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Abstract—In many bioinformatics applications, it is important Typically, we have candidaté;(-|¢;), wherei = 1,... L
to assess and compare the performances of algorithms traide gre different learning algorithms, and we want to choose the
from data, to be able to draw conclusions unaffected by chare best according to some performance measure. The aim is to
and are therefore significant. Both the design of such experiments _. . . ’
and the analysis of the resuling data using statistical tes find the algorithm that gener_allz_es best to unseen data and to
should be done carefully for the results to carry significane. Measure that, we use a validation set on which we test how
In this paper, we first review the performance measures used well our trainedf(-|¢) performs. Because the examples in the
in classification, the basics of experiment design and statical  training and validation sets are random variables drawm fro
tests. We then give the results of our survey over 1500 papers s ma ynknown joint probability distribution, the discrirant

published in the last two years in three bioinformatics joumals fit to th | . d Alth h
(including this one). Although the basics of experiment ddégn we fit to the sample contains some randomness. Althoug

are well-understood, such as resampling instead of using angle We€ use the same classification algorithm, different trgnin
training set and the use of different performance metrics istead samples may induce different classifiers and in making a

of error, only 21 per cent of the papers use any statistical & decision among algorithms, we need to make sure that our

for comparison. In the third part, we analyze four different  yecision is not affected by chance, for example, by how the
scenarios which we encounter frequently in the bioinformaics data i lit betw traini d ' lidati t !
literature, discussing the proper statistical methodolog as well as ata Is spiit between fraining and validation sets.

showing an example case study for each. With the supplememnta In the statistics literature, there is considerable bOdy(m"k
software, we hope that the guidelines we discuss will play an done on thalesign and analysis of experimef2$—the aim of

important role in future studies. this paper is to discuss those principles in the contextas-cl

Index Terms—Statistical tests, Classification, Model selection Sification experiments in bioinformatics and show the prope
methodologies using case studies. In experiment desigre th
is a process which takes an input and generates an output;
the output is affected by a number of factors some of which

In many bioinformatics applications, there is an undedyinare controllable and some are not. In our case, the process is
process whose details we barely know, but we can collectte classifier which after having been trained on a trainitg s
sample of examples from the process by doing experimerga/es the class as output for an input from the validation set
and using machine learning techniques, we can make statistHere, the major controllable factor is the learning aldonit
inference about the process from this samplesupervised and the major uncontrollable factor is the randomness in the
learning, the sample is composed of pairs of independent addta. The aim is to find the configuration of controllable
dependent variables and the aim is to learn a mapping frdactors that maximize a response variable measuring guiait
the independent variable to the dependentlassificationthe classification, there are different performance metrieg tan
dependent variable is a class code and the aim is to deviskeacalculated from that data, such as, misclassificatioor,err
rule that can predict the class labels of instances. For pleam hit rate, precision, and so on. In Section Il, we discuss such
a biologist may want to categorize a given protein as binding metrics in detail and also point out how they differ, to beeabl
non-binding, and this is a two-class problem. The indepehddo point out which one to use in which type of experiment.
variable is represented by a feature:sebmposed of different  The three principles of experimental design aa@&dom-
properties of a protein, such as the amino acid sequence, itegion, replication,andblocking—in machine learning, these
evolutionary information, structural information, and@o. If imply the need for multiple paired runs using resampling.
the discriminant functiorthat is used for predicting the classOnce a set of experiments are done and we have a set of
label is denoted byf(z|¢), different models, e.g., decisionresults, statistical hypothesis testings used to check for
trees, support vector machines, neural networks, cornespdlifferences that are significant, that is, unlikely to hae=i
to different f(-) and learning corresponds to optimizing theaused by chance. We discuss the resampling procedures in
model parameters to minimize some loss measure on a giveBection lll, statistical tests in Section 1V, and give peistto
training sample [1]. related work in Section V.

We did a survey on the use of such procedures in the
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I. INTRODUCTION



Then in Section VII, we review four different scenarios wé. Performance Curves and the Area Under the Curves

encounter frequently in classification experiments andwvsho . )
the proper methodology for each using a case study. Wi The threshc_)l_d9 of decision depen_ds on the relative costs
conclude in Section VIII. of a false positive and a false negative. We se 0.5 when
they have equal cost and for exampleneeds to be larger
when a false positive has a higher cost than a false negative.
I1. ASSESSINGPEREORMANCE In some cases, we do not know the exact costs and we may
want to see how the performance measure varies as we vary
A. Confusion Matrix and the Measures of Performance  them, which corresponds to varyirfg Then we can plot the
In a two-class problem, we have positive and negative iﬁ_erformance as a function @f to see the overall behavior.
stances, for example, binding vs. nonbinding proteins.iftav receiver qperatmg characteristicROC) curve is a p.l()t
of tp-rate (hit rate) and fp-rate (false alarm rate); simjla

trained our classifieff (z|¢) on the training set, typically we ot . I vty - it
predict thatz drawn from the validation set is a positiveone can plot a precision-recall curve or a sensitivity- gy

example if f(z|¢) > 6, for some threshold. We can assume curve [3]. _Some people use a “partial cur\_/(_e” V\_/hen they are
that f(z|¢) € [0, 1] estimates the posterior probability thais interested in the performance of the classifier in a pasicul
a positive examplé, that is, P(+|z) = f(z|¢). We say that: su.brange”fore_ (that cor.resporjds to a subrange.for costs of
is a negative example jf(x|¢) < 6 andP(—|z) = 1— f(z|6). misclassification); our discussion holds also for this eaisere
Then, depending on the true label of there are four cases”‘]Ste"’ld of the whole CUrve, we use a subset of the curve.
which make up theonfusion matrixand we count the number Curves are complex and it is difficult to compare two curves.

of their occurrences over the whole validation set (Table 1) ON€ way to summarize a curve (full or partial) by a single
value is by calculating tharea under the curvéAUC), which

« True positive {p): The number of instances for Wh"_:hcan be estimated by summing the trapezoidal areas formed by
both the class label and the predicted class are positivg,ccessive points on the performance curve [3]. The two most

« False negativefil): The number of instances for which thepopular are theROC curveof tp-rate vs fp-rate and the area
class label is positive but the predicted class is negatiV&,qer it (AUC-ROC) and therecision-Recal(PR) curve and

« False positivefp): The number of instances for which theiha area under it (AUC-PR).
class label .is negative but the predicted class is pogitive.PR curve is mostly used in information retrieval [4] where

« True negative tf): The number Of instances for Wh'Ch.foraquery, some of the stored items are relevant (the thed la
both the class label and the predicted class are negat'i\éepositive) and some are not (the true label is negativaleGi

x that are the attributes associated with the item, we retriev

some of them (the predicted label is positive) and some we do

not (the predicted label is negative). In this contgxgcision

TABLE |
2 X 2 CONFUSION MATRIX

Prediction is the proportion of the relevant and retrieved documents to
Truth + -  Total the total number of retrieved documents, amdall is the
' ;E m Z proportion of the relevant and retrieved documents to tked to
Total  p/ o N number of relevant documents.

