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NONUNIFORM p - TIGHT WAVELET FRAMES ON POSITIVE HALF

LINE

O. AHMAD1, N. AHMAD1, §

Abstract. Wavelet frames have gained considerable popularity during the past decade,
primarily due to their substantiated applications in diverse and widespread fields of engi-
neering and science. Tight wavelet frames provide representations of signals and images
where repetition of the representation is favored and the ideal reconstruction property of
the associated filter bank algorithm, as in the case of orthonormal wavelets is kept. The
main objective of this paper is to introduce a notion of nonuniform wavelet system in
L2(R+) and provide a complete characterization of such systems to be tight nonuniform
wavelet frames in L2(R+) by using Walsh-Fourier transform.
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1. Introduction

In real life application, all signals are not obtained from uniform shifts; therefore, there
is a natural question regarding analysis and decompositions of these types of signals by
a stable mathematical tool. Gabardo and Nashed [13] filled this gap by the concept of
nonuniform multiresolution analysis and nonuniform wavelets based on the theory of spec-
tral pairs for which the associated translation set Λ = {0, r/N}+2Z is no longer a discrete
subgroup of R but a spectrum associated with a certain one-dimensional spectral pair and
the associated dilation is an even positive integer related to the given spectral pair. In
the framework of mathematical analysis and linear algebra, redundant representations are
obtained by analysing vectors with respect to an overcomplete system.Then the obtained
vectors are interpreted using the frame theory as introduced by Duffin and Schaeffer [11]
and recently studied at depth, see [9] and the compressive list of references therein. Most
commonly used coherent/structured frames are wavelet, Gabor, and wave-packet frames
which are a mixture type of wavelet and Gabor frames [9]. Frames provide a useful model
to obtain signal decompositions in cases where redundancy, robustness, over-sampling,
and irregular sampling ploy a role. Today, the theory of frames has become an interesting
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and fruitful field of mathematics with abundant applications in signal processing, image
processing, harmonic analysis, Banach space theory, sampling theory, wireless sensor net-
works, optics, filter banks, quantum computing, and medicine. Recall that a countable
collection {fk : k ∈ Z} in an infinite-dimensional separable Hilbert space H is called a
frame if there exist positive constants A and B such that

A
∥∥f∥∥2 ≤

∑
k∈Z

∣∣〈f, fk〉∣∣2 ≤ B∥∥f∥∥2
, (1.1)

holds for every f ∈ H and we call the optimal constants A and B the lower frame bound
and the upper frame bound, respectively. If we only require the second inequality to hold
in (1.1), then {fk : k ∈ Z} is called a Bessel collection. A frame is tight if A = B in (1.1)
and if A = B = 1 it is called a Parseval frame or a normalized tight frame.

Wavelet frames are one of structured frames which are obtained by translating and
dilating a finite number of functions. Wavelet frames are different from the orthonormal
wavelets because of redundancy. By sacrificing orthonormality and allowing redundancy,
wavelet frames become much easier to construct than the orthonormal wavelets. An
important problem in practice is therefore to determine conditions on the wavelet function,
dilation and translation parameters so that the corresponding wavelet system forms a
frame. In her famous book, Daubechies [10] proved the first result on the necessary and
sufficient conditions for wavelet frames, and then, Chui and Shi [8] gave an improved
result. After about ten years, Casazza and Christenson [7] proved a stronger version of
Daubechies sufficient condition for wavelet frames in L2(R). Recently, Ahmad and his
collaborators in the series of papers [2, 3, 4, 20, 21, 22, 23, 24] investigated wavelet and
Gabor frames and obtained many interested results.

