OUTER-CONVEX DOMINATION IN THE CORONA OF GRAPHS

J. DAYAP ${ }^{1}$, §

Abstract

Let G be a connected simple graph. A subset S of a vertex set $V(G)$ is called an outer-convex dominating set of G if for every vertex $v \in V(G) \backslash S$, there exists a vertex $x \in S$ such that $x v$ is an edge of G and $V(G) \backslash S$ is a convex set. The outer-convex domination number of G, denoted by $\widetilde{\gamma}_{c o n}(G)$, is the minimum cardinality of an outerconvex dominating set of G. In this paper, we show that every integers a, b, c, and n with $a \leq b \leq c \leq n-1$ is realizable as domination number, outer-connected domination number, outer-convex domination number, and order of G respectively. Further, we give the characterization of the outer-convex dominating set in the corona of two graphs and give its corresponding outer-convex domination number.

Keywords: Domination, outer-connected domination, outer-convex domination.
AMS Subject Classification: 05C69.

1. Introduction

The theory of domination is an area in graph theory with numerous research activities. One of the domination parameters of interest is outer-convex domination which was introduced by Dayap and Enriquez in 2019 [1] and further investigated in [2]. In [1], the authors characterized the outer-convex domination in the join of two graphs and give some of its bounds. In [2], the authors characterized the parameter in the composition and Cartesian product of graphs. In this paper, we give the characterization of the outerconvex dominating set in the corona of two graphs and outer-convex domination number on the resulting graph. Further, we give some realization problems of the said domination parameter.

Let G be a simple graph. A subset S of a vertex set $V(G)$ is a dominating set of G if for every vertex $v \in V(G) \backslash S$, there exists a vertex $x \in S$ such that $x v$ is an edge of G. The domination number $\gamma(G)$ of G is the smallest cardinality of a dominating set S of G. Dominating sets have several applications in a variety of fields, including communication and electrical networks, protection and location strategies, data structures and others. For further background on dominating sets, the reader may refer to [3]. Domination in graph was introduced by Claude Berge in 1958 [4] and Oystein Ore in 1962 [5].

[^0]A graph G is connected if there is at least one path that connects every two vertices $x, y \in V(G)$, otherwise, G is disconnected. A nonempty subset S of $V(G)$ is a clique in G if every two vertices in S are adjacent. For any two vertices u and v in a connected graph, the distance $d_{G}(u, v)$ between u and v is the length of a shortest path in G. A $u-v$ path of length $d_{G}(u, v)$ is also referred to as $u-v$ geodesic. The closed interval $I_{G}[u, v]$ consists of all those vertices lying on a $u-v$ geodesic in G. For a subset S of vertices of G, the union of all sets $I_{G}[u, v]$ for $u, v \in S$ is denoted by $I_{G}[S]$. Hence $x \in I_{G}[S]$ if and only if x lies on some $u-v$ geodesic, where $u, v \in S$. A set S is convex if $I_{G}[S]=S$. More specifically, if G is connected graph, then $V(G)$ is convex. If $V(G) \backslash S$ is convex, then S is an outer-convex set of G. Convexity in graphs was studied in $[6,7]$.

A dominating set S, which is also convex, is called a convex dominating set of G. The convex domination number $\gamma_{c o n}(G)$ of G is the smallest cardinality of a convex dominating set of G. A convex dominating set of cardinality $\gamma_{c o n}(G)$ is called a $\gamma_{c o n}$-set of G. Convex domination in graphs was studied in $[8,9,10]$. A set S of vertices of a graph G is an outer-connected dominating set if every vertex not in S is adjacent to some vertex in S and the sub-graph induced by $V(G) \backslash S$ is connected. The outer-connected domination number $\widetilde{\gamma}_{c}(G)$ is the minimum cardinality of the outer-connected dominating set S of a graph G. The concept of outer-connected domination in graphs was introduced by Cyman [12] and further investigated in [11].

A set S of vertices of a graph G is an outer-convex dominating set if every vertex not in S is adjacent to some vertex in S and $V(G) \backslash S$ is convex. The outer-convex domination number of G, denoted by $\widetilde{\gamma}_{\text {con }}(G)$, is the minimum cardinality of an outerconvex dominating set of G. An outer-convex dominating set of cardinality $\widetilde{\gamma}_{\text {con }}(G)$ will be called an $\widetilde{\gamma}_{\text {con }}$-set.

Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G and m copies of H, and then joining the $i t h$ vertex of G to every vertex of the i th copy of H. The join of vertex v of G and a copy H^{v} of H in the corona of G and H is denoted by $v+H^{v}$.

2. Results

Theorem 2.1. Given positive integers a, b, c, and n such that $n \geq 2$ and $a \leq b \leq c \leq n-1$, there exists a connected graph G with $\gamma(G)=a, \gamma_{c o n}(G)=b, \widetilde{\gamma}_{c o n}(G)=c$, and $|V(G)|=n$.
Proof. Consider the following cases:
Case 1: Suppose $a=b=c=n-1$.
Let $G=K_{2}$. Clearly, $\gamma(G)=1, \gamma_{c o n}(G)=1, \widetilde{\gamma}_{c o n}=1$, and $|V(G)|=2$.
Case 2: Suppose $a=b=c<n-1$.
Let $G=P_{a} \circ K_{1}$ (see Figure 1) and let $n=2 a$.

Figure 1: A graph G with $a=b=c<n-1$
Clearly, the set $A=\left\{v_{i}: i=1,2, \ldots, a\right\}$ is a $\gamma-$ set, and $\gamma_{c o n}-$ set of G. The set $B=$ $\left\{u_{i}: i=1,2, \ldots, a\right\}$ is a $\widetilde{\gamma}_{\text {con }}-$ set of G. Thus, $|V(G)|=2|A|=2 a=n, \gamma(G)=|A|=a$,
$\gamma_{c o n}=|A|=a=b$, and $\widetilde{\gamma}_{c o n}=|B|=a=b=c$.
Case 3: Suppose $a=b<c<n-1$.
Consider the graph G obtained from the graph in Figure 1 by adding the vertex x_{i} and the edges $v_{i} x_{i}$ for $i=1,2, \ldots, a$ (see Figure 2) and let $2 a=c$, and $3 a=n$.

Figure 2: A graph G with $a=b<c<n-1$

The set $A=\left\{v_{i}: i=1,2, \ldots, a\right\}$ is a $\gamma-$ set, and $\gamma_{c o n}-$ set of G. The set $B=\left\{u_{i}\right.$: $i=1,2, \ldots, a\} \cup\left\{x_{i}: i=1,2, \ldots, a\right\}$ is a $\widetilde{\gamma}_{c o n}-$ set of G. Thus, $|V(G)|=3|A|=3 a=n$, $\gamma(G)=|A|=a, \gamma_{c o n}(G)=|A|=a=b, \widetilde{\gamma}_{c o n}(G)=|B|=a+a=2 a=c$.
Case 4: Suppose $a<b=c<n-1$.
Consider the graph G obtained from the graph in Figure 1 by adding the vertex y_{i} and the edges $y_{i} u_{i}$ for $i=1,2, \ldots, a$ (see Figure 3) and let $2 a=b$, and $3 a=n$.

Figure 3: A graph G with $a<b=c<n-1$

Clearly, the set $A=\left\{u_{i}: i=1,2, \ldots, a\right\}$ is a $\gamma-$ set, $B=A \cup\left\{v_{i}: i=1,2, \ldots, a\right\}$ is a $\gamma_{c o n}-$ set, and $C=A \cup\left\{y_{i}: i=1,2, \ldots, a\right\}$ is a $\widetilde{\gamma}_{c o n}-$ set of G. Thus, $|V(G)|=$ $3|A|=3 a=n, \gamma(G)=|A|=a, \gamma_{c o n}(G)=|B|=|A|+a=a+a=2 a=b$, and $\widetilde{\gamma}_{\text {con }}(G)=|C|=|A|+a=a+a=2 a=b=c$.
Case 5: Suppose $a<b<c<n-1$.
Consider the graph G obtained from the graph in Figure 3 by adding the vertices z, and x_{i} and edges $v_{i} z$, and $z x_{i}$ for $i=1,2, \ldots, a$ (see Figure 4) and let $b=2 a+1, c=3 a$, and $n=4 a+1$.

