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NUMERICAL SOLUTIONS OF NONLINEAR PARABOLIC

EQUATIONS WITH ROBIN CONDITION: GALERKIN APPROACH

HAZRAT ALI1, MD. KAMRUJJAMAN2, §

Abstract. In this paper, classical solutions of nonlinear parabolic partial differential
equations with the Robin boundary condition are approximated using the Galerkin finite
element method (GFEM) which is associated with the combination of the Picard itera-
tive scheme and α-family of approximation. The uniqueness, convergence, and structural
stability analysis of solutions are studied. It is proven that the iterative scheme of the
numerical method is stable. To ensure the efficiency and accuracy of the method, the
comparative study between the exact and approximate solutions both numerically and
graphically are given by solving two nonlinear parabolic problems. A reliable error esti-
mation also opens possibilities of acceptance of the method. The results confirmed the
consistency of the method and ensured the convergence of solutions.
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1. Introduction

A big class of real-life problems which model the natural systems appear in mathematics
as nonlinear partial differential equations (PDEs). Parabolic partial differential equations
are one of the most important PDEs and have a wide range of industrial applications
[1, 2, 3, 4]. Problems of these types arise in numerous branches of science and the life
demands are modeled by PDEs with applications to physics, chemistry, ecology, biology,
and other important fields of science (see [5, 6, 7, 8, 9], and references therein). Some
examples are (i) the approximate theory of flow through a shock wave propagation in a
viscous fluid, (ii) branching Brownian motion process and circuit theory, (iii) heat transfer
in a draining film, (iv) dispersion of dissolved salts in groundwater, (v) auto-catalytic
chemical reaction and nuclear reactor theory, (vi) fluid mechanics, turbulence, traffic flows,
gas dynamics, and (vii) logistic population growth.
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To find the analytical solutions of higher-order differential equations are not only dif-
ficult but also impossible in many cases depending on the nonlinearities, nature of the
governing equation, construction of appropriate meshes, complex geometrical shapes, ill-
conditioning, and singularity. So the researchers devote their concentrations to develop a
robust and efficient solution methodology to simulate the problems numerically.

In the literature, many researchers introduced new innovations and solved the nonlin-
ear parabolic PDEs using simple to robust numerical methods. As a continuation, Ahmed
solved linear parabolic PDEs (advection-diffusion) with constant and variable coefficients
by the finite difference method [1]. In [7], a nonlinear time-periodic solution was prepared
for parabolic boundary value problems by the finite difference method. A homotopy anal-
ysis method was introduced by Fallahzadeh and Shakibi to find the numerical solutions
of linear convection-diffusion parabolic PDEs [6]. A meshless localized radial basis func-
tions collocation method is used by Siraj-ul-Islam et al. for the numerical solutions of the
hyperbolic PDEs and the transient nonlinear coupled Burgers’ equations [10, 11, 12].

Rashidinia and Barati studied single-space-variable nonlinear parabolic equations using
the Sinc collocation method [8]. Chou and Li derived the convergence properties of the
nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in
two space dimensions along with Optimal H1 and L2 error estimations for the continuous
time Galerkin approximation [13].

Siraj-ul-Islam et al. invented two new numerically stable methods based on Haar and
Legendre wavelets for the solutions of one- and two-dimensional parabolic PDEs [14].

The multi-domain bivariate spectral collocation method was introduced by Sydney for
solving nonlinear parabolic PDEs [9]. Tadmor provided a brief description on the develop-
ment of the finite element method which is based on the Rayleigh-Ritz principle [15]. The
FitzHugh-Nagumo equation, recently solved using Galerkin finite element method which
was limited only for Neumann boundary conditions [5]. Chawla et al. had described new
time-integration schemes for the linear convection-diffusion equation with Dirichlet and
Neumann boundary conditions [16]. The nonlinear parabolic PDEs with Robin boundary
conditions were solved by Sapa by introducing finite difference methods [17]. Chen and
Zhang analyzed convection–diffusion equations and solved Burgers’ equations by weak
Galerkin finite element method which was limited within Dirichlet boundary condition
only [18, 19]. Qi and Song also solved a parabolic equation using the Galerkin approach
with an implicit θ scheme and this was also limited in Dirichlet boundary conditions only
[20].