Note that ROC measures the performance of a two-class
Different performance measures used in the literature &r@Ssifier and checks for good performance on both positives

all calculated from these four values: and negative instances, whereas in an information retrieva
application (whose performance is measured by PR), we have

error rate — P+n accuracy= p+tn basically a one-class problem where we care for the positive

tp ! fp N more. In an application like medical diagnosis, more than th
tp-rate :tﬁ fp-rate= ﬁt true negatives, i.e., the large proportion of healthy iitilials,
recall = g precision= pia ) we care about detecting the sick, and it is better to focus on
sensitivity— tﬁp specificity— tﬁn PR. In an application where we classify face images as male
recisionrecall t or female, we care about the accuracy on both genders, and
F-measure= 22 = p
precision-recall PP need ROC to measure performance.
Balanced accuracy: sensitivityrspecificity PR is sensitive to class skewness, whereas ROC is not [5].
2

When the ratiop/n changes, because precision uses values
Tp-rate, also known as thhit rate, is the same as recall from both rows of Table I, it changes; however tp-rate and fp-
and sensitivity. Fp-rate is sometimes calladse alarm rate rate may not change since they use values from only one row
and is equal td —specificity. Different names for these related3]. PR and ROC make different statistics apparent: In PR, we
measures are due to historical reasons where they have bfgnbasically interested in how well we classify the positiv
proposed in different domains, namely, signal processirgamples, whereas in ROC, in trying to minimize fp-rate, we

information retrieval, or diagnostics, almost indeperitjen ~ @lso want to increase the true negative rate. This makeg sens
in information retrieval, for a given query, adding a lot raor

1possibly after some normalization, if the classifier is aprobabilistic irrelevant documents (which we will not be retrieving a}ny\)\/a
classifier such as a support vector machine. has no effect on our performance assessment for this query.



A one-to-one correspondence between a ROC curve and a be drawn more than once, and some never. Different
PR curve has been shown [5]. It has also been proven that one training folds hence partially overlap. The whole set is
ROC curve dominates the other ROC curve if and only if the  used as the validation set in all folds [8].

corresponding PR curve dominates the other [3]. Despite theye yse the following notation: Ley;; denote the per-
dominance relationship between ROC and PR curves, if AU¢srmance of classifiei = 1,..., L on validation foldj =

ROC of the first curve is greater than the second one, AUC-RAR . The performance value can be the misclassification

of the first curve can be less than the second one, therefgigyr rate, precision, area under the ROC curve, and so on.

AUC-PR. The corresponding points in curves can dominai§ compare the distributions ofi; andya;,j=1,... k.
each other in parallel in ROC and PR curves; however it is '

the magnitude of these differences that determines the area

differences and consequently, since the metrics are differ IV. STATISTICAL TESTS

the area between the curves may be different. In hypothesis testing, we have a null hypothdSjsthat we
want to test on the sample, against an alternative hypathesi
I1l. RESAMPLING PROCEDURES H;. For example
When we are comparing two or more algorithms trained Hy:p=2vs. Hy:p+2

from data, the training algorithm may have some randomness
(for example, gradient descent starts from a random initial What we do is we collect a sample and then calculate a
point), or the way the data is divided between training aratatistic on the sample and check the probability that this
validation sets is random. If we do training and validationtatistic takes a particular value or higher under the apsom
only once, we can not know if any difference between twthat the null hypothesis is true. If that probability—the so
results is because of difference in algorithms or because aaflledp value—is very small, i.e., smaller than a pre-defined
the split of data. significance value, e.g., 0.05, weejectthe null hypothesis in
The three basics of experimental design mredomization, favor of the alternative hypothesis, otherwise we fail tiece
replication, and blocking To be able to average out theit. Note that a failure to reject does not imply the truth of
effect of randomness and hence arrive at conclusions deertfegl null hypothesis, nor rejection implies that the altéuea
statistically significant we do the training and validation hypothesis is correct. If we reject when the null hypothesis
multiple times randomlyré@ndomizatiod), run the algorithms holds, this is aype | error, the failure to reject when the null
many times gplication), and compare thalistributions of hypothesis is wrong is #ype Il error.
results rather than single values. This requires that weblee a Typically, there are four scenarios where hypothesisrigsti
to generate multiple training and validation set pairs framis used in classification experiments (see Table II):

single data set. Note that when we are comparing a number oﬁ) We have two algorithms that we want to compare on

algorithms, they should all use the same training and viadida a single data set in terms of some performance metric.
splits so that we make sure that any difference is due to the  Thjs js typically the most frequently used scenario. For
algorithm (the controllable factor) and not due to the spfit example, we may want to compare two algorithms in
data (uncontrollable factor); this is the idea behpragred tests terms of error, or AUC-ROC. Or, we may want to test
(blocking. We also requirstratification,that is, the proportion two variants of the same algorithm; for example, we may
of positive to negative instances is respected in all parthat want to see if having feature selection before our neural
the prior class probabilities do not change between folds. network leads to significant improvement.
There are various resampling algorithms [1]: 2) We havel > 2 algorithms that we want to compare
1) In k-fold cross-validation(cv), we divide the data ran- on a single data set in terms of some metric. These
domly into k& equal parts. At eacfold, we leave one of may be different algorithms or different variants of the

thek parts out as the validation set and use the remaining  same algorithm; for example, we may be interested in
k — 1 parts together as the training set. By cycling over comparingL > 2 different feature extraction algorithms

all the k parts, we get training and validation set pairs. that precede the classifier.

2) Leave-one-ouis the extreme case @ffold cv, wherek 3) We have two algorithms that we want to compare on
is taken to be equal t&v, the number of instances in the M > 1 data sets in terms of some performance metric.
training set. That is, at each fold, we uSe-1 instances For example, we may havé/ different cancer data
for training and one instance for validation, leaving out sets but because of different properties of the data sets,
another one, in a total oV folds. With very small data we cannot combine them in a single data set to train
sets, leave-one-out is used. a single classifier. What we want is to train and test

3) In k; x ko-fold cross validation, there is an outer loop both algorithms separately on these data sets, compare
that replicatesks-fold cv k; times and a statistic is performances on each separately and then combine those
defined over thé; - ko results. Examples arg x 2 cv comparisons to get an overall result.