Figure 4: A graph G with $a<b<c<n-1$
Clearly, the set $A=\left\{u_{i}: i=1,2, \ldots, a\right\} \cup z$ is a $\gamma-$ set, $B=A \cup\left\{v_{i}: i=1,2, \ldots, a\right\}$ is $\gamma_{\text {con }}$ - set, and $C=\left\{u_{i}: i=1,2, \ldots, a\right\} \cup\left\{x_{i}: i=1,2, \ldots, a\right\} \cup\left\{y_{i}: i=1,2, \ldots, a\right\}$ is a $\widetilde{\gamma}_{\text {con }}-$ set of G. Thus, $|V(G)|=4|A|-3=4(a+1)-3=4 a+4-3=4 a+1=n$, $\gamma(G)=|A|=a+1, \gamma_{c o n}(G)=|B|=|A|+a=(a+1)+a=2 a+1=b, \widetilde{\gamma}_{c o n}(G)=$ $a+a+a=3 a=c$.
Theorem 2.2. Given positive integers a, b, c, and n such that $n \geq 2$ and $a \leq b \leq c \leq n-1$, there exists a connected graph G with $\gamma(G)=a, \widetilde{\gamma}_{c}(G)=b, \widetilde{\gamma}_{\text {con }}(G)=c$, and $|V(G)|=n$.
Proof. Consider the following cases:
Case 1. Suppose $a=b=c=n-1$.
Let $G=K_{2}$. Clearly, $\gamma(G)=1, \widetilde{\gamma}_{c}(G)=1, \widetilde{\gamma}_{c o n}=1$, and $|V(G)|=2$.
Case 2. Suppose $a=b=c<n-1$.
Let $G=P_{a} \circ K_{1}$ (see Figure 1) and let $n=2 a$.
Clearly, the set $A=\left\{u_{i}: i=1,2, \ldots, a\right\}$ is a $\gamma-$ set, $\widetilde{\gamma}_{c}-$ set, and $\widetilde{\gamma}_{\text {con }}-$ set of G. Thus, $|V(G)|=2|A|=2 a=n, \gamma(G)=|A|=a, \widetilde{\gamma}_{c}=|A|=b$, and $\widetilde{\gamma}_{c o n}=|A|=c$.
Case 3. Suppose $a=b<c<n-1$.
Let $G=P_{a} \circ P_{3}$ (See Figure 5) and let $c=2 a$ and $n=4 a$.

Figure 5: A graph G with $a=b<c<n-1$
Clearly, the set $A=\left\{u_{i}: i=1,2, \ldots, a\right\}$ is a $\gamma-$ set, and a $\widetilde{\gamma}_{c}-$ set and the set $B=A \cup\left\{t_{i}: i=1,2, \ldots, a\right\}$ is a $\widetilde{\gamma}_{c o n}-$ set of G. Thus, $|V(G)|=4|A|=4 a=n$, $\gamma(G)=|A|=a, \widetilde{\gamma}_{c}(G)=|A|=a=b$, and $\widetilde{\gamma}_{c o n}(G)=|B|=|A|+a=a+a=2 a=c$.
Case 4. Suppose $a<b=c<n-1$.
Consider the graph G obtained from the graph in Figure 3 and let $b=2 a$, and $n=3 a$.
The set $A=\left\{v_{i}: i=1,2, \ldots, a\right\}$ is a $\gamma-$ set, and $B=\left\{u_{i}: i=1,2, \ldots, a\right\} \cup\left\{x_{i}: i=\right.$ $1,2, \ldots, a\}$ is a $\widetilde{\gamma}_{c}-$ set, and $\widetilde{\gamma}_{\text {con }}-$ set of G. Thus, $|V(G)|=3|A|=3 a=n, \gamma(G)=|A|=a$, $\widetilde{\gamma}_{c}(G)=|B|=a+a=2 a=b, \widetilde{\gamma}_{\text {con }}(G)=|B|=2 a=b=c$.
Case 5. Suppose $a<b<c<n-1$.
Let $G=P_{a} \circ P_{5}$ (See Figure 6) and let $b=2 a, c=3 a$, and $n=6 a$.