During last two decades there is a substantial body of work that has been concerned
with the wavelet and Gabor frames on positive half line. Kozyrev [15] found a compactly
supported p-adic wavelet basis for L2(Qp) which is an analog of the Haar basis. It turns
out that these wavelets are eigenfunctions of some p-adic pseudodifferential operators in
[17]. Such property used to solve p-adic pseudodifferential equations which are needed
for some physical problems. Khrennikov et al. [16] developed a method to find explicitly
the solution for a wide class of evolutionary linear pseudo-differential equations. Farkov
[12] indicated several differences between the constructed wavelets in Walsh analysis and
the classical wavelets, and characterized all compactly supported refinable functions on
the Vilenkin group Gp with p ≥ 2. Manchanda et al. [18] introduced the vector-valued
wavelet packets and obtained their properties and orthogonality formulas. Albeverio et
al. [5] presented a complete characterization of scaling functions generating an p-MRA,
suggested a method for constructing sets of wavelet functions, and proved that any set of
wavelet functions generates a p-adic wavelet frame. More Recently, Zhang [25] characterize
the shift-invariant Bessel sequences, frame sequences and Riesz sequences in L2(R+) and
give a characterization of dual wavelet frames using Walsh-Fourier transform. Motivated
and inspired by the above work, we introduce the notion of tight nonuniform wavelet
frames generated by Walsh functions and obtain their complete characterization.

The paper is structured as follows. In Section 2, we discuss the notations and basic
definitions of Walsh-Fourier analysis. Section 3 is devoted to main results of this paper.
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2. Preliminaries on Walsh-Fourier Analysis

As usual, let R+ = [0,+∞), Z+ = {0, 1, 2, . . . } and N = Z+ −{0}. Denote by [x] the
integer part of x. Let p be a fixed natural number greater than 1. For x ∈ R+ and any
positive integer j, we set

xj = [pjx](mod p), x−j = [p1−jx](mod p), (2.1)

where xj , x−j ∈ {0, 1, . . . , p− 1}. Clearly, xj and x−j are the digits in the p-expansion of
x:

x =
∑
j<0

x−jp
−j−1 +

∑
j>0

xjp
−j .

Moreover, the first sum on the right is always finite. Besides,

[x] =
∑
j<0

x−jp
−j−1, {x} =

∑
j>0

xjp
−j ,

where [x] and {x} are, respectively, the integral and fractional parts of x.

Consider on R+ the addition defined as follows:

x⊕ y =
∑
j<0

ζjp
−j−1 +

∑
j>0

ζjp
−j ,

with ζj = xj+yj(mod p), j ∈ Z\{0} , where ζj ∈ {0, 1, . . . , p− 1} and xj , yj are calculated
by (2.1). Clearly, [x⊕y] = [x]⊕ [y] and {x⊕ y} = {x}⊕{y}. As usual, we write z = x	y
if z ⊕ y = x, where 	 denotes subtraction modulo p in R+

.

Let εp = exp(2πi/p), we define a function r0(x) on [0, 1) by

r0(x) =


1, if x ∈ [0, 1/p)

ε`p, if x ∈
[
`p−1, (`+ 1)p−1

)
, ` = 1, 2, . . . , p− 1.

The extension of the function r0 to R+ is given by the equality r0(x+1) = r0(x),∀ x ∈ R+.
Then, the system of generalized Walsh functions {wm(x) : m ∈ Z+} on [0, 1) is defined by

w0(x) ≡ 1 and wm(x) =

k∏
j=0

(
r0(pjx)

)µj
where m =

∑k
j=0 µjp

j , µj ∈ {0, 1, . . . , p− 1} , µk 6= 0. They have many properties similar
to those of the Haar functions and trigonometric series, and form a complete orthogonal
system. Further, by a Walsh polynomial we shall mean a finite linear combination of

Walsh functions. For x, y ∈ R+
, let

χ(x, y) = exp

2πi

p

∞∑
j=1

(xjy−j + x−jyj)

 , (2.2)

where xj , yj are given by equation (2.1).

We observe that

χ

(
x,
m

pn

)
= χ

(
x

pn
,m

)
= wm

(
x

pn

)
, ∀ x ∈ [0, pn), m, n ∈ Z+,
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and

χ(x⊕ y, z) = χ(x, z)χ(y, z), χ(x	 y, z) = χ(x, z)χ(y, z),

where x, y, z ∈ R+ and x⊕y is p-adic irrational. It is well known that systems {χ(α, .)}∞α=0

and {χ(·, α)}∞α=0 are orthonormal bases in L2[0,1] (See [14, 19]).