[6], [7] and 10 x 10-fold cv. 4) We haveL > 2 algorithms that we want to compare on

4) In bootstrap from a sample ofN instances, we draw M > 1 data sets in terms of some performance metric.

N instanceswith replacementso some instances may This is the most general case.



TABLE Il
SCENARIO AND TESTS WE USE

Number of Number of data sets

algorithms M=1 M >1

L=2 5x 2 cv F test Wilcoxon’s signed rank test
L>2 ANOVA + 5 x 2 cv F test  Friedman’s and Nemenyi's test

Now let us see the tests for each scenario one by.one In our case, this corresponds to checking if all algorithms
Later on, in Section VII, we will see how each one is used inave the same expected performance.
a real-world case study. Letussayy;;,i=1,...,k,j =1,..., Lis the performance
value of algorithmj on fold i. The average performance of
algorithmj on all folds and the overall average are defined as

. .. L
The number of errors (or true positives, precision, and Zleyij D1 My

even AUC) is a count of 0/1 events and is hence binomially mj = k = L

distributed. Unless the validation set is very small, frdme t  ANOVA calculates the between- and within-algorithm sums
central limit theorem, the binomial converges to the normgk squares

distribution and we can use parametric tests based on the ) )
normal distribution. SSy = kZ(mj —-m)*, SSy = Z Z(Xij —mj)
We want to compare the expected performance values of J i
the two algorithms: Both are chi-square distributed random variables. Under th
null assumption, their ratio after each is divided by itsrdeg
Ho :pa = p2 VS. 1 # pio (2 P y

of freedom
and in a paired setting, we test if their paired difference ha f= SS/(L —1)

zero mean: SSw/L(k—1) ©)
is F' distributed withL — 1, L(K — 1) degrees of freedom. We
Ho: pa = pn = piz = 0VS. pra 7 0. (3) reject the null hypothesis tr(lat all )alg(?rithms perform diyua

Dietterich [6] has compared various pairwise tests, indgd well if f > F, ;1 1(x—1).

McNemar’s test which uses a single training/validationr,pai If the test fails to reject, all are equally good. If the test

and thet test used withk-fold cross-validation. He then rejects, we know that there is an inequality somewhere. To

proposed thé x 2 cross-validation sampling and an associatdihd where, we do a set of pairwiggosthoc testdo try to

t test, which he has shown to have lower type | and type find cliques, that is, subsets of algorithms in which there is

errors. The5 x 2 cross-validationF' test [7] is an improved no significant difference between any two. To do this, we first

version of thist test and it works as follows: sort all L algorithms in terms of average performance and
In 5 x 2 cross-validation, we perform 2-fold cross-validatioithen we compare the first and the last in a pairwise manner

five times. Let us saypz(.j) is the difference between thefor significant difference. If the test rejects, we take thstfi

performance values of the two algorithms on fgld= 1,2 L — 1 leaving out the last and compare the first and the

A. Comparing Two Algorithms on a Single Data Set

of replicationi = 1,...,5. The average on replicationis 1St; we also compare the second and flik leaving out the
P, = (pz(l) 4 p§2))/2 and the estimated variance i§¢ = first. _As long as there is a_reject, we keep on leaving out
(p(_l) —5,)% + (p(_2) — 5,2 the first and the last recursively and on both sides. At any

e triage if the test fails to reject, we underline that group wed

same expected performanp&,) is approximately normal with do not examine it any further. This compares all consecutive

mean 0 and its square divided by the variance is chi-squar%{Psets of algorithms and the underlines (which may phytial
overlap) indicate cliques of algorithms whose performance

Under the null hypothesis that the two algorithms hav

and hence . i :
25 22 (p(:”)Q are comparable in terms of the metric we use. For example,
f= l:; Zgzl 2’ (4) with algorithmsA, B, C, D, E, we may have the result
i=15i
is F-distributed with 10 and 5 degrees of freedom [7]. We BCAED

reject the null hypothesis that two algorithms have the same

. Here,{B,C, A} f lique, A E}f th
expected performance ff > Fy 10.5. ere,{B, C, A} form one clique, and } form another

cligue; for example, there is significant difference betwée
and £ and also betwee®' and D.
B. ComparingL > 2 Algorithms on a Single Data Set

Analysis of Variance (ANOVA) tests if all populations haveC. Comparing Two Algorithms of/ > 1 Data Sets

the same mean: When we have values calculated over different data sets, we
Ho: i = jio =+ = pr VS. iy # jis,for anyr #s. (5) can no_longer use any parametric test because the perfoemanc
over different data sets do not come from a normal or any

2Matlab functions for these tests are made available as desuppt. known distribution (That is why, it does not make sense to



calculate the average performance over different data set$f Friedman’'s test rejects, we uddemenyi’s tesias the
either). In this case, we can only use a nonparametric t@ststhoc test to compare neighboring algorithms for sigamific
that compares which of the two algorithms is better in hodifference in rank [9]. Two algorithms lead to classifierghwi
many of these different data sets—if we do resampling as@ynificantly different performance ranks at significaneeel
have results on multiple folds, we compare the averages oveif the difference of their average ranks is greater than or
the folds. On some of these data sets, the first one wins, @qual to the critical difference

some the second wins (the first loses) and on the rest, they LL+1)
tie. We then need to check if those number of wins and losses CD = go\| ——— 9)

is likely under the null hypothesis that the two algorithms 6M

perform equally well, i.e., when the win probability i§2—  whereg, is the Studentized range statistic divided\sg. This

ties are equally split between wins and losses. This is callggain allows us to find cliques of equally good subsets which
the sign test.If if the first algorithm wins in 12 data sets outwe can represent by underlining them.

of 20 and loses on 8, the null hypothesis that they are equally

good can be claimed; if however the first wins in 19 out of V. RELATED WORK
20 and loses on one, that would be a very rare event if indeedrhe importance of good experimental design and the use
they were equally good, and it makes sense to reject. of resampling algorithms and hypothesis testing in learn-

The Wilcoxon’s signed rank tess an extension of the signing algorithms was discussed by Cohen [10]. In the first
test and uses the same idea except that it also takes igxtbook on machine learning, Mitchell dedicates a chapter
account the difference in performance for wins and lossee. hypothesis testing for the assessment and comparison of
We calculate the difference at each folddgs= y1; —y2; and learning algorithms [11]. In another early work, Salzberg
then sort them in terms d#;| and give them ranks between Idraws attention to the risk of the use of the same, small
and M. If ties occur, we give them the average of what theyumber of data sets repeatedly by many researchers [12hwhic
would get if they differed slightly. We then calculate; as may result in algorithms too much finetuned to and hence
the sum of all ranks whose signs of difference are positivaerfitting those particular data; this risk holds for thevdon
andw_ as the sum of ranks whose signs of differences ao¢ bioinformatics where experimentation to collect newadat
negative. The null hypothesis that = p, can be rejected if is expensive.
either ofw, andw;, that is,min(wy,w_) is very small. The  In a seminal study, Dietterich [6] reviews four statistical
critical values for the Wilcoxon'’s signed rank test are tabed tests and proposes thiex 2 cross-validation method and an

and for M > 20, normal approximation can be used. associated paired test for comparing the error rates of two
classification algorithms. Resampling has the risk of higlet
D. ComparingL > 2 Algorithms onM > 1 Data Sets | error, and this issue has been theoretically investigated

