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BOUNDARY VALUE PROBLEM SOLVING FOR SEMILINEAR

FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL AND

INTEGRAL BOUNDARY CONDITIONS
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Abstract. In this paper, we will study a boundary value problem for semilinear fractional

differential equations of order q ∈ (1, 2] with nonlocal and integral boundary conditions. Some

existence and uniqueness results with illustrative examples will be presented by applying some

fixed point theorems.
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1. Introduction

Fractional derivatives have an excellent tool for describing memory and hereditary properties

of various materials and processes. these characteristics of fractional derivatives make fractional

order models more realistic and pratical than the standar integer models. Recently, boundary

value problems for nonlinear fractional differential equations have been studied by several au-

thors. In fact, fractional differential equations arise in many scientific disciplines such as, Biology,

Chemistry, Physics, Economics, Control theory, Signal processing, etc, [14, 19, 20]. For more de-

tails of developments on the subject, one can see for example [2, 3, 5, 6, 7, 8, 9, 10, 16, 17, 21, 22]

and the references therein..

Fractional differential equations with integral boundary conditions constitue a very interesting

and important class of problems. Integral boundary conditions have various applications in

applied fields such as blood flow problems, chemical engineering, thermoelasticity, underground

water flow, population dynamics, cellular systems etc. see [1, 13]. For a detailed description

of the integral boundary conditions, we refer the reader to the papers [4, 6, 10] and references

cited therein.

In the present paper, we consider a boundary value problem for semilinear fractional differ-

ential equations of order q ∈ (1, 2] with nonlocal and integral boundary conditions given by:
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CDqx(t) = f(t, x(t)), 1 < q ≤ 2, t ∈ J = [0, 1],

x(0) = g(x) + α

∫ ξ

0
x(s)ds, 0 < ξ < 1,

x(1) = h(x) + β

∫ η

0
x(s)ds, 0 < η < 1.

(1)

where CDq denotes the Caputo fractional derivative of order q, f : J × R −→ R is a given

continuous function, g, h : [0, 1] −→ R are two continuous functions satisfying some hypotheses

that will be specified later.

Nonlocal conditions were initiated by Bitsadze [12]. Byszewski to notice that the nonlocal

condition may be more useful than the standard initial condition to describe some physical

phenomenas. For example, g(x) and h(x) can be given in the form
∑p

i=1 cix(ti), où (ci =

1, 2, ..., p) are given constants and 0 < t1 < t2 < ... < T. As examples for recent papers on

nonlocal fractional boundary value problems the interested reader is referred to [8, 10, 11, 23]

and the references therein.

The first aim of this paper is to study the existence and uniqueness result for the problem (1),

where we apply the Banach contraction principle. For the second result, we use Krasnoselskii’s

fixed point theorem to establish the existence of the solution to the boundary value problem (1),

finally, the last result is based on a lemma of D. O’Regan.

2. Preliminary notions of fractional calculus

Firstly, before starting our work, we need some basic definitions and lemmas of fractional

calculus that we can find in [14, 19, 20].

Definition 2.1. [19, 20] If g ∈ C((a, b);R) and q ∈ R+, then the fractional integral of order q

is defined by:

Iqg(t) =
1

Γ(q)

∫ t

0
(t− s)q−1g(s)ds,

where Γ denotes the Gamma function.

Definition 2.2. [19, 20] For a continuous function g : [0,+∞) −→ R, the Caputo derivative of

fractional order q is defined as

CDqg(t) =
1

Γ(n− q)

∫ t

0
(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] is the integer part of the real number q.

Lemma 2.1. [14] For q > 0, the homogenous fractional differential equation
CDqg(t) = 0, has a solution

g(t) = c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

where ci ∈ R, (i=0,1,...,n-1) and n = [q] + 1.