In this study, the nonlinear parabolic PDEs with Robin boundary conditions by Galerkin
finite element method are solved; whose solution and the current approach are not avail-
able yet in the literature to the best of authors’ knowledge. The main novelty of this
paper is that we solved the nonlinear parabolic PDEs with Robin boundary conditions
by Galerkin finite element method in an easy and efficient way. To apply GFEM, the
important significance herein is that it is not necessary to convert the boundary value
problems into initial ones.

The paper is organized as follows. In Section 2, the detailed formulation of GFEM for
nonlinear parabolic PDEs with Robin boundary conditions is described. In Section 3, the
convergence of this method is presented. The stability of this method along with the iter-
ative schemes is narrated in Section 4. The numerical solutions of two nonlinear parabolic
PDEs with Robin boundary conditions are presented in Section 5 and at the end of this
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research article, the conclusion is drawn along with the implementation, application, and
the efficiency of the proposed scheme in Section 6.

In the following section, the formulation of GFEM for a class of second-order nonlinear
parabolic PDEs will be discussed.

2. Mathematical Formulation

Let us consider a non-linear parabolic partial differential equation of the following form
defined on an open bounded domain Λ = [0, T ]× Ω, where Ω ∈ R,

ε
∂

∂x

(
δ(x)

∂Z(t, x)

∂x

)
= σ(x)

∂Z(t, x)

∂t
+ L

(
x, t, Z(t, x),

∂Z(t, x)

∂x

)
. (1)

The initial and the boundary conditions of the Robin type are

Z(x, 0) = Ξ(x), x ∈ Ω, (2)

α1(t, x)Z(t, x) + β1(t, x)
∂Z(t, x)

∂x
= γ1(t, x), (t, x) ∈ ∂Λ, (3)

α2(t, x)Z(t, x) + β2(t, x)
∂Z(t, x)

∂x
= γ2(t, x), (t, x) ∈ ∂Λ. (4)

Where both α1(t, x) and α2(t, x) or β1(t, x) and β2(t, x) are not equal to zero simultane-
ously. To derive the mathematical formulation by Galerkin finite element method, first of
all discretize the domain of x into a finite number of subdomains for a particular value of
t ≥ 0. Each subdomain is called an element. The length of the elements need not to be
equal. The elements are numbered from left to right with parenthesis [e]. If the domain of
x is discretize into n elements and each element contains m nodes, then the total number
of degrees of freedom will be N = (m− 1)× n+ 1.
Let the trial solution for a particular element [e] be given by

Z̃(t, x) =
m∑
j=1

zj(t)ϕj(x). (5)

Then the weighted residual equation for the element [e] becomes∫
[e]

[
σ(x)

∂Z̃

∂t
− ε ∂

∂x

(
δ(x)

∂Z̃

∂x

)
+ L

(
x, t, Z̃,

∂Z̃

∂x

)]
ϕidx = 0

⇒
∫
[e]
σ(x)

∂Z̃

∂t
ϕidx−

∫
[e]
ε
∂

∂x

(
δ(x)

∂Z̃

∂x

)
ϕidx+

∫
[e]
L

(
x, t, Z̃,

∂Z̃

∂x

)
ϕidx = 0

⇒
∫
[e]
σ(x)

∂Z̃

∂t
ϕidx+

∫
[e]

∂ϕi
∂x

εδ(x)
∂Z̃

∂x
dx+

∫
[e]
L

(
x, t, Z̃,

∂Z̃

∂x

)
ϕidx =

[
εδ(x)

∂Z

∂x
ϕi

]
[e]

.