When we have more than two algorithms, on each data $¢&deau and Bengio [13]; they propose variance correction to
we do not have a win/loss/tie; instead, each algorithm assuniake into account not only the variability due to test setg, b
a rank between 1 anf in terms of its performance (averagedlso the variability due to training examples. Bouckead][1
over different folds). We then use nonparametric tests exkh shows that the widely usetitest has superior performance
for significant difference in average ranks over fHedata sets. compared to the Sign test in terms of replicability. On tHeeot

Friedman’s test is the nonparametric version of ANOVA an@and, he found thé x 2 cv ¢ test dissatisfactory and suggested
uses ranks instead of the absolute performances [9]. On eHt$ corrected resampledtest. Hastie et al. [15] discuss the
data setj, the performance values of the algorithms are sort#¢ong and right ways of doing-fold cross-validation.

from the best to the worst so that the best one gets the rank of he use of measures alternative to error/accuracy is old.
1, the second 2, and so on, until we getﬂoLet Tij denote AUC-ROC has been related to the Wilcoxon statistic and it

the rank of algorithm = 1,..., L on data sefj = 1,..., M. is possible to calculate the required number of positive and
The average rank of algorithinover theM data sets is negative examples for comparing two AUC-ROC values for
1 given type | and type Il probabilities [16]. Both AUC-ROC and
R, = i Z Tij AUC-PR use a single training and testing pair [17], [18],][19
J Hanley and McNeil [20] argue that comparing different ROC
The test statistic of Friedman’s test is curves with a single data set limits their usefulness. Ome ca
120 use a resampling algorithm, such/a$old cross-validation, to

2
Xo = ————— ZRf _ M (7) generatek ROC or PR curves hende AUC-ROC or AUC-
L(L+1) i 4 PR values. After fitting distributions to AUC-ROC or AUC-PR
which, under the null hypothesis that all algorithms areadigu values, one can test hypotheses on them, as we discuss here.
good, is chi-square distributed with— 1 degrees of freedom. More recently, Cortes and Mohri [21] have proposed to cal-

An improved statistic culate confidence intervals for AUC-ROC from the confidence
(M = 1)y interval of error without any parametric assumptions. tfirs

F2 = —XFQ (8) they define the expectation and variance of AUC-ROC in terms
M(L—=1) =Xk of the expected error, the number of negative instanceshand t

is F' distributed withL — 1 and (L — 1)(M — 1) degrees of number of positive instances by using the Wilcoxon-Mann-
freedom. Whitney statistic. Using these values, the confidencevater



are constructed without any assumption on the distribution V1. SURVEY OF CLASSIFICATION EXPERIMENTS IN
AUC-ROC. For large values of the sample size, they make a BIOINFORMATICS LITERATURE

normal distribution assumption for error. Fitting distriion To observe the practice of researchers in bioinformatics

:ﬁoAUf\:-tEgC dgarlllcjfsc:rzs :rlsc')t b(?;ntrl\]szdrrgryai?yos?t i [.fﬁpplications of machine learning for scenarios relatedh¢se
ug y pare 1t wi JUStUSE i cussed in this paper, we did a survey by examining the

evaluate their results. The effect of class distributioneoror published papers in three journals (one of which is this one)

and AUC-ROC is experimented in [23]. in the years 2010 and 2011. Table Il shows the number of
Hanczar et al. [24] discuss small sample estimation of RQ@pers surveyed in our wotkWe include all the papers except

related samples and the difference of the estimated and taaftware, application notes and proceedings. Among all the

values of the AUC, tp-rate and fp-rate. Through a simulatigrapers, we look at the ones related to machine learning and

study and analysis of real microarray data, they show that tamong those, we focus on those that use classification, which

difference is considerable. Swamidass et al. [25] propbee fs our topic of study in this paper.

concentrated ROC framewoik which any relevant portion

of the ROC curve is magnified smoothly by an appropriate TABLE Il
. . NUMBER OF PAPERS SURVEYED
continuous transformation. The area under the ROC curve
assesses retrieval performance of the relevant portionile8i ~Journal All Papers ML Related  Classification
to ROC curves, PR curves are also used for performanc@MC Bioinformatics 2010 466 167 71
luation [26], mostly in information retrieval applicats Bloinformatics 2010 334 167 65
eva , y pp IEEE/ACM TCBB 2010 69 34 20
[27] and they are preferred to ROC curves when the claSSotal (2010) 869 368 156
distribution is skewed [4], [5], [28], [29]. BMC Bioinformatics 2011 266 85 41
Bioinformatics 2011 272 99 28
Bengio et al. [30] argue that reporting statistics from ROCIEEIT/(AZ%M )TCBB 2011 égg 22?3 gé
) ; ; ; APl (2011
curve such as a break-even point may be misleading, at B nd ol 1530 506 516

propose the=xpected performance curte provide unbiased
estimates at various operating points. Drummond et al. [31] .
introducecost curvedor visualizing the error rate or expected The results show that during th_ese two y_eﬁ&ﬁ/1532 -

cost of two-class classifiers over all possible class thistions 40% of the papers are machine learning related, and

and misclassification costs. They argue that cost curves 4#4/606 = 417% of these are related to classification tasks; thg
better than ROC curves for visualization, for example iHercentages do not change much from year to year. These high

showing confidence intervals and visualizing the statticPSrcentages indicate that there is a fair amount of claatigic

significance of the difference between two classifiers. done in the bicinformatics community, and th¢se tasks requi
measures to evaluate the performances of different clessifi

When we compard. > 2 algorithms, after we apply thein different settings and domains—what we discuss in this
pairwise posthoc tests on all pairs, we may find pairs whepaper relates to approximately 16% of the papers publighed i
the test does not reject, and in such a case, we underline stighlast two years in these three journals.
cliques. To break ties and get a full ordering, MultiTest][32 From these papers that use classification, we collect data
combines the results of the pairwise tests with a cost meastilated to
that specify a prior preferrence on algorithms. Varioust/pf
cost can be used [33], e.g., the space and/or time complexity
during training and/or testing, interpretability, ease prb- 2)
gramming, etc. In a bioinformatics application where dfet
algorithms use results of different experimental proceduas
|npults, some more costly than others, the co_st of extractlng3) statistical methodology used (resampling strategy; per
the input may be another cost measure. Miigst uses the formance metrics, and the statistical test, if any is used).
same methodology to order algorithms on multiple data sets . . .