The Walsh-Fourier transform of a function f ∈ L1(R+) ∩ L2(R+) is defined by

f̂(ξ) =

∫
R+

f(x)χ(x, ξ) dx, (2.3)

where χ(x, ξ) is given by (2.2). The Walsh-Fourier operator F : L1(R+) ∩ L2(R+) →
L2(R+), Ff = f̂ , extends uniquely to the whole space L2(R+). The properties of the
Walsh-Fourier transform are quite similar to those of the classic Fourier transform (see

[14, 19]). In particular, if f ∈ L2(R+), then f̂ ∈ L2(R+) and∥∥∥f̂∥∥∥
L2 (R+)

=
∥∥f∥∥

L2(R+)
. (2.4)

Moreover, if f ∈ L2[0, 1], then we can define the Walsh-Fourier coefficients of f as

f̂(n) =

∫ 1

0
f(x)wn(x) dx. (2.5)

The series
∑

n∈Z+ f̂(n)wn(x) is called the Walsh-Fourier series of f . Therefore, from

the standard L2-theory, we conclude that the Walsh-Fourier series of f converges to f in
L2[0, 1] and Parseval’s identity holds:∥∥f∥∥2

2
=

∫ 1

0

∣∣f(x)
∣∣2dx =

∑
n∈Z+

∣∣∣f̂(n)
∣∣∣2 . (2.6)

By p-adic interval I ⊂ R+ of range n, we mean intervals of the form

I = Ikn =
[
kp−n, (k + 1)p−n

)
, k ∈ Z+.

The p-adic topology is generated by the collection of p-adic intervals and each p-adic inter-
val is both open and closed under the p-adic topology (see [14]). The family

{
[0, p−j) : j ∈ Z

}
forms a fundamental system of the p-adic topology on R+. Therefore, the generalized
Walsh functions wj(x), 0 ≤ j ≤ pn − 1, assume constant values on each p-adic interval Ikn
and hence continuous on these intervals. Thus, wj(x) = 1 for x ∈ I0

n.

Let En(R+) be the space of p-adic entire functions of order n, that is, the set of all
functions which are constant on all p-adic intervals of range n. Thus, for every f ∈ En(R+),
we have

f(x) =
∑
k∈Z+

f(p−nk)χIkn(x), x ∈ R+. (2.7)

Clearly each Walsh function of order up to pn−1 belongs to En(R+). The set E(R+) of
p-adic entire functions on R+ is the union of all the spaces En(R+). It is clear that E(R+)
is dense in Lp(R+), 1 ≤ p <∞ and each function in E(R+) is of compact support. Thus,
we consider the following set of functions

E0(R+) =
{
f ∈ E(R+) : f̂ ∈ L∞(R+) and supp f ⊂ R+ \ {0}

}
. (2.8)
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3. Characterization of Nonuniform Tight wavelet Frames in L2(R+)

Given an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ 2N − 1, r and N are relatively
prime, we consider the translation set Λ+ as

Λ+ =
{

0,
r

N

}
+ Z+. (3.1)

When N > 1, the dilation factor of N ensures that

NΛ+ ⊂ Z+ ⊂ Λ+.

Definition 3.1. For a given ψ ∈ L2(R+), a system of the form

W (ψ, j, λ) =
{
ψj,λ =: N j/2ψ

(
N jx	 λ

)
; j ∈ Z, λ ∈ Λ+

}
. (3.2)

is called the nonuniform wavelet system in L2(R+).

On taking Fourier transform, the system (3.2) can be rewritten as

ψ̂j,λ(ξ) = N−j/2ψ̂
(
N−jξ

)
wλ
(
N−jξ

)
. (3.3)

Definition 3.2. The wavelet system W (ψ, j, λ) defined by (3.2) is called a nonuniform
wavelet frame for L2(R+), if there exist constants A and B, 0 < A ≤ B <∞ such that for
all ϕ ∈ L2(R+)

A
∥∥f∥∥2

2
≤
∑
j∈Z

∑
λ∈Λ+

∣∣〈ϕ,ψj,λ〉∣∣2 ≤ B∥∥f∥∥2

2
. (3.4)

In order to prove the main result to be presented in this section, we need the following

lemma whose proof can be found in [?].