(6)

Use the equation (5) into the equation (6) and then simplify it, we obtain

m∑
j=1

dzj(t)

dt

∫
[e]
σ(x)ϕiϕjdx+

m∑
j=1

zj(t)

∫
[e]

[
εδ(x)

dϕi
dx

dϕj
dx

+ L

(
x, t, ϕj ,

(
m∑
k=1

zk(t)
dϕk(x)

dx

))
ϕi

]
dx

=

[
εδ(x)

(
m∑
k=1

zk(t)
dϕk
dx

)
ϕi

]
[e]

. (7)
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Which can be written in the matrix form[
C[e]
]{dz(t)

dt

[e]
}

+
[
K[e]

]{
z(t)[e]

}
=
{
F [e]

}
, (8)

where
[
K[e]

]
and

[
C[e]
]

are called the stiffness and forced matrices and the matrix
[
F [e]

]
is called the Load vector. Since

[
C[e]
]

is symmetric so it is also referred to as the damp-
ing matrix. This represents a non-linear system of ordinary differential equations. Here{
z(t)[e]

}
,

{
dz(t)
dt

[e]
}
, and

{
F [e]

}
represents an m× 1 vectors and

[
C[e]
]
,
[
K[e]

]
represents

an m × m matrices, where m is the number of nodes in each element. By using time
approximation discussed in later Section 2.1, equation (8) can be reduced to a set of the
system of non-linear equations of the form [4][

K[e]
]
τ+1

{
z(t)[e]

}
τ+1

=
{
F[e]
}
τ,τ+1

, (9)

where
[
K[e]

]
,
{
F[e]
}

are known in terms of
[
C[e]
]
,
[
K[e]

]
,
{
F [e]

}
,

{
dz(t)
dt

[e]
}
, and

{
z(t)[e]

}
.

The subscript τ + 1 refers to the time tτ+1 at which the solution is sought.

2.1. Time Approximations. For time approximation purpose, use two type schemes as
implicit and explicit. In the explicit type, zj is found at time tτ+1 using the value of zj at
time tτ which is known. In the explicit schemes, the time step size is limited approximately
to the time taken for an elastic wave to cross the smallest element dimension in the mesh.
So it is conditionally stable.

In the implicit type, zj is found at time tτ+1 using both the known value of zj and
the unknown values of zj+1 at time tτ and tτ+1, respectively. Implicit schemes have no
limitation like explicit schemes and the time steps size can be greater than the explicit
scheme’s time step size. But at that time, the accuracy of the solution will decrease. So
the adaptiveness between the time step size and accuracy depend on the followings [4]

(i) explicit scheme’s stability,
(ii) the computational cost of the implicit scheme,
(iii) the relative size of the time step between the implicit and the explicit scheme that

gives acceptable accuracy, and
(iv) the size of the computational model.

Using this time approximation in equation (8), there arises a system of nonlinear equations
which can be solved by iterative procedure on their recurrent equations, that is discussed
elaborately below.

2.2. Recurrent Equations. By using time approximation, transform the system of the
ordinary differential equations (8) into the system of nonlinear algebraic equations (9). For
this, finite difference schemes can be used such as forward difference, backward difference,
central difference schemes. But in reality, no particular scheme works best for all non-linear
problems. In this regard, the α-family of approximation is widely used that interpolates
the weighted average of the time derivative at two consecutive time steps

(1− α)

{
dz(t)

dt

}
τ

+ α

{
dz(t)

dt

}
τ+1

≈
{z(t)}τ+1 − {z(t)}τ

∆t
for 0 ≤ α ≤ 1, (10)

where {}τ refers to the value of the enclosed quantity at time t = tτ , and ∆t = tτ+1 − tτ .
For different values of α, the following well-known numerical integration schemes arise for
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the equation (10) [4]

α =


0, the forward difference scheme (conditionally stable); order of accuracy = O(∆t),
1
2 , the Crank-Nicolson scheme (stable); order of accuracy = O((∆t)2),
2
3 , the Galerkin method (stable); order of accuracy = O((∆t)2),

1, the backward difference scheme (stable); order of accuracy = O(∆t).