[34]. Table v shows_ the attributes we are mtergsted in and
their percentages in the years 2010, 2011, and in total.eThes

When doing multiple comparisons, there are various metpercentage values are not mutually exclusive, e.g., iftiage
ods to adjust the value ef for each comparison. The simpleboth two-class and multi-class data sets in a paper, tharpap
method is Bonferroni correction [35]. If we compakealgo- is included in both of the statistics; hence, these valuesalo
rithms, there ard.(L —1)/2 comparisons, and the Bonferronialways sum up to 100. Based on this data and our observations
correction sets the significance level of each comparison dbthese papers, we reach the following conclusions:

a/(L(L —1)/2). Nemenyi's test is based on this correction, , e observe that most of the classification tasks are two-
and that is why it has low power for large. Garcia and ~ (jass classification tasks. This shows that the measures
Herrera [36] explain and compare the use of various comecti based on the confusion matrix (as given in Eq. 1), such

algorithms, such as, Holm correction [37], Shaffer’s statio- as precision, recall, and so on, are applicable in most
cedure [38] and Bergmann-Hommel's dynamic procedure [39]. it ations.

They show that although it requires intensive computation,
Bergmann-Hommel has the highest power. 3A spreadsheet of this data is made available as a supplement.

) the attributes of the problem (the number of classes and
the number of input dimensions),

the attributes of the learning method (whether input
dimensionality reduction is done or not, and the clas-
sification algorithm), and



TABLE IV

PERCENTAGES OF ATTRIBUTES OF CLASSIFICATION PROBLEMS
STATISTICAL METHODOLOGIES AND THEIR PERCENTAGES IN THE

SURVEYED PAPER

S

Attribute Percentage
2010 2011 Total
Two-Class 79 54 70
Multi-Class 23 47 32
Performance Metrics
Accuracy / Error Rate 63 73 67
Precision (Positive Predictive Value) 28 26 27
False Positive Rate 10 13 11
F-Measure 17 14 16
Sensitivity (Recall, True Positive Rate) 49 54 51
Specificity 27 32 29
Receiver Operating Characteristics Curve 28 20 25
Area Under the ROC Curve a4 27 38
Precision-Recall Curve 11 4 9
Data Set Size
1-9 1 0 0
10-99 25 20 23
100-999 55 55 55
1000-9999 29 33 31
10000+ 26 19 23
Input Dimensionality
1-9 9 9 9
10-99 27 26 26
100-999 23 34 27
1000-9999 22 29 25
10000+ 21 21 21
Kernel/Other/Unspecified 24 10 19
Dimensionality Reduction 40 43 41
Algorithm Used
Decision Tree (DT) 26 24 26
Support Vector Machine (SVM) 51 69 57
Rule Based Learning 4 3 4
Artificial Neural Network (ANN) 10 17 13
Naive Bayes (NB) 16 14 15
k-Nearest Neighbor (KNN) 15 17 15
Resampling Strategy
k-fold Cross Validation 58 61 59
k1 x ko-fold Cross Validation 11 9 10
Leave-One-Out 21 18 20
Bootstrapping 4 4 4
Independent Test Set 33 29 31
k Random Partitions Into Training/Test Sets 7 7 7
Statistical Tests for Comparison
Parametric Test 13 6 10
Nonparametric Test 10 12 11
Other/Unspecified 1 1 1

« As expected, accuracy/error rate is the most frequently
used metric. In cases where one needs to focus on the
positives, precision and recall are also used. The use of
the area under the ROC curve seems to be established in
the community, but of the papers which give AUC values,
only 51 per cent show the actual ROC curves. Precision-
recall curves are also used though less frequently.
We check for dependency between the type of classifica-
tion problem and the performance measure used. Table
V shows the percentages with which various performance
metrics are used in two-class and multi-class classifica-
tion problems. As expected, accuracy/error rate is used
in multi-class problems more than in two-class problems
and in two-class problems, the percentages of the use of
precision/recall, sensitivity/specificity, or ROC curve o
AUC-ROC are higher.

« Data set sizes indicate that in nearly half of the problems,

TABLE V
PERCENTAGES OF PERFORMANCE METRICS FOR TWOLASS AND
MULTI-CLASS PROBLEMS

Two-Class  Multi-Class
Accuracy / Error Rate 63 75
Precision (PPV) 28 26
False Positive Rate 13 6
F-Measure 16 15
Sensitivity (Recall, TPR) 54 46
Specificity 33 22
ROC Curve 30 14
Area Under the ROC Curve 46 21
Precision-Recall Curve 10 5

TABLE VI

PERCENTAGES OF THE USE OF A DIMENSIONALITY REDUCTION METHOD

FOR DIFFERENT INPUT DSSIMENSIONALITIES

Input Dimensionality | Dimensionality Reduction
1-9 23
10-99 31
100-999 39
1000-9999 66
10000+ 75

the data set size is less than 1000 and in such cases,
the variance of any statistic calculated from the data can
be high. The use of suitable resampling strategies and
hypothesis testing is hence apparent.

Bioinformatics applications generally have high dimen-
sional inputs—almost one-fifth of papers use data that
have more than 10000 inputsl—indicating a higher
propensity for overfitting with small data. In some papers,
input dimensionality is not specified, in some, sequences
of different lengths are processed, e.g., using hidden
Markov models, and in some (with support vector ma-
chines), rather than in a vectorial form, a pairwise kernel
matrix is used for inputs. Because many applications have
high dimensional data, it is not surprising that some sort
of dimensionality reduction is done before classification.
As expected, we see in Table VI that the percentage of
the use of dimensionality reduction increases as the input
dimensionality increases.

Support vector machines and decision trees (mostly
random forests) are currently the best known off-the-
shelf learning algorithms and they are also those most
frequently used in bioinformatics applications. It hasals
been noted in a recent editorial [40] that the use of neural
networks and hidden Markov models are decreasing
whereas support vector machines and random forests are
becoming more popular. Since support vector machine
works well in small sample settings due to its inherent
regularization and random forest works well in high
dimensional, noisy data due to its averaging behavior,
the use of these algorithms is justified.