Lemma 3.1 Let f ∈ E0(R+) and ψ ∈ L2(R+). If ess supξ∈[1,N ]

∑
j∈Z |ψ̂

(
N−jξ

)
|2 < ∞,

then ∑
j∈Z

∑
λ∈Λ+

|〈f, ψj,λ〉|2 =

∫
R+

∣∣∣f̂(ξ)
∣∣∣2∑
j∈Z

∣∣∣ψ̂ (N−jξ)∣∣∣2 dξ +Rψ(f) (3.5)

where

Rψ(f) =
∑
j∈Z

∫
R+

f̂(ξ)ψ̂
(
N−jξ

){N−1∑
`=0

f̂
(
ξ ⊕N j`

)
ψ̂ (N−jξ ⊕ `)

}
dξ

=
∑
j∈Z

N−1∑
`=0

∫
K
f̂(ξ)ψ̂

(
N−jξ

)
f̂
(
ξ ⊕N j`

)
ψ̂ (N−jξ ⊕ `)dξ. (3.6)

Furthermore, the iterated series in (3.6) is absolutely convergent.

The L.H.S of (3.5) converges for all f ∈ E0(R+) if and only if
∑

j∈Z |ψ̂
(
N−jξ

)
|2 is

locally integrable in R+\ ∪j∈Z Ecj , where Ej is the set of regular points of
∣∣ψ (N−jξ)∣∣2,

which means that for each x ∈ Ej , we have

Nn

∫
ξ−x∈In

|ψ̂
(
N−jξ

)
|2dξ → |ψ̂

(
N−jξ

)
|2 as n→∞.

Then |Ecj | = 0 . Thus |
⋃
j∈ZE

c
j | = 0.
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Now we state and prove our main result concerning the characterization of the wavelet
system W(ψ, j, λ) given by (3.2) to be tight frame for L2(R+).

Theorem 3.2 The wavelet system W(ψ, j, λ) given by (3.2) is a tight nonuniform wavelet
frame for L2(R+) if and only if ψ satisfies∑

j∈Z

∣∣∣ψ̂ (N−jξ)∣∣∣2 = 1, for a.e. ξ ∈ [1, N ] (3.7)

and ∑
j∈Z+

ψ̂
(
N−jξ

)
ψ̂ (N j(ξ ⊕m)) = 0, for a.e. ξ ∈ [1, N ], 0 ≤ m ≤ N − 1. (3.8)

Proof. Define

Sψ(m, ξ) =
∑
k∈Z+

ψ̂
(
Nkξ

)
ψ̂ (Nk(ξ ⊕m)).

Assume f ∈ E0(R+), then for each ` ∈ N, there exists k ∈ Z+ and a unique 0 ≤ m ≤ N−1
such that ` = Nkm. Since the series in (3.6) is absolutely convergent, we can estimate
Rψ(f) as follows:

Rψ(f) =
∑
j∈Z

∫
R+

f̂(ξ)ψ̂
(
N−jξ

){∑
`∈N

f̂
(
ξ ⊕N j`

)
ψ̂ (N−jξ ⊕ `)

}
dξ

=
∑
j∈Z

∫
R+

f̂(ξ)ψ̂
(
N−jξ

)∑
k∈Z+

N−1∑
m=0

f̂
(
ξ ⊕N j+km

)
ψ̂ (N−jξ ⊕Nkm)

 dξ

=

∫
R+

f̂(ξ)

∑
k∈Z+

N−1∑
m=0

∑
j∈Z

f̂
(
ξ ⊕N−jm

)
ψ̂
(
N−j−kξ

)
ψ̂ (N−j+kξ ⊕Nkm)

 dξ

=

∫
R+

f̂(ξ)

∑
j∈Z

N−1∑
m=0

f̂
(
ξ ⊕N jm

) ∑
k∈Z+

ψ̂
(
N−j+kξ

)
ψ̂ (Nk (N−jξ ⊕m))

 dξ

=

∫
R+

f̂(ξ)

∑
j∈Z

N−1∑
m=0

f̂
(
ξ ⊕N jm

)
Sψ(m,N−jξ)

 dξ.