Then the equation (8) becomes(
C

∆t
+ αK

)
zτ+1 =

(
C

∆t
− (1− α)K

)
zτ + Fτ . (11)

This is the recurrent formula that starts computing by taking an initial guess from the
initial condition. At each iteration, an approximate solution is found by using Picard
iterative scheme [23] for a particular time level.
Next Section 3 contains one important branch of this study, the convergence analysis which
ensures that the iterative procedure is convergent.

3. Convergence Analysis

Let the shape functions are ϕj(x) ∈ H1
2 , j = 1, 2, ....,m, where H1

2 is the Hilbert

space. Since δ(x), dδ(x)dx , σ(x), and L
(
x, t, Z(t, x), ∂Z(t,x)∂x

)
are continuous functions, so the

solution of equation (1) uniquely exist [21]. Now substitute the trial function from the
equation (5) into the equation (8), then the equation (8) can be written as{

dz(t)

dt

[e]
}

+
[
C[e]
]−1 [

K[e]
]{

z(t)[e]
}

=
[
C[e]
]−1 {

F [e]
}
. (12)

Equation (12) is an initial value problem

dzj
dt

+ ζjzj = =j , (13)

zj(0) = Ξ(x).

The integrating factor of the equation (13) is

e
∫
ζjdt = eζjt.

Multiply this on both sides of the equation (13) and then integrate over [0, T ]

eζjtzj =

∫ T

0
eζjξ=j(ξ)dξ

⇒ zj =

∫ T

0
e−ζj(t−ξ)=j(ξ)dξ, (14)

and

|zj |2 ≤
1

2ζj

∫ T

0
|=j(ξ)|2dξ. (15)
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So in energy norm for a fixed t, the following is found∥∥∥Z̃(t, x)
∥∥∥2
E

=

m∑
j=1

|zj(t)|2ζj

≤
m∑
j=1

(
1

2ζj

∫ T

0
|=j(ξ)|2dξ

)
ζj

=

m∑
j=1

(
1

2

∫ T

0
|=j(ξ)|2dξ

)
.

So the series in equation (5) converges for a particular value of t.
Let sp,m be the space of (p−1) times continuously differentiable functions on Ω̄, the closure
of Ω, for which the restriction to Ωj , j = 0, 1, 2, .....,N − 1 is a polynomial of degree at

most m − 1, where m is the number of local nodes in each element. Let Z̃ ∈ sp,m be the
finite element solution for a particular value of t, then for all υ ∈ sp,m(

∂Z̃

∂t
, υ

)
0

+ B
(
Z̃, υ

)
= (L, υ)0, (16)

where (., .)0 is the inner product, and B(., .) is the bilinear transformation defined in
[21, 24].
Equation(16) provides an initial value problem instead of the system of ordinary differen-
tial equations and is well known that for decreasing the increments in x, this result will
converge to the exact solution of equation (1) for a particular t.
Now the iterative schemes can be applied in a relaxed way if it is numerically stable.
In the following Section 4, the stability of the iterative procedure will be discussed that
demonstrate the stability of the proposed method also.

4. Stability Analysis

Equation (11) can be rewritten as[
K̄
]
{z}τ+1 = ˆ[K] {z}τ +

{
F̄τ
}
, (17)

{z}τ+1 = [A] {z}τ +
[
K̄
]−1 {F̄τ} , (18)

where [A] =
[
K̄
]−1 ˆ[K] is the amplification matrix. Here {z}τ+1 , {z}τ are the solution

vector at time t+ 1 and t respectively.
The solution {z}τ+1 at time t + 1 depends on the solution {z}τ at time t. So error can
grow with iteration. An iterative method is said to be stable if the error does not grow
boundlessly with iteration. The necessary and sufficient conditions to bound the error
within a borderline, the eigenvalue λmax of the amplification matrix [A] must be less than
or equal to unity such that