We check if there is a correlation between the algorithms
used and data set size, input dimensionality, and whether
or not dimensionality reduction is done before. As we
see in Table VII, there does not seem to be any strong
interaction. We would expect to sdeNN more with
smaller data sets (because it needs to store the whole
set) and naive Bayes more when input dimensionality



is high (because it assumes independent inputs) or less
dimensionality reduction with artificial neural networks
(because it does its own feature extraction in its hidden
units) and to a certain extent the data reflect these, but
we do not see a strong domination of one algorithm
over another one for a given data set size or input
dimensionality.

« With small samples, leave-one-out is usédfold or
k1 x ko-fold cross-validation is used in almost 70 per
cent of the cases. This shows that the need for multiple
replications is well understood by the community.
We check for dependency between data set size and
resampling strategy. As we see in Table VIHi;fold
cross-validation is the most popular method. As we would
expect,k; x ko-fold cv, leave-one-out and bootstrapping
are used more frequently with smaller data sets. If the
sample size is large, putting aside an independent test set
unused for training is the cheapest way, but surprisingly
it is used even with smaller data sets.

resampling strategies are used frequently, the use of
statistical tests to compare the performance of differente
classifiers is rare (in only abo@t per cent). Some papers

show standard deviations of the performance metricse®
without applying any test, and some use only a single per-
formance value to conclude that one algorithm is better®
than the other. This shows that the use of statistical tests
is not well established in the bioinformatics community

indicating the need for the approaches we discuss here.®

TABLE VII TABLE IX
PERCENTAGES OF DATA SET SIZEINPUT DIMENSIONALITY AND THE USE PERCENTAGES OF STATISTICAL TESTS FOR DIFFERENT DATA SET SIBE
OF DIMENSIONALITY REDUCTION FOR DIFFERENT ALGORITHMS
10-99 100-999 1000-9999 10000+
DT SVM ANN NB KNN Parametric Test 14 11 11 7
Dataset Size Nonparametric Test 11 12 14 9
1-9 0 0 0 0 0
10-99 22 26 13 18 34
TABLE X
100-999 57 57 61 58 58
1000-9999 27 32 26 24 24 PERCENTAGES OF THE NUMBER OF MODELS USED
10000+ . 2419 19 26 16 Models [1 2 3 4 5 6 7-10 >1I
Other / Unspecified 0 1 0 0 0 Percentage| 7 11 16 17 11 14 16 9
Dimensionality
1-9 10 4 16 21 3
10-99 40 26 39 32 21
100-999 33 34 42 34 26 o .
1000.9999 o5 % 10 29 et sets, statistics have Iarge variance and are more affected
10000+ 16 23 10 24 26 by chance and there is more need for a test to make
Kernel / Other / Unspecified 6 16 10 8 11 sure that differences are significant. Indeed as we see
Dimensionality Reduction | 43 45 39 47 53 in Table IX, as expected, we see tests used more with
smaller data sets. Statistical tests should always be used
TABLE VIII while expecting a small power when the sample size is
PERCENTAGES OF RESAMPLINGssl'ZI'ESATEGIES FOR DIFFERENT DATA SET small. We would have expected to see nonparametric tests
more with smaller data sets where central limit theorem
- 10-92 100-9989 1000-9999 100600+ may not hold, but the two types of tests seem to be used
-fold cv 4 5 71 5
k1 X ko-fold cv 12 12 7 5 equally frequently.
Leave-One-Out 32 21 13 9 In Table X, we show the percentages of the number of
Bootstrapping 12 6 4 2 models used in the studies. We see that 93 per cent of the
Independent Test Set 37 35 34 35 studies use more than a single model, which indicates the
k Random Partitions 7 7 7 5

need for statistical comparison. Note that we use the word
“model” here rather than “algorithm” because when we
comparek-NN with SVM, we count them as two models,
and also when we comparke-NN with and without
dimensionality reduction, we count them as two models
too; when we compare 1-NN and 3-NN, we do not count
them as two models but one model with different settings
of the hyperparameter. We see that the number of models
used—and hence needs to be compared—may be as high
as tens in some studies, which points out again the need
for rigorous experimentation and analysis.

We also check the measures that the tests use. In Ta-
ble XlI, we show the number of papers that use the tests
(divided into two as parametric and nonparametric) and
the measures used. We see that tests mostly use either
error or AUC-ROC and for these, either the parametric

t test or nonparametric Wilcoxon’s signed rank test are
used most frequently; in very few cases, both are used.
This supports well our recommendations in this paper.

VII. CASE STUDIES

Even thoughk-fold cross validation or other types of YVe use six well-known learning algorithms [1]:

Knn: k-nearest neighbor witk between 1 and 10.

Svm: Support vector machine (SVM) with a linear ker-

nel; we use the LIBSVM 2.82 library [41].

Rip: Rule learning algorithm Ripper where a rule contains
a conjunction of univariate propositions [42].

Mip: Multilayer perceptron with 10 hidden units.

Mdt: Multivariate decision tree algorithm where the de-
cision at a node is a linear combination of all inputs [43].
RnF: Random forest is an ensemble of decision trees.

We check for dependency between the use of a testin single data set case studies, we use aheeptorsand
(and its type) and the data set size. With small datlbonorsdata sets [44]. These are splice site detection data sets



TABLE XI
NUMBER OF PAPERS THAT USE STATISTICAL TESTS AND THE USED PERRMANCE METRICS

Balanced
Error AUC-ROC AUC-PR F Measure Accuracy Recall Precision Other T
Pairedt Test 5 9 1 2 1 1 1 1
One TailedZ Test 1 1
F Test 1
Wald Test 1
ANOVA
Wilcoxon Signed Rank Test
Wilcoxon Rank Sum Test
McNemar’s Test
Sign Test
Kolmogorov-Smirnoff Test
Permutation / Randomization Test 1
Bootstrap Test
Unspecified / Other 1 1
b)) 18 22 2

T
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and the trained models should distinguish ‘GT’ and ‘AG' site Hn
occurring in the DNA sequence that function as splice site«
and those that do not. A positive example for a donor site,
is a window of 13 residues of DNA around the ‘GT’ in an
actual human donor splice site, while a negative example is
window of the same size around a ‘GT’ which is not itself a 1
real splice site. The examples for the acceptor site ardasimi I I
except that the window size is larger, i.e., a positive examp *
for an acceptor site is a window of 88 residues of DNA around
the ‘AG’ in an actual human acceptor splice site. There are a5
3889 (708 positive, 3181 negative) and 6246 (1324 positive *
4922 negative) examples atceptorsanddonorsrespectively. o8
For multiple data set comparisons, we use the 11 cance
related gene expression data sets [45]; details are given
Table XlI. Nine are multi-class and two are two-class. The
data were produced by oligonucleotide-based technolaygy. | 0 02 04 06 08 1 O 68r o5 oBs 687 OB 08
all data sets excegrbct RNA was hybridized to high-density (b) ROC curve (c) AUC-ROC
oligonucleotide Affymetrix arrays and gene expression&al 4
were computed with Affymetrix software. larbct the ex- . 89
perimenters used two-color cDNA platform with consecutive \‘7}" 2:
image analysis and filtered for a minimum level of gene o o=05 2
expression. The genes or oligonucleotides with abserg gall o4 15 ‘ ”