Let us collect the results we have obtained: If ψ ∈ L2(R+) and f ∈ E0(R+), then∑
j∈Z

∑
λ∈Λ+

|〈f, ψj,λ〉|2 =

∫
R+

|f̂(ξ)|2
∑
j∈Z
|ψ̂
(
N−jξ

)
|2dξ

+

∫
R+

f̂(ξ)
∑
j∈Z

N−1∑
m=0

f̂
(
ξ ⊕N−jm

)
Sψ(m,N−jξ)dξ. (3.9)

The last integrand is integrable and so is the first when
∑

j∈Z
∣∣ψ̂ (N−jξ) ∣∣2 is locally

integrable in R+\ ∪j∈Z Ecj . Further, equation (3.8) implies that

Sψ(m, ξ) = 0 for all 0 ≤ m ≤ N − 1.

On Combining (3.9) together with (3.7) and (3.8), we obtain∑
j∈Z

∑
λ∈Λ+

|〈f, ψj,λ〉|2 = ‖f‖22, ∀ f ∈ E0(R+).
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Since E0(R+) is dense in L2(R+), hence the wavelet system W(ψ, j, λ) given by (3.2) is a
tight nonuniform wavelet frame for L2(R+).

Conversely, suppose that the system W(ψ, j, λ) given by (3.2) is a tight nonuniform
wavelet frame for L2(R+), then we need to show that the two equations (3.7) and (3.8) are
satisfied. Since {ψj,λ(x) : j ∈ Z, λ ∈ Λ+} is a tight nonuniform wavelet frame for L2(R+),
then we have ∑

j∈Z

∑
λ∈Λ+

|〈f, ψj,λ〉|2 = ‖f‖22, ∀ f ∈ E0(R+). (3.10)

Since
∑

j∈Z |ψ̂
(
N−jξ

)
|2 is locally integrable in R+\ ∪j∈Z Ecj . Therefore, for each ξ0 ∈

R+\ ∪j∈Z Ecj , we consider

f̂1(ξ) = N
M
2 wM (ξ − ξ0)

where f = f1 and wM (ξ − ξ0) is the Walsh function of ξ0 + IM . Then, it follows that

for 0 ≤ ` ≤ N − 1, f̂(ξ)f̂(ξ ⊕ N−j`) ≡ 0, since ξ and ξ ⊕ N−j` cannot be in ξ0 + IM
simultaneously and hence, ‖f1‖22 = 1. Furthermore, we have

1 = ‖f1‖22 = ‖f̂1‖22 =
∑
j∈Z

∑
λ∈Λ+

|〈f, ψj,λ〉|2 =

∫
ξ0+IM

∑
j∈Z

NM
∣∣∣ψ̂ (N−jξ)∣∣∣2 dξ +Rψ(f1).

By letting M →∞, we obtain

1 =
∑
j∈Z

∣∣∣ψ̂ (N−jξ0

)∣∣∣2 + lim
M→∞

Rψ(f1). (3.11)

Now, we proceed to estimate Rψ(f1) as:

Rψ(f1) =
∑
j∈Z

∫
R+

f̂1(ξ)ψ̂
(
N−jξ

){∑
`∈N

f̂1

(
ξ ⊕N j`

)
ψ̂ (N−jξ ⊕ `)

}
dξ

|Rψ(f1)| ≤
∑
j∈Z

∑
`∈N

∫
R+

∣∣∣f̂1(ξ)ψ̂
(
N−jξ

)
f̂1

(
ξ ⊕N j`

)
ψ̂
(
N−jξ ⊕ `

)∣∣∣ dξ
=
∑
j∈Z

∑
`∈N

N j

∫
R+

∣∣∣f̂1(N jξ)f̂1

(
N j(ξ ⊕ `)

)
ψ̂ (ξ) ψ̂ (ξ ⊕ `)