([A]− λmax[I]) {z} = 0. (19)

Equation (19) will be an unconditionally stable eigenvalue problem if λmax is less than or
equal to unity for any time steps (∆t) [4]. If λmax depends on the time step size (∆t) to
be less than or equal to unity, then the procedure will be called conditionally stable.
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Let us explain the case of conditional stability. Since the time step size can be related
to the value of α in α-family of approximation as follows

∆t <
2

(1− 2α)λmax
. (20)

And it is known that if α < 1
2 , all numerical schemes are stable for the time increment

that satisfies the above relation. And for α ≥ 1
2 , the largest eigenvalue of the amplification

matrix satisfies the following inequality

λmax = ‖1− (1− α)∆tλmax
1 + α∆tλmax

‖ ≤ 1, (21)

which reveals that α-family of approximation is unconditionally stable. So it is concluded
that for all values of α as well as ∆t, the numerical schemes are unconditionally stable.
In the following Section 5, the solutions of two nonlinear parabolic PDEs under Robin
boundary conditions are given to demonstrate the efficiency of this method. Also, the role
played among different parametric values, exact-approximate solution, and error terms are
studied while time varies.

5. Computational Results and Discussion

In this section, the developed algorithm as discussed in the previous sections is applied to
two well-known non-linear physical problems; parabolic partial differential equations with
Robin boundary conditions. The results are presented both graphically in the diagram
and numerically via the tabular form. All computations are done by MATLAB. In each
format, the comparison between the approximate and the exact solution is presented. To
compute the L∞ norm and the mean of errors, the following two formulae are introduced

L∞ = max
j |Z(t, x)exactj − Z(t, x)GFEMj |,

mean =

∑n
j=1 |Z(t, x)exactj − Z(t, x)GFEMj |

n
.

5.1. Uniformly Propagating Shock Problem. Let us consider the uniformly propa-
gating shock problem [17, 26, 27]

∂Z

∂t
=

1

Re

∂2Z(t, x)

∂x2
− Z(t, x)

∂Z(t, x)

∂x
, (22)

subject to the initial-boundary conditions

Z(0, x) =
x− 4

x− 2
,

Z(t,−1) +
∂Z(t,−1)

∂x
=
t2 + 8T + 13

(t+ 3)2
, (23)

Z(t, 1)− ∂Z(t, 1)

∂x
=
t2 + 4T + 5

(t+ 1)2
.

Here Re is the Reynolds number in the range 1 ≤ Re ≤ 105 and for (t, x) ∈ [0, 1]×[−1, 1],
Z(t, x) ∈ (1.5, 3). The exact solution to this problem is Z(t, x) = 1 − 2

x−t−2 . For the
computational purpose, 40 linear elements are taken. The iterative scheme that has been
used here is the Crank-Nicolson iterative scheme with increments (∆x,∆t) = (0.05, 0.05).
The graphs (both 2D and 3D) of exact and approximate solutions for different time levels
are depicted in Figure 1 with Re = 1 and the error graph is displayed in Figure 2. From
Figure 3, it is found that for high Reynolds number, the computed results are stable and
give a good agreement with the exact solution.
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Figure 1. Comparison between the exact and approximate solutions at
different time levels of equation (22) over the domain [−1, 1].

Figure 2. A plot of absolute error for the approximate solutions of equa-
tion (22).

Figure 3. Behaviour of the approximate solutions of equation (22) at
different Reynold number.
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Comparisons between approximate and exact solutions at different nodes of x and different
time levels are reported in Table 1. The L∞ norm and the mean of error are reported in
Table 2 which gives significantly better accuracy than the existing results in the literature
[22] where the finite difference explicit method was being used and revealed L∞ norm and
the mean of error that exceeded 1046 and 1044, respectively [17].