08 0.1 0.12 0.14 0.16

(a) Error

all samples were removed from the analysis to reduce noise o2 g
Our methodology is as follows: A data set is first divided °

into two parts, with1/3 as the test set, and/3 as the

training set. The training set is then resampled using 2 (d) PR curve (e) AUC-PR

cross-validation (cv) where 2-fold cv is done five times fwitFig. 1. Comparison oKnn with Mdt on acceptorsdata set.

stratification) and the roles swapped at each fold to gemerat

ten training and validation folds. The validation folds ased

to tune the hyperparameters of the algorithms, &.gf,the k- Because we dbx 2 cross-validation, we have ten test results

nearest neighbot; of the SVM, pruning thresholds for rulesper algorithm. Figure 1 shows the (a) error histograms, (b)

and trees, and so on. For the best setting, the ten classifl8C curves, (c) histograms of areas under the ROC curves,

trained on the ten training folds are tested on the left-est t (d) precision-recall curves, and (e) histograms of areateun

set and these ten test results are reported and used in thgeprecision-recall curves. In Fig. 1(b) and 1(d), we maek t
statistical tests. points that correspond to the threshold of 0.5; these are the

values used in error comparison (shown in Fig. 1(a)).

This case is a good example illustrating that different
measures make different things explicit. With the 2 cv F

We compare thé:-nearest neighbor&Kan) and the mul- test in terms of error, the null hypothesis that the algongh
tivariate decision treeMdt) on the acceptorsdata set. We have equal expected error is rejectellidt leads to smaller
use theb x 2 cv F test for pairwise comparison as per ouexpected error. As we see in the ROC curves, though the two
discussion in Section IV-A. have similar tp values at the threshold®$, Knn has higher

0.96 0.965 0.97 0.975 0.98

0 02 04 06 08 1 Cé
0.955

A. Comparing Two Algorithms on a Single Data Set



TABLE Xl

DETAILS OF THE 11 CANCER-RELATED GENE EXPRESSION DATA SETS USED IN THIS STUDY

Dataset Diagnostic Task # of examples  # of features  # of classes
9tumors 9 various human tumor types 5726 9
11tumors 11 various human tumor types 174 12533 11
14tumors 14 various human tumor types and 12 normal tisquesty 308 15009 26
braintumorl 5 human brain tumor types 5920 5
braintumor2 4 malignant glioma types 10367 4
dibcl Diffuse large B-cell lymphomas and follicular lympias 77 5469 2
leukemial 3 types of leukemia 5327 3
leukemia2 3 types of leukemia 11225 3
lungtumor 4 lung cancer types and normal tissues 203 12600 5
prostatetumor  Prostate tumor and normal tissues 102 10509 2
srbct small, round blue cell tumors of childhood 83 2308 4

fp and hence higher error. When we compare the two over the grror pirrErRENCES OMIp—RNF ON THE 11 TUMOR DATA SETS.

whole ROC curves, we see that the two algorithms excel in

TABLE XIlI

different parts but if we average over all possible losses, i 9tum | 1ltum | 14tum brail | brai2 dibcl

terms of AUC-ROC, theés x 2 cv F test finds no significant 73'?(4 ‘IO"E; 1?'16 —12.81 1'; —10.37
; : eukl eu ung prost | srbct

difference. In terms of PR curves, the difference seems even | —— 30— T 138

10

less slight and agaifix 2 cv F' test on AUC-PR fails to reject.
Even though insignificant, ROC curve favdfan whereas

PR curve favordMdt. We understand why if we compare Fig.

1(b) and (d): To the left of the curve (for high), Knn is

to the left of Mdt implying less fp and hence overaknn e AUC-PR: Svm Mip Knn Rip Mdt

seems to be better (In this case, kam, k =10 and we have | terms of error, sinc&ip is significantly different from

meaningful intermediate thresholds whereas the leavé&dof 14t put not fromSvm nor Mip, (Mdt, Svm, Mip) and Svm,

contain examples th_at highly_favor one or t_he other class aWp, Rip) form a clique. On the other hand, as seen in the
the only meaningful intermediate threshold is at 0.5). ABR- figyre, Knn is significantly worse than all other algorithms. In
does not make use of the fp (or tn) and hence this has no effgglns of AUC-ROCMdt and Rip have similar performance,
sinceMdt has slightly higher precision thaiinn overall, it~ they form a single group and perform worse than the other
seems to be slightly better overall, though not signifigantl algorithms. There is no significant difference betwa#ip and
Svm or Knn, but since the last two are significantly different
B. ComparingL > 2 Algorithms on a Single Data Set from each other, two cliques are forme®vfn, Mip) and
The first case study can easily be generalized to more tHafip, Knn).
two algorithms. We may be (i) proposing a novel learning In terms of AUC-PRMdt is not significantly different from
algorithm and want to compare it againkt— 1 previous Svm using 5<2 cv F test, so although ANOVA rejects the
approaches, or (i) rutt off-the-shelf learning algorithms via null hypothesis that all algorithms have the same AUC-PR,
a data mining tool and decide which algorithm suits best we say that all five algorithms form a single clique. This may
our data set. We find examples of this during our survey bappen in real life, tests for the same purpose may decide
the literature: Song et al. [46] propose an approach, Cascladifferently due to different properties (ANOVA is not a pedr
to predict caspase cleavage sites; they use different sequéest) or assumptions.
encodings in their method and compare them over a single dat&Ve can use MultiTest [32] to get rid of the underlines and
set that they have constructed from multiple sources. Jeoget a full ordering. For example, when we apply MultiTest
et al. [47] test various classification algorithms on vasiouwith error as the performance measure and average space
feature sets to predict protein functions; the performawice complexity as the cost measure, the ordering we get is (from
the methods are compared over Yeast protein sequences. best to worst: £’ means “preferred to”")Mdt < Rip < Mlp <
As our second case study, we compRig, Mdt, Mlp, Svm, Svm < Knn; if we use average training time to prefer faster
andKnn on donorsdata set in terms of error, AUC-ROC, andalgorithms, we geMIp < Mdt < Rip < Svm < Knn.
AUC-PR. The histograms are given in Figure 2. We see that
though the five algorithm seem very different in terms of erro . )
and AUC-ROC, they seem more similar in terms of AUC-PRS- Comparing Two Algorithms oft/ > 1 Data Sets
again indicating that the difference in behavior is due ® th Some examples of this scenario can be found: MacDonald
negative instances. and Beiko [48] propose a rule mining method named CPAR
For all three measures, ANOVA rejects the null hypothesig extract microbial genotype-phenotype associatiorsrated
that all algorithms have the same performance. We apgl® 5 compare it against the existihg NETCAR algorithm over
cv I test as a pairwise post-hoc test as per our discussiomiiiltiple data sets. In converting multi-class problems et
Section IV-B and find the following orderings and cliques: of two-class problems, Taipa et al. [49] compare one-agains
o Error: Mdt Svym Mlp Rip Knn all and error-correcting output codes over various dats. set