Figure 6: A graph G with $a<b<c<n-1$

Clearly, the set $A=\left\{v_{i}: i=1,2, \ldots, a\right\}$ is a $\gamma-$ set, $B=\left\{s_{i}: i=1,2, \ldots, a\right\} \cup\left\{w_{i}\right.$: $i=1,2, \ldots, a\}$ is a $\widetilde{\gamma}_{c}-$ set and the set $C=B \cup\left\{x_{i}: i=1,2, \ldots, a\right\}$ is a $\widetilde{\gamma}_{c o n}-$ set of G. Thus, $|V(G)|=6|A|=6 a=n, \gamma(G)=|A|=a, \widetilde{\gamma}_{c}(G)=|B|=a+a=2 a=b$, and $\widetilde{\gamma}_{\text {con }}(G)=|C|=|B|+a=2 a+a=3 a=c$.

This proves the assertion.

Theorem 2.3. Let G be a connected graph and H be a connected non-complete graph. Then a subset S of $V(G \circ H)$ is an outer-convex dominating set in $G \circ H$ if and only if one of the following statements is satisfied:
(i) $S=\bigcup_{x \in V(G)} S_{x}$, where S_{x} is a dominating set in H^{x} and $V\left(H^{x}\right) \backslash S_{x}$ is convex in $x+H^{x}$ for all $x \in V(G)$.
(ii) $S=V(G) \bigcup S_{x} \bigcup\left(\bigcup_{z \in V(G) \backslash\{x\}} V\left(H^{z}\right)\right)$ for some $x \in V(G)$, where $S_{x}=V\left(H^{x}\right)$ or $V\left(H^{x}\right) \backslash S_{x}$ is a clique set in H^{x}.
(iii) $S=S_{G} \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} S_{x}\right) \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right)$, where S_{G} is an outer-convex set in G, S_{x} is a dominating set in H^{x} and $V\left(H^{x}\right) \backslash S_{x}$ is convex in $x+H^{x}$.

Proof. Suppose that a subset S of $V(G \circ H)$ is an outer-convex dominating set in $G \circ H$. Then S is a dominating set and $V(G \circ H) \backslash S$ is a convex set in $G \circ H$. Set $S_{G}=S \bigcap V(G)$ and $S_{x}=S \bigcap V\left(H^{x}\right)$. Consider the following cases:

Case 1: $S_{G}=\emptyset$
Then, obviously, S will be the one given in (i). Next, one needs to show that, for an arbitrary $x \in V(G), S_{x}$ is an outer-convex dominating set of $x+H^{x}$, that is, S_{x} is a dominating set in H^{x} and $V\left(H^{x}\right) \backslash S_{x}$ is convex in $x+H^{x}$. Suppose that S_{x} is not a dominating set in H^{x} for all $x \in V(G)$. Then $S=\bigcup_{x \in V(G)} S_{x}$ is clearly not a dominating set, contrary to our assumption. Thus, S_{x} must be a dominating set in H^{x} for all $x \in V(G)$. Now, suppose that $V\left(H^{x}\right) \backslash S_{x}$ is not convex in $x+H^{x}$ for all $x \in V(G)$. Then, $\bigcup_{x \in V(G)}\left(V\left(H^{x}\right) \backslash S_{x}\right)$, is not convex. Thus, $V(G) \cup\left(\bigcup_{x \in V(G)}\left(V\left(H^{x}\right) \backslash S_{x}\right)\right)=V(G \circ H) \backslash S$ is not convex, contrary to our assumption. Thus, $V\left(H^{x}\right) \backslash S_{x}$ must be convex in $G \circ H$ for all $x \in V(G)$. This proves statement (i).

