Preliminaries

In order to achieve the desired inequalities, we use three existing results:

Lemma 2.1 (6). Let q = (qi) be a sequence, q ∈ R+ and a = (ai), b = (bi) ∈ R+. Then,

n∑
i=1

qi

n∑
i=1

qiaibi ≥
n∑

i=1

qiai

n∑
i=1

qibi.

Lemma 2.2 (6). If ai, bi ∈ R+, 1 ≤ i ≤ n, then
n∑

i=1

b2i + rR
n∑

i=1

a2i ≤ (r +R)
n∑

i=1

aibi

where rai ≤ bi ≤ Rai.

Lemma 2.3 (9). Let G be a connected graph of order n. Then

i)

n∑
i=1

(εi) = 0,

ii)

n∑
i=1

(εi)
2 = 2(T +mα).

where εi = µDi −
2m

n
, T =

∑
1≤i<j≤n(dij)

2 and α =
2m

n
.

3. MAIN SERULTS

Eigenvalues are important for the structure of a matrix. In this section, some relations
are given for eigenvalues of distance laplacian matrix. Also, different bounds for distance
laplacian energy are determined by the eigenvalues of distance laplacian matrix. Some
bounds are sharp. (See Theorem 3.2, 3.3. and 3.4)
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Theorem 3.1. Let G be a connected graph with the eigenvalues µD1 . Then,

µD1 ≤
√

2(
n− 1

n
)(T +mα) + α.

Proof. It is known that ε1 = −
∑n

i=2(εi). Using this result, it gets

|ε1| ≤
n∑

i=2

|εi| ≤
√
n− 1

√√√√ n∑
i=2

(εi)2.

Thus,

(ε1)
2 ≤ (n− 1)[

n∑
i=1

(εi)
2 − (ε1)

2].

Also, it is stated that
n

n− 1
(ε1)

2 ≤
∑n

i=1(εi)
2. Lemma 2.3 says that

n

n− 1
(ε1)

2 ≤ 2(T +

mα). Since εi = µDi −
2m

n
, then µDi = εi +

2m

n
= εi + α. Thus, µD1 = ε1 + α. Here, µD1 is

the spectral radius (greatest eigenvalue) of G. Hence,

µD1 ≤
√

2(
n− 1

n
)(T +mα) + α.

�

Theorem 3.2. Let G be a connected graph with n nodes and m edges. Then LED(G) ≥√
2n(T +mα).

Proof. Let qi = |εi|, ai = |εi|, bi =
1

|εi|
. Observing the Lemma 2.1, it gets

n∑
i=1

|εi|
n∑

i=1

|εi||εi|
1

|εi|
≥

n∑
i=1

|εi||εi|
n∑

i=1

|εi|
1

|εi|

(
n∑

i=1

|εi|)2 ≥
n∑

i=1

|εi|2
n∑

i=1

1.

Thus, the above inequality requires LE2
D(G) ≥ n

∑n
i=1 |εi|2 = 2n(T + mα). Hence,

LED(G) ≥
√

2n(T +mα).
�

Theorem 3.3. Let G be a connected graph with the maximum degree ∆. Then,

LED(G) ≥ 2(T +mα) + n|α(∆− α)|
∆

.

Proof. For ai = 1, bi = |εi|, r = |εn|, R = |ε1| where the summation is performed over all
edges of graph G. Thus, the Lemma 2.2 becomes

n∑
i=1

|εi|2 + |εn||ε1|
n∑

i=1

12 ≤ (|ε1|+ |εn|)
n∑

i=1

|εi|.

According to Lemma 2.3, the inequality transforms into
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2(T +mα) + n|εn||ε1| ≤ (|ε1|+ |εn|)LED(G).

From the above, it hence

LED(G) ≥ 2(T +mα) + n|εn||ε1|
|ε1|+ |εn|

.

Since, µ1 ≤ ∆ and µn ≥ 0 then |ε1| = |∆− α| and |εn| = |α|. Hence,

LED(G) ≥ 2(T +mα) + n|α(∆− α)|
∆

.

�

Theorem 3.4. Let G be a connected graph and LED(Ḡ) be the complement of LED(G).
Then

LED(G) + LED(Ḡ) ≤
√

2(n2 − n)− (
m

n
(n2 − n− 2m))2 − 2dij [2

∑
dij − dij ].