e« AUC-ROC:Svm Mlp Knn Mdt Rip
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Fig. 2. Comparison oRip, Mdt, Mlp, Svm, andKnn on donorsdata set.
As a case study, we compdwlp andRnF on the 11 tumor ] 2 3 4 5

data sets. Because nine of the 11 data sets are multi-class, w
cannot use AUC-ROC and AUC-PR directly, so we use errqr
only. We calculate the average error of each algorithm on the

ten folds of each data set and use Wilcoxon'’s signed-rarik tes’

as per our discussion in Section IV-C.

Error differencesNllp—RnF) are shown in Table XlIl. We Fig. 3. The result of post-hoc Nemenyi's test.
see that the negative differences occur a lot more than the
positive differences and are also bigger in magnitude aatl th
is why Wilcoxon's signed-rank test rejects the null hypasike

that the average ranks of the two algorithms are same. Qyveral
Mlp performs better thaRnF on these 11 tumor data sets.

D. ComparingL > 2 Algorithms onM > 1 data sets

too, the

VIII. CONCLUSIONS

As in all machine learning applications, in bioinformatics

correct use of experiment design and analysis is of

paramount importance for results to be considered significa
Our contributions here are as follows:

Examples of this scenario are found in the literature: Zhu ete We review the basics of the design and analysis of

al. [50] propose a novel feature selection method before SVM
and compare their method against various other dimensgignal
reduction techniques over multiple data sets. Liu et. dl] [5
propose a sparse SVM method for biomarker identification and®
compare their method with three other methods over three dat

sets, including a synthetic data set.

As a case study, we compdrip, MIp, RnF, Svm, andKnn
on the 11 tumor data sets in terms of error. Table XIV shows
the error rates oRip, Mlp, RnF, Svm, and Knn. First we

experiments discussing the correct use of resampling
methods and hypothesis testing in the comparison of
machine learning methods.

We give the results of a survey of over 1500 papers pub-
lished in the last two years in three major bioinformatics

journals to check for the current practice, good and bad.

apply Friedman's test which rejects that the algorithmsehav
equal expected error. The result of the post-hoc Nemerasts t

can be seen in Figure 3, which can be rewritten as:

Svm Mlp RnF Knn Rip

We see that there are three cliqueir, MIp), (Mlp, RnF,

Knn), and RnF, Knn, Rip). We can not directly conclude

thatSvm is the best because there is no significant difference

betweenSvm andMlIp; we can not choosMlIp either because

RnF andKnn are as good (but worse th&vm).

We can use MulfiTest [34] here to get a full ordering. If

we use space complexity as the cost measure and Nemenyi's
test as the pairwise test on error, we §gi < MIp < RnF <

Svm < Knn, whereas with training time as the cost measure,

we getKnn < Rip < RnF < Svm < Mlp.

To summarize, our principal findings are:

Most applications are two-class problems.

Not only accuracy/misclassification error, but mea-
sures such as precision/recall, ROC/AUC-ROC are
relevant and indeed are widely used.

Most bioinformatics data is not large. Nearly half has
fewer than 1000 instances.

Most bioinformatics data is high dimensional. Nearly
half has more than 1000 dimensions.

Dimensionality reduction hence is an important re-
search topic and such methods are heavily used.
There does not seem to be any learning method heav-
ily favored. The use of decision trees and support
vector machines seem to be slightly more frequent.
The need for resampling seems to be accepted by
the community. Around 70 per cent of the papers
use some sort of cross-validation.

Though resampling is popular, statistical tests to
check for significant difference is rare, only in 21



TABLE XIV
ERROR RATES ORRIp, MIp, RnF, Svym, AND Knn ON 11 TUMOR DATA SETS.

Dataset Rip Mip RnF Svm Knn
Otumors | 72.73:8.57 | 86.36:0.00 | 65.91+9.40 | 51.36+12.87 | 62.27410.29
11ltumors| 30.00+1.74 | 60.16+£10.08 | 33.7A5.42 16.72+2.42 33.28t£5.89
14tumors | 64.414+3.01 82.9H2.63 | 58.11-3.19 51.712.66 70.2°H3.96
braintumorl | 25.316.50 | 37.50+0.00 | 31.56+5.60 | 14.38+3.02 | 18.75t4.42
braintumor2 | 42.22+14.63 72.22+0.00 | 33.33£8.69 31.649.09 34.44+9.37
dibcl 20.74£5.00 | 24.84-3.51 | 23.33t2.50 | 11.113.90 | 12.96+5.59
leukemial | 25.20+8.44 | 46.00:6.32 | 21.20+5.98 | 12.40t+6.10 8.80+4.54
leukemia2 20.40+2.95 | 48.00+12.36 | 14.00+4.71 7.20+4.54 | 14.40t+10.70
lungtumor | 10.00+3.64 | 24.06:5.56 | 17.83+3.75 5.514+1.65 | 13.913.82
prostatetumor| 25.43t4.94 19.14+4.87 | 21.43£9.45 10.86+5.68 17.714+4.00
srbct 23.45t+6.66 40.35+7.10 | 12.0A7.13 7.93+6.09 10.69+8.36

per cent. Some papers show only mean and standajg J. Demsar, “Statistical comparisons of classifiers awattiple data sets,”

deviations without any test, and some use only a
single value. This is probably our most significan&lo]
finding and indicates the relevance of this paper. [11]
« We define four scenarios which we observe frequently (2]
the machine learning applications in bioinformatics and
for those, we discuss the proper statistical methodologys)
« For each of these scenario, we include a case study where
we show an example use of the proposed methodolo@!
on a real-world bioinformatics application with state-of-
the-art learning algorithms. [15]
« A section on related work shows the evolution of statisti-
cal methodology and contains pointers to related papePse.]
Our discussion in this paper is for classification; though re
gression algorithms are used less frequently in bioinfoicaa [17]
a similar study can also be carried out for regression.
(18]
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