Case 2: $S_{G}=V(G)$

Set $S=V(G) \bigcup S_{x} \bigcup\left(\bigcup_{z \in V(G) \backslash\{x\}} V\left(H^{z}\right)\right)$. If $S=V(G \circ H)$, then $S_{x}=V\left(H^{x}\right)$ for all $x \in V(G)$. Suppose, $S \neq V(G \circ H)$. Then, there exists $x \in V(G)$ such that $S_{x} \neq V\left(H^{x}\right)$. Suppose $V\left(H^{x}\right) \backslash S_{x}$ is not a clique set in H^{x}. Then, $V\left(H^{x}\right) \backslash S_{x}=V(G \circ$ $H) \backslash\left(V(G) \bigcup S_{x} \bigcup\left(\bigcup_{z \in V(G) \backslash\{x\}} V\left(H^{z}\right)\right)\right)$. It follows that, $V\left(H^{x}\right) \backslash S_{x}=V(G \circ H) \backslash S$ is not a clique set. This implies that there exist $u, v \in V(G \circ H) \backslash S$ such that $u v \notin E(G \circ H)$. Since $u x, x v \in E(G \circ H)$ for some $x \in V(G), x \in I_{G \circ H}[V(G \circ H) \backslash S]$. Now, $x \in V(G)$ implies that $x \in S$ and so $x \notin V(G \circ H) \backslash S$. Thus, $I_{G \circ H}[V(G \circ H) \backslash S] \neq V(G \circ H) \backslash S$, that is, $V(G \circ H) \backslash S$ is not convex contrary to our assumption. Hence, $V\left(H^{x} \backslash S_{x}\right)$ must be a clique set. Suppose, there exists $y \neq x \in V(G)$ such that $V\left(H^{y}\right) \backslash S_{y}$ is clique set in H^{y}. Since $x, y \in V(G)$ implies that $x, y \in S$, it follows that $x, y \neq V(G \circ H) \backslash S$. Clearly, $I_{G \circ H}[V(G \circ H) \backslash S] \neq V(G \circ H) \backslash S$ that is, $V(G \circ H) \backslash S$ is not convex, contrary to our assumption. Hence, $V\left(H^{x}\right) \backslash S_{x}$ is clique set in H^{x} for some $x \in V(G)$, showing statement (ii).

Case 3: $S_{G} \neq \emptyset$ and $S_{G} \neq V(G)$
Set $S=S_{G} \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} S_{x}\right) \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right)$. Suppose S_{G} is not an outer-convex set in G. Then, $V(G) \backslash S_{G}$ is not convex in G. Consequently, $I_{G}\left[V(G) \backslash S_{G}\right] \neq V(G) \backslash S_{G}$. Now, pick distinct elements x and y in $V(G) \backslash S_{G}$. Then, $x, y \notin S_{G}$, implies $x, y \notin S$. This means, $x, y \in V(G \circ H) \backslash S$. Obviously, $I_{G \circ H}[V(G \circ H) \backslash S] \neq V(G \circ H) \backslash S$. This implies that $V(G \circ H) \backslash S$ is not convex, contrary to our assumption. Hence, S_{G} must be an outerconvex set in G. Suppose S_{x} is not a dominating set in H^{x} for all $x \in V(G) \backslash S_{G}$, then there exists $w \in V\left(H^{x}\right) \backslash S_{x}$ such that $w y \notin E\left(H^{x}\right)$ for all $y \in S_{x}$. Since for all $z \in S_{G}$, $w z \notin E(G \circ H)$ and for all $u \in V\left(H^{z}\right), w u \notin E(G \circ H)$, it follows that $w v \notin E(G \circ H)$ for all $v \in\left(S_{G} \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} S_{x}\right) \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right)\right)$. Thus, there exists $w \in V(G \circ H) \backslash S$ such that $w v \notin E(G \circ H)$ for all $v \in S$, contrary to our assumption that S is a dominating set in $G \circ H$. Thus, S_{x} must be a dominating set in H^{x} for all $x \in V(G) \backslash S_{G}$. Now, let distinct elements $x, y \in V(G \circ H) \backslash S$ with $S_{x} \subseteq V\left(H^{x}\right)$. Then

$$
\begin{aligned}
& y \in V(G \circ H) \backslash\left(S_{G} \bigcup S_{x} \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right)\right) \\
& y \notin\left(S_{G} \bigcup S_{x} \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right)\right) \\
& y \notin S_{x} \\
& y \in V\left(H^{x}\right) \backslash S_{x}
\end{aligned}
$$

Thus, $V(G \circ H) \backslash S \subseteq V\left(H^{x}\right) \backslash S_{x}$. Since $V\left(H^{x}\right) \backslash S_{x} \subseteq V(G \circ H) \backslash S$ for all $x \in V(G) \backslash S_{G}$ is clear, it follows that $V(G \circ H) \backslash S=V\left(H^{x}\right) \backslash S_{x}$. Hence, $V\left(x+H^{x}\right) \backslash S_{x}$ is convex set in
$G \circ H$. Therefore, $S=S_{G} \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} S_{x}\right) \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right)$, where S_{G} is an outerconvex set in G, S_{x} is a dominating set in H^{x} and $\left(V\left(H^{x}\right) \backslash S_{x}\right)$ is convex in $x+V\left(H^{x}\right)$ proving (iii).