Table 1. Comparison between exact and approximate solutions of equa-
tion (22)

x t = 0.1 t = 0.2 t = 0.3

GFEM Exact Error GFEM Exact Error GFEM Exact Error

-1.00 1.6427 1.6452 2.4126×10−3 1.6198 1.6250 5.2247×10−3 1.5970 1.6061 9.0996×10−3

-0.80 1.6873 1.6897 2.3255×10−3 1.6610 1.6667 5.6517×10−3 1.6348 1.6452 1.0381×10−2

-0.60 1.7387 1.7407 2.0661×10−3 1.7080 1.7143 6.2450×10−3 1.6774 1.6897 1.2238×10−2

-0.40 1.7977 1.8000 2.2673×10−3 1.7617 1.7692 7.5615×10−3 1.7255 1.7407 1.5211×10−2

-0.20 1.8666 1.8696 2.9217×10−3 1.8235 1.8333 9.8118×10−3 1.7803 1.8000 1.9679×10−2

0.00 1.9483 1.9524 4.1077×10−3 1.8957 1.9091 1.3397×10−2 1.8434 1.8696 2.6127×10−2

0.20 2.0465 2.0526 6.1079×10−3 1.9812 2.0000 1.8804×10−2 1.9174 1.9524 3.5020×10−2

0.40 2.167 2.1765 9.4681×10−3 2.0846 2.1111 2.6479×10−2 2.0061 2.0526 4.6565×10−2

0.60 2.3184 2.3333 1.4910×10−2 2.2135 2.2500 3.6456×10−2 2.1164 2.1765 6.0098×10−2

0.80 2.5163 2.5385 2.2159×10−2 2.3815 2.4286 4.7071×10−2 2.2607 2.3333 7.2607×10−2

1.00 2.7949 2.8182 2.3302×10−2 2.6203 2.6667 4.6317×10−2 2.4696 2.5385 6.8858×10−2

Table 2. The L∞ norm and mean of absolute error at different times for
equation (22)

t L∞ norm Error mean

0.00 7.35×10−40 8.27×10−41

0.10 2.49×10−02 7.72×10−03

0.20 5.01×10−02 1.94×10−02

0.30 7.53×10−02 3.32×10−02

0.40 9.92×10−02 4.81×10−02

0.50 1.22×10−01 6.34×10−02

0.60 1.43×10−01 7.88×10−02

0.70 1.62×10−01 9.39×10−02

0.80 1.80×10−01 1.09×10−01

0.90 1.97×10−01 1.23×10−01

1.00 2.12×10−01 1.36×10−01

5.2. Strongly Nonlinear Reaction-Diffusion Equation. As a second problem, con-
sider the following nonlinear reaction-diffusion equation [25]

∂Z

∂t
= (κ0 +m)

(
∂Z(t, x)

∂x

)2

− 3κ0
∂Z(t, x)

∂x
+ κ0

(
m+ 2

m

)
x
∂2Z(t, x)

∂x2
+

1

κ0 (1 + µt)
m

m+1

.

(24)
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Subject to the initial condition

Z(x, 0) =

[
A− 1

2κ0

(
m

m+ 2

)
µx2

] 1
m

,

and the boundary conditions

Z(0, t) +
∂Z(0, t)

∂x
= A

1
m (1 + µt)

1
m+1 ,

Z(1, t) +
∂Z(1, t)

∂x
= Θ

1
m

[
1− µ

κ0(m+ 2)(1 + µt)
Θ−1

]
,

where

Θ = A(1 + µt)
m

m+1 − mµ

2κ0(m+ 2)(1 + µt)
.

The explicit analytical solution of equation (24) is [25]

Z(t, x) =

[
A(1 + µt)

m
m+1 − 1

2κ0

(
m

m+ 2

)
µx2

(1 + µt)

] 1
m

.

Figure 4. Exact and approximate solutions of equation (24) for Z(t, x).