∣∣∣ dξ.
Note that ∣∣∣ψ̂(ξ)ψ̂ (ξ ⊕ `)

∣∣∣ ≤ 1

2

(∣∣∣ψ̂(ξ)
∣∣∣2 +

∣∣∣ψ̂ (ξ ⊕ `)
∣∣∣2)

Therefore, we have

|Rψ(f1)| ≤
∑
j∈Z

∑
`∈N

N j

∫
R+

∣∣∣f̂1

(
N jξ

)
f̂1

(
N j(ξ ⊕ `)

)
||ψ̂(ξ)

∣∣∣2 dξ. (3.12)

Since ` 6= 0, (` ∈ N) and f1 ∈ E0(R+), there exists a constant J > 0 such that

f̂1

(
N jt

)
f̂1

(
N jt⊕N j`)

)
= 0, ∀ |j| > J.

On the other hand, for each |j| ≤ J, there exists a constant L such that

f̂1

(
N jt⊕N j`)

)
= 0, ∀ ` > L.
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This means that only finite terms of the series on the R.H.S of (3.12) are non-zero. Con-
sequently, there exits a constant C such that

|Rψ(f1)| ≤ C‖f̂1‖2∞‖ψ̂‖22 = CNm‖ψ̂‖22
which implies

lim
M→∞

|Rψ(f1)| = 0.

Hence equation (3.11) becomes ∑
j∈Z

∣∣∣ψ̂ (N−jξ0

)∣∣∣2 = 1.

Finally, we must show that if (3.10) hold for all f ∈ E0(R+), then equation (3.8) is true.
From equalities (3.9), (3.10) and just established equality (3.7), we have∑

j∈Z

N−1∑
m=0

∫
R+

f̂(ξ)f̂
(
ξ ⊕N jm

)
Sψ(m,N jξ)dξ = 0, ∀ f ∈ E0(R+).

By invoking polarization identity, we then have∑
j∈Z

N−1∑
m=0

∫
R+

f̂(ξ)ĝ
(
ξ ⊕N jm

)
Sψ(m,N−jξ) dξ = 0, ∀ f, g ∈ E0(R+). (3.13)

Let us fix m0 ∈ {0, 1, 2, · · · , N − 1} and ξ0 ∈ R+\ ∪j∈Z Ecj such that neither ξ0 6= 0 nor
ξ0 +m0 6= 0. Setting f = f1 and g = g1 such that

f̂1(ξ) = N
M
2 wM (ξ − ξ0) and ĝ1(ξ) = f̂1(ξ 	m0).

Then, we have

f̂1(ξ)ĝ1(ξ ⊕m0) = NMwM (ξ − ξ0). (3.14)

Now, equality (3.13) can be written as

0 = NM

∫
ξ0+IM

Sψ(m0, ξ)dξ + I1,

where

I1 =
∑
j∈Z

N−1∑
m=0

(j,m)6=(0,m0)

∫
R+

f̂1(ξ)ĝ1

(
ξ ⊕N jm

)
Sψ(m,N−jξ)dξ. (3.15)

Since the first summand in (3.14) tends to Sψ(m0, ξ0) as M → ∞. Therefore, we shall
prove that

lim
M→∞

I1 = 0.

Since m 6= 0, (m ∈ N) and f1, g1 ∈ E0(R+), there exists a constant J0 > 0 such that

f̂1(ξ) ĝ1

(
ξ ⊕N jm

)
= 0 ∀ j > J0.

Therefore, we have

I1 =
∑
j≤J0

N−1∑
m=0

∫
R+

f̂1(ξ)ĝ1

(
ξ ⊕N jm

)
Sψ(m,N−jξ)dξ

|I1| ≤
∑
j≤J0

N−1∑
m=0

N j

∫
R+

∣∣∣f̂1(N jξ)ĝ1

(
N j(ξ ⊕m)