For the converse, suppose that statement $(i),(i i)$, or (iii) is satisfied. Consider first that statement (i) holds. Since for each $x \in V(G), S_{x}$ is a dominating set in H^{x}, it follows that $S=\bigcup_{x \in V(G)} S_{x}$ is a dominating set in $G \circ H$. Let $r, s \in V(G \circ H) \backslash S$ such that $r \neq s$.Then,

$$
\begin{aligned}
r, s & \in V(G \circ H) \backslash\left(\bigcup_{x \in V(G)} S_{x}\right) \\
& \in V(G) \bigcup\left(\bigcup_{x \in V(G)}\left(V\left(H^{x}\right) \backslash S_{x}\right)\right)
\end{aligned}
$$

To show that $V(G \circ H) \backslash S$ is convex, it is enough to show that $I_{G}[r, s] \subseteq V(G \circ H) \backslash S$. Now, suppose $r, s \in V(G)$. Clearly, $I_{G}[r, s] \subseteq V(G) \subseteq V(G \circ H) \backslash S$. Thus, $V(G \circ H) \backslash S$ is convex in $G \circ H$. Accordingly, S is an outer-convex dominating set in $G \circ H$.

Next, suppose that statement (ii) holds. Since $V(G)$ is a dominating set in $G \circ H$, $S=V(G) \bigcup S_{x} \bigcup\left(\bigcup_{z \in V(G) \backslash\{x\}} V\left(H^{z}\right)\right)$ is a dominating set in $G \circ H$. Now, $V(G \circ H) \backslash S$

$$
\begin{aligned}
& =V(G \circ H) \backslash\left(V(G) \bigcup S_{x} \bigcup\left(\bigcup_{z \in V(G) \backslash\{x\}} V\left(H^{z}\right)\right)\right) \\
& =\left(V(G) \bigcup\left(\bigcup_{z \in V(G)} V\left(H^{z}\right)\right)\right) \backslash\left(V(G) \bigcup S_{x} \bigcup\left(\bigcup_{z \in V(G) \backslash\{x\}} V\left(H^{z}\right)\right)\right) \\
& =\left(V(G) \bigcup\left(\bigcup_{z \in V(G) \backslash\{x\}} V\left(H^{z}\right)\right) \bigcup V\left(H^{x}\right)\right) \backslash\left(V(G) \bigcup S_{x} \bigcup\left(\bigcup_{z \in V(G) \backslash\{x\}} V\left(H^{z}\right)\right)\right) \\
& =V\left(H^{x}\right) \backslash S_{x} .
\end{aligned}
$$

Since $V\left(H^{x}\right) \backslash S_{x}$ is a clique set, it follows that $V(G \circ G) \backslash S$ is a clique set. Thus, $V(G \circ H) \backslash S$ is convex in $G \circ H$. Accordingly, S is an outer-convex dominating set in $G \circ H$.

Finally, suppose that statement (iii) holds. Since S_{x} is a dominating set in $H^{x}, S=$

$$
\begin{aligned}
& S_{G} \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} S_{x}\right) \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right) \text { is a dominating set in } G \circ H . \text { Now, } V(G \circ H) \backslash S \\
&=\left(V(G) \bigcup\left(\bigcup_{z \in V(G)} V\left(H^{z}\right)\right)\right) \backslash S \\
&=\left(V(G) \bigcup\left(\bigcup_{z \in V(G)} V\left(H^{z}\right)\right)\right) \backslash\left(S_{G} \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} S_{x}\right) \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right)\right) \\
&=\left(V(G) \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right) \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} V\left(H^{x}\right)\right)\right) \backslash\left(S_{G} \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} S_{x}\right) \bigcup\left(\bigcup_{z \in S_{G}} V\left(H^{z}\right)\right)\right) \\
&=\left(V(G) \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} V\left(H^{x}\right)\right)\right) \backslash\left(S_{G} \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} S_{x}\right)\right) \\
&=\left(V(G) \backslash S_{G}\right) \bigcup\left(\bigcup_{x \in V(G) \backslash S_{G}} V\left(H^{x}\right) \backslash S_{x}\right) .
\end{aligned}
$$

To show that $V(G \circ H) \backslash S$ is convex, it is enough to show that for all $r, s \in V(G) \backslash S_{G}$, $I_{G}[r, s] \subseteq V(G \circ H) \backslash S$. Suppose, $r, s \in V(G) \backslash S_{G}$. Since $V(G) \backslash S_{G}$ is convex in G, then $I_{G}[r, s] \subseteq V(G) \backslash S_{G} \subseteq V(G \circ H) \backslash S$. It follows that $V(G \circ H) \backslash S$ is convex in $G \circ H$. Accordingly, S is an outer-convex dominating set in $G \circ H$.