Figure 5. A plot of absolute error for the approximate solution of equation (24).
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Here Z(t, x) ∈ (0.9, 1.5) for the domain (t, x) ∈ [0, 1] × [0, 1]. For computation 40
quadratic elements with the time increment 0.05 is taken. In α-family of approximation,
consider α = 0.5. For numerical approximation, the values A = µ = 1, and κ0 = 2 are
being chosen.
Both curve and surface plots of the results are presented graphically in Figure 4 along
with the three-dimensional error graph in Figure 5. The numerical results are reported in
Table 3. The L∞ norm and the mean of error are presented in Table 4. The L∞ norm
shows the higher accuracy and error mean ensures the stability of this algorithm.

Table 3. Comparison of exact and approximate solution of equation (24)

x t = 0.1 t = 0.2 t = 0.3

GFEM Exact Error GFEM Exact Error GFEM Exact Error

0.00 1.0494 1.0488 5.7664×10−04 1.0965 1.0954 1.0652×10−03 1.1417 1.1402 1.4853×10−03

0.10 1.0486 1.0481 5.6630×10−04 1.0958 1.0948 1.0567×10−03 1.1410 1.1395 1.4806×10−03

0.20 1.0463 1.0458 5.2648×10−04 1.0937 1.0927 1.0212×10−03 1.1391 1.1376 1.4532×10−03

0.30 1.0424 1.0420 4.5370×10−04 1.0902 1.0892 9.5650×10−04 1.1358 1.1344 1.3999×10−03

0.40 1.0370 1.0367 3.4575×10−04 1.0852 1.0843 8.6046×10−04 1.1312 1.1299 1.3177×10−03

0.50 1.0301 1.0299 2.0250×10−04 1.0788 1.0781 7.3107×10−04 1.1254 1.1241 1.2034×10−03

0.60 1.0216 1.0215 2.6604×10−05 1.0710 1.0704 5.6675×10−04 1.1182 1.1171 1.0535×10−03

0.70 1.0115 1.0117 1.7561×10−04 1.0618 1.0614 3.6684×10−04 1.1096 1.1088 8.6508×10−04

0.80 0.9999 1.0003 3.9313×10−04 1.0511 1.0510 1.3213×10−04 1.0998 1.0991 6.3530×10−04

0.90 0.9868 0.9875 6.0908×10−04 1.0391 1.0392 1.3420×10−04 1.0886 1.0883 3.6201×10−04

1.00 0.9723 0.9731 7.9935×10−04 1.0256 1.0260 4.2553×10−04 1.0761 1.0761 4.4167×10−05

Table 4. The L∞ norm and mean of absolute error at different times for
equation (24)

t L∞ norm Error mean

0.00 5.74×10−11 2.72×10−11

0.10 7.99×10−04 3.96×10−04

0.20 1.07×10−03 6.60×10−04

0.30 1.49×10−03 1.07×10−03

0.40 1.85×10−03 1.47×10−03

0.50 2.16×10−03 1.81×10−03

0.60 2.42×10−03 2.09×10−03

0.70 2.64×10−03 2.32×10−03

0.80 2.82×10−03 2.52×10−03

0.90 2.97×10−03 2.68×10−03

1.00 3.08×10−03 2.80×10−03

6. Conclusion

In this paper, the complete formulation of the Galerkin Finite Element Method (FEM)
is derived for nonlinear parabolic PDEs. The method was applied successfully to solve
the nonlinear PDEs with the Robin boundary condition. In this case, the convergence
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and stability analysis were presented to ensure the validity and reliability of the pro-
posed method. The results of particular nonlinear problems were depicted graphically
and numerically which proved that the proposed method is very accurate, mathematically
efficient, unconditionally stable, and computationally faster which converges rapidly to
the exact solution. The absolute error map provided a very small error which is negligible.
Data-structured tables and graphical maps of approximate and exact solutions ensured a
cool agreement for a wide range of time and space steps. Afterward, it was clear from both
numerical and graphical presentations that the characteristic of all solutions was harmonic
due to its higher-order accuracy and low cost. This method can be applied for solving
nonlinear parabolic PDEs with any other boundary conditions effortlessly.
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