)∣∣∣ |Sψ(m, ξ)| dξ.
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Since

2 |Sψ(m, ξ)| ≤
∑
k∈Z+

|ψ̂
(
Nkξ

)
|2 +

∑
k∈Z+

∣∣∣ψ̂ (Nk(ξ ⊕m)
)∣∣∣2 ,

hence

|I1| ≤ I(1)
1 + I

(2)
1

where

I
(1)
1 =

∑
j≤J0

N−1∑
m=0

N j

∫
R+

∣∣∣f̂1(N jξ)
∣∣∣ ∣∣ĝ1

(
N j(ξ ⊕m)

)∣∣ [τ(ξ)]2dξ,

with ∫
K

[τ(ξ)]2dξ =
1

2

∑
k∈Z+

∫
R+

∣∣∣ψ̂ (Nkξ
)∣∣∣2 dξ = ‖ψ̂‖22 <∞,

and

I
(2)
1 =

∑
j≤J0

N−1∑
m=0

N j

∫
R+

∣∣∣f̂1(N jξ)
∣∣∣ ∣∣ĝ1

(
N j(ξ ⊕m)

)∣∣ [τ(ξ ⊕m)]2dξ

=
∑
j≤J0

N−1∑
m=0

N j

∫
K

∣∣∣f̂1(N j(η 	m))
∣∣∣ ∣∣ĝ1

(
N jη

)∣∣ [τ(η)]2dξ.

Thus I
(2)
1 has the same form as I

(1)
1 with the roles of f̂1 and ĝ1 interchanged. As

f̂1(ξ) = N
M
2 wM (ξ − ξ0),

therefore, we deduce that

I
(1)
1 =

∑
j≤J0

N−1∑
m=0

N jN
M
2

∫
Njξ0+I−j+M

∣∣ĝ1

(
N j(ξ ⊕m)

)∣∣ [τ(ξ)]2dξ.

Now, if ĝ1

(
N j(ξ ⊕m)

)
6= 0, then we must have N jξ+N jm ∈ ξ0 + IM +m0 and |N jm| ≤

N−M , hence |m| ≤ N−M−j . Thus,

I
(1)
1 =

∑
j≤J0

N jN
M
2

∫
Njξ0+I−j+M

[τ(ξ)]2
N−1∑
m=0

∣∣ĝ1

(
N j(ξ ⊕m)

)∣∣ dξ
≤
∑
j≤J0

N jN
M
2

∫
Njξ0+I−j+M

[τ(ξ)]2N−M−jN
M
2 dξ

≤
∑
j≤J0

∫
Njξ0+I−j+M

[τ(ξ)]2dξ (3.16)

For given ξ0 6= 0, we choose

NJ0 < |ξ0| = N−M .

Then, we obtain

N jξ0 + I−j+M ⊂ I−J0+M ∀ j ≤ J0, (3.17)

as |N jξ0| = N jN−M ≤ N−M and I−j+M ⊂ I−J0+M . On the other hand, for any j1 <
j2 ≤ J0, we claim that

{N j1ξ0 + I−j1+M} ∩ {N j2ξ0 + I−j2+M} = ∅. (3.18)
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In fact, for any x ∈ N j1ξ0 + I−j1+M and y ∈ N j2ξ0 + I−j2+M , write x = N j1ξ0 + x1 and

y = N j2ξ0 + y1, then |x − y| = max{|N j1ξ0 − N j2ξ0|, |x1 − y1|} = N j2−M 6= 0. implies
that (3.17) holds. Combining (3.15) - (3.17), we obtain

I
(1)
1 ≤

∫
I−J0+M

[τ(ξ)]2dξ → 0 as M →∞.

This completes the proof of the theorem.

4. Conclusions

Tight wavelet frames provide representations of signals and images where repetition of
the representation is favored and the ideal reconstruction property of the associated filter
bank algorithm, as in the case of orthonormal wavelets is kept. In this paper we introduce
notion of Non-uniform Wavelet frames and provide a characterization of these frames via
Walsh-Fourier transform. in L2(R+). Intuitively, frames in L2(R+) can be obtained by
projection from ones in L2(R), while it is not the case for L2(R+) because the projections
do not have complete affine structure. This is partially because of the fact that R+ is not
a group in terms of usual addition. R+ is a group under the operation ”⊕” by which the
Walsh-Fourier transform is defined.
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