Corollary 2.1. Let G be a connected graph of order $m \geq 2$ and H be any graph order n. If $S_{x} \subseteq V\left(H^{x}\right)$ is a minimum outer-convex dominating set of $x+H^{x}$ for each $x \in V(G)$, then $\widetilde{\gamma}_{\text {con }}(G \circ H)=m \widetilde{\gamma}_{\text {con }}\left(x+H^{x}\right)$.

Proof. Suppose that $S_{x} \subseteq V\left(H^{x}\right)$ is a minimum outer-convex dominating set of $x+H^{x}$ for each $x \in V(G)$. Then S_{x} is a dominating set of H^{x} and $V\left(H^{x}\right) \backslash S_{x}$ is convex in $x+H^{x}$. Then by Theorem 2.3, $S=\bigcup_{x \in V(G)} S_{x}$ is an outer-convex dominating set in $G \circ H$.Thus, $\widetilde{\gamma}_{\text {con }}(G \circ H) \leq|S|=\left|\bigcup_{x \in V(G)} S_{x}\right|=|V(G)|\left|S_{x}\right|=m \widetilde{\gamma}_{\text {con }}\left(x+H^{x}\right)$. Now, let S^{*} be a minimum outer-convex dominating set of $G \circ H$. Since $m \geq 2$, by Theorem 2.3, it is clear that $S^{*} \subseteq \bigcup_{x \in V(G)} S_{x}$. Since S_{x} is the minimum outer-convex dominating set of $x+H^{x}$, it follows that,

$$
\begin{aligned}
\widetilde{\gamma}_{c o n}(G \circ H)=\left|S^{*}\right|=\left|\bigcup_{x \in V(G)} S_{x}^{*}\right| & \geq\left|\bigcup_{x \in V(G)} S_{x}\right| \\
& =|V(G)|\left|S_{x}\right| \\
& =m \widetilde{\gamma}_{c o n}\left(x+H^{x}\right) .
\end{aligned}
$$

Therefore, $\widetilde{\gamma}_{c o n}(G \circ H)=m \widetilde{\gamma}_{c o n}(H)$.
In view of Theorem 2.3 and Corollary 2.1, the following corollary is immediate.

Corollary 2.2. Let G be a connected graph of order $m \geq 2$ and H be any graph of order n. The set $S \subset V(G \circ H)$ is a minimum outer-convex dominating set in $G \circ H$ if $S=\bigcup_{x \in V(G)} S_{x}$,where $S_{x} \subseteq V\left(H^{x}\right)$ is a minimum outer-convex dominating set in $x+H^{x}$.

The following result is due to Dayap and Enriquez [2].
Remark 2.1. Let G be a nontrivial connected graph of order n. Then $1 \leq \gamma(G) \leq$ $\widetilde{\gamma}_{c o n}(G) \leq n-1$

The following result is due to Canoy and Go [13].
Corollary 2.3. Let G be a connected graph of order m and let H be any graph of order n. Then $\gamma(G \circ H)=m$.
Corollary 2.4. Let G be a connected graph and H be a complete graph. Then $\widetilde{\gamma}_{c o n}(G \circ$ $H)=|V(G)|$

Proof. Suppose that S_{x} is a minimum dominating set of H^{x}. Since H is complete, it follows that $V\left(H^{x}\right) \backslash S_{x}$ is convex in $x+H^{x}$ and $\left|S_{x}\right|=1$. Then, $S=\bigcup_{x \in V(G)} S_{x}$ is an outerconvex dominating set in $G \circ H$. Thus, $\widetilde{\gamma}_{c o n}(G \circ H) \leq|S|=\left|\bigcup_{x \in V(G)} S_{x}\right|=|V(G)|\left|S_{x}\right|=m$.
By Corollary 2.3, $\gamma(G \circ H)=m$. Also, by Remark 2.1, $\gamma(G \circ H) \leq \widetilde{\gamma}_{c o n}(G \circ H)$. This implies that $m=\gamma(G \circ H) \leq \widetilde{\gamma}_{c o n}(G \circ H) \leq m$. Therefore, $\widetilde{\gamma}_{c o n}(G \circ H)=m$.