Lemma 2.2. [14] Let g ∈ C([0, 1],R) such that Dqg ∈ C([0, 1],R). Then

IqCDqg(t) = g(t)− c0 − c1t− c2t2 − ...− cn−1tn−1,

for some ci ∈ R, (i=0,1,...,n-1) and n = [q] + 1.
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Lemma 2.3. [14] Let p, q ≥ 0 and g ∈ L1([0, 1],R). Then,

IpIqg(t) = Ip+qg(t) = IqIpg(t),

and
CDpIpg(t) = g(t), ∀t ∈ [0, 1].

Lemma 2.4. [14] Let q > p > 0 and g ∈ L1([0, 1],R). Then for all t ∈ [0, 1], we have

CDpIqg(t) = Iq−pg(t).

L1([0, 1],R) is the Banach space of Lebesgue integrable functions from [0, 1] into R.

3. Main results

In the context of studying our existence and uniqueness results, we need the following auxiliary

lemma.

Lemma 3.1. Let σ : [0, 1] −→ R be a given continuous function. The solution x(t) of the

boundary value problem:

CDqx(t) = σ(t), 1 < q ≤ 2, t ∈ J = [0, 1],

x(0) = g(x) + α

∫ ξ

0
x(s)ds, 0 < ξ < 1,

x(1) = h(x) + β

∫ η

0
x(s)ds, 0 < η < 1.

(2)

is given by

x(t) =
1

Γ(q)

∫ t

0
(t− s)q−1σ(s)ds

− α

γΓ(q)

[
2− βη2

2
+ (1− βη)t

] ∫ ξ

0

(∫ s

0
(s−m)q−1σ(m)dm

)
ds

+
β

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ η

0

(∫ s

0
(s−m)q−1σ(m)dm

)
ds (3)

− 1

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ 1

0
(1− s)q−1σ(s)ds

−1

γ

[
2− βη2

2
+ (1− βη)t

]
g(x) +

1

γ

[
αξ2

2
+ (1− αξ)t

]
h(x),

where

γ =
1

2

[
(1− αξ)(2− βη2) + αξ2(1− βη)

]
6= 0.

Proof. We have:

CDqx(t) = σ(t),

i.e.,

IqCDqx(t) = Iqσ(t).

Then, in view of lemma 2.1, it follows that:

x(t) = c0 + c1t+
1

Γ(q)

∫ t

0
(t− s)q−1σ(s)ds. (4)
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By integrating the expression (4) on [0, ξ], and adding g(x) to two sides after multiplied it by

α, we find that:

g(x) + α

∫ ξ

0
x(s)ds = g(x) + αc0ξ + αc1

ξ2

2
+

α

Γ(q)

∫ ξ

0

(∫ s

0
(s−m)q−1σ(m)dm

)
ds.

In a similar way, we get:

h(x) + β

∫ η

0
x(s)ds = h(x) + βc0η + βc1

η2

2
+

β

Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1σ(m)dm

)
ds.

Using the boundary conditions for (2), we obtain:

(1− αξ)c0 − α
ξ2

2
c1 = g(x) + αA (5)

(1− βη)c0 +

(
1− β η

2

2

)
c1 = h(x) + βB − C, (6)

where,

A =
1

Γ(q)

∫ ξ

0

(∫ s

0
(s−m)q−1σ(m)dm

)
ds, (7)

B =
1

Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1σ(m)dm

)
ds,

C =
1

Γ(q)

∫ 1

0
(1− s)q−1σ(s)ds.

The resolution of the system (5)-(6), gives:

c0 =
1

γ

[
αβ

ξ2

2
B − αξ

2

2
C − α

(
1− β η

2

2

)
A+ α

ξ2

2
h(x)−

(
1− β η

2

)
g(x)

]
,

and

c1 =
1

γ

[
β(1− αξ)B − (1− αξ)C − α(1− βη)A+ (1− αξ)h(x)− (1− βη)g(x)

]
.