Proof. By the Cauchy-Schwartz inequality, (LED(G)+LED(Ḡ))2 ≤ (LED(G))2+(LED(Ḡ))2.
Hence,

(LED(G) + LED(Ḡ))2 ≤
n∑

i=1

(|εi|)2 +
n∑

i=1

(|ε̄i|)2

=

n∑
i=1

((µDi )2 + (µ̄Di )2)− 4m

n

n∑
i=1

µDi −
4m̄

n

n∑
i=1

µ̄Di +
4(m2 + m̄2)

n2
.

Since
∑n

i=1(εi) =
∑n

i=1 µ
D
i − 2m = 0, then

∑n
i=1 µ

D
i = 2m and

∑n
i=1 µ̄

D
i = 2m̄. This

means that,

(LED(G) + LED(Ḡ))2 ≤
n∑

i=1

((µDi )2 + (µ̄Di )2)− 4

n2
(m2 + m̄2).

Knowing that 2(m+ m̄) = (n2 − n), it yields m̄ =
n2 − n− 2m

2
. Thus,

(LED(G) + LED(Ḡ))2 ≤
n∑

i=1

((µDi )2 + (µ̄Di )2)− 4

n2
(m2 + (

n2 − n− 2m

2
)2).

In the sequel, it is outlined that
∑n

i=1(µ̄
D
i )2 = 2

∑
(d̄ij)

2 = 2
∑

(
∑
dij−dij)2 = 2

∑
((
∑
dij)

2−
2dij

∑
dij + (dij)

2).

Also, dij ≥ 1 for i 6= j and there are
(n2 − n)

2
vertices. Therefore,

∑n
i=1(µ̄

D
i )2 =

(n2 − n)− 2dij [2
∑
dij − dij ]. Then, the inequality is summarized in the following that

(LED(G) + LED(Ḡ))2 ≤ 2
∑

(dij)
2 + (n2 − n)− 2dij [2

∑
dij − dij ]

≤ 2(n2 − n)− 2dij [2
∑

dij − dij ]−
4m2(n2 − n− 2m)2

4n2
.

Hence,

LED(G) + LED(Ḡ) ≤
√

2(n2 − n)− m2

n2
(n2 − n− 2m)2 − 2dij [2

∑
dij − dij ].
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�

Theorem 3.5. Let G be a connected, (n,m) graph and LD1, LD2 be two laplacian distance
matrices. Then,

LELD1×LD2(G) ≤
√

4(T +mα) + 2LELD1(G)LELD2(G).

Proof. Let µD1
i and µD2

j be the laplacian eigenvalues of LD1 and LD2, respectively. Let

µD1
i − 2m

n
= εi and µD2

j − 2m

n
= εj , i, j = 1, 2, ..., n. By the survey of properties of

LD1 × LD2 given in [2], we have

LELD1×LD2(G) =
n∑

i,j=1

|εi + εj |

=

√√√√(
n∑

i,j=1

|εi + εj |)2

≤

√√√√(
n∑

i=1

|εi|)2 + (
n∑

j=1

|εj |)2 + 2(
n∑

i=1

|εi|
n∑

j=1

|εj |)

≤
√

4(T +mα) + 2LELD1(G)LELD2(G).

�

Corollary 3.1. Let G be a connected, (n,m) graph and LD1, LD2 be two laplacian dis-
tance matrices. Then,

LELD1×LD2(K) ≤
√

4(T +mα) + 8(n(n− 1))2.

Proof. Since LED(K) = 2n(n− 1), then the corollary is clear by the Theorem 3.5.
�

Theorem 3.6. Let G be a connected, (n,m) graph and LD1, LD2 be two laplacian distance
matrices. Then,

LELD1⊗LD2(G) ≤ 2(T +mα).

Proof. By the result of properties of D1 ⊗D2 given in [2], the inequality becomes

LELD1⊗LD2(G) =
n∑

i,j=1

|εiεj |

≤

√√√√(
n∑

i=1

|εi|)2(
n∑

j=1

|εj |)2

≤
√

(2(T +mα))2.

Thus, the proof is completed with

LELD1⊗LD2(G) ≤ 2(T +mα).

�
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4. Conclusion

The distance matrix is the focus of theorems in this paper. Distance laplacian matrix
is obtained by distance matrix. Some relations are improved for eigenvalues of distance
laplacian matrix. Considering that the energy is a point of application of eigenvalues
and its importance in molecular graph theory, the energy of distance laplacian matrix
is studied. Some inequalities for this energy are achieved. These inequalities aim to
contribute greatly to molecular graph theory.
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