3. Conclusion

An outer-convex domination is a new variant of domination in graphs and the corona of two graphs is one of the graph operations that plays a very important role in mathematical chemistry. Hence, this paper is a contribution to the development of the application of domination theory in the field of mathematical chemistry. Since this is new, further investigations must be promoted to come up with coherent and substantial results of the parameter, an outer-convex domination number. Thus, the characterization of the outerconvex dominating set on some special graphs and some binary operations such as the sequential join and Square of Normal Product of two graphs are recommended for further study. Moreover, the applications of the characterization of the said parameter in the corona of two graphs are further to be looked into. The aforementioned characterization might be used as a tool in finding simpler graphs on some chemically interesting graphs and a tool in developing a symmetric encryption algorithm. Finally, domination in graphs is rich with immediate applications in the real world such as routing problems in the Internet, problems in electrical networks, data structures, neural and communication networks, protection and location strategies and many others. The outer-convex domination in graphs is not far from these applications.

Acknowledgement. The author would like to extend his gratitude to the anonymous referees for their critical comments and kind suggestions that greatly improved the presentation of the paper.

References

[1] Dayap, J. A., Enriquez, E. L., (2019), Outer-convex domination in graphs, Discrete Mathematics, Algorithms and Applications, 2050008.
[2] Dayap, J. A., Enriquez, E. L., (2019), Outer-convex Domination in the Composition and Cartesian Product of Graphs, Journal of Global Research in Mathematical Archives, (6), 3, pp. 34-42.
[3] Cockayne, E. J., Hedetniemi, S. T., (1977), Towards a theory of domination in graphs. Networks, 7, (3), pp. 247-261.
[4] Berge, C. (1962), The theory of graphs and its applications, Methuen \& Co. Ltd., London.
[5] Ore, O. (1965), Theory of graphs, American Mathematical Soc., V. 38.
[6] Harary, F., Nieminen, J., (1981), Convexity in graphs, Journal of Differential Geometry, 16, (2), pp. 185-190.
[7] Chartrand, G., Zhang, P., (1999), Convex sets in graphs, Congressus Numerantium, pp. 19-32.
[8] Canoy Jr, S. R., Garces, I. J. L., (2002), Convex sets under some graph operations. Graphs and Combinatorics, 18, (4), pp. 787-793.
[9] Lemańska, M., (2004), Weakly convex and convex domination numbers, Opuscula Mathematica, 24, (2), pp. 181-188.
[10] Labendia, M. A., Canoy, S. R., (2012), Convex domination in the composition and Cartesian product of graphs, Czechoslovak Mathematical Journal, 62, (4), pp. 1003-1009.
[11] Akhbari, M. H., Hasni, R., Favaron, O., Karami, H., Sheikholeslami, S. M., (2013), On the outerconnected domination in graphs, Journal of Combinatorial Optimization, 26, (1), pp. 10-18.
[12] Cyman, J., (2007), The outer-connected domination number of a graph, Australasian journal of Combinatorics, 38, pp. 35-46.
[13] Go, C. E., Canoy Jr. S. R., (2011), Domination in the corona and join of graphs, In International Mathematical Forum, (6), 16, pp. 763-771.

Jonecis A. Dayap has been a faculty member in the Department of Mathematics and Sciences of the University of San Jose - Recoletos since 2015. He received his M.Sc degree in Mathematics from University of San Carlos, in 2018 and his B.Sc degree in Mathematics from Cebu Normal University, in 2013. His research works and interests are in graph theory and cryptography.

[^0]: ${ }^{1}$ Department of Mathematics and Sciences, University of San Jose-Recoletos, 6000 Cebu City, Philippines.
 e-mail: jdayap@usjr.edu.ph; ORCID: https://orcid.org/0000-0003-1047-1490.
 § Manuscript received: March 19, 2020; accepted: June 03, 2020.
 TWMS Journal of Applied and Engineering Mathematics, Vol.12, No. 2 © Işık University, Department of Mathematics, 2022; all rights reserved.