By substituting the values of c0 and c1 in (4), we obtain (3). �

We equip the Banach space C([0, 1],R) of all continuous functions from [0, 1] −→ R endowed

with a topologie of uniform convergence with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0, 1]},
and, before announcing our theorems, we need the following assumptions:

(H1) : |f(t, x)− f(t, y)| ≤ L|x− y|, ∀t ∈ [0, 1], L > 0, x, y ∈ R,

(H2) : |g(x)− g(y)| ≤ l1|x− y|, l1 > 0, ∀x, y ∈ R,

(H3) : |h(x)− h(y)| ≤ l2|x− y|, l2 > 0, ∀x, y ∈ R,

(H4) : |f(t, x)| ≤ µ(t), ∀(t, x) ∈ [0, 1]× R and µ ∈ C([0, 1],R+).
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Now for convenience, let use set:

A0 =
1

Γ(q + 1)

(
1 +

A1 +A2

2|γ|(q + 1)

)
+
A3 +A4

2|γ|
(8)

A1 = |α|
(
|2− βη2|+ 2|1− βη|

)
ξq+1,

A2 =
(
|α|ξ2 + 2|1− αξ|

)(
|β|ηq+1 + q + 1

)
,

A3 = |2− βη2|+ 2|1− βη|,

A4 = |α|ξ2 + 2|1− αξ|.

Theorem 3.1. Assume that f : [0, 1] × R −→ R is a continuous function which satisfies the

assumption (H1), g and h are two real functions bounded on the real line that satisfy respectively

the assumptions (H2) and (H3). If L?A0 < 1, where L? = max{L, l1, l2} and A0 is given by (8)

Then the boundary value problem (1) has a unique solution.

Proof. For the proof of the theorem 3.1 and in view of lemma 3.1, we define the operator:

N : C([0, 1],R) −→ C([0, 1],R) by:

(Nx)(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s, x(s))ds

− α

γΓ(q)

[
2− βη2

2
+ (1− βη)t

] ∫ ξ

0

(∫ s

0
(s−m)q−1f(m,x(m))dm

)
ds

+
β

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ η

0

(∫ s

0
(s−m)q−1f(m,x(m))dm

)
ds

− 1

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ 1

0
(1− s)q−1f(s, x(s))ds

−1

γ

[
2− βη2

2
+ (1− βη)t

]
g(x) +

1

γ

[
αξ2

2
+ (1− αξ)t

]
h(x)., (9)

Letting

M = sup
t∈[0,1]

|f(t, 0)|, M1 = sup
x∈R
|g(x)|, M2 = sup

x∈R
|h(x)|,

and choosing ρ ≥ A0M
?

1− L?A0
, where M? = max{M,M1,M2}.

Firstly, we show that NBρ ⊂ Bρ, where Bρ =
{
x ∈ C([0, 1],R) : ‖x‖ ≤ ρ

}
. For x ∈ Bρ, we
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have:

|(Nx)(t)|

≤ 1

Γ(q)

∫ t

0
(t− s)q−1|f(s, x(s))|ds

+

∣∣∣∣ α

γΓ(q)

[
2− βη2

2
+ (1− βη)t

]∣∣∣∣ ∫ ξ

0

(∫ s

0
(s−m)q−1|f(m,x(m))|dm

)
ds

+

∣∣∣∣ β

γΓ(q)

[
αξ2

2
+ (1− αξ)t

]∣∣∣∣ ∫ η

0

(∫ s

0
(s−m)q−1|f(m,x(m))|dm

)
ds

+

∣∣∣∣ 1

γΓ(q)

[
αξ2

2
+ (1− αξ)t

]∣∣∣∣ ∫ 1

0
(1− s)q−1|f(s, x(s))|ds

+

∣∣∣∣1γ
[

2− βη2

2
+ (1− βη)t

]∣∣∣∣|g(x)|+
∣∣∣∣1γ
[
αξ2

2
+ (1− αξ)t

]∣∣∣∣|h(x)|

≤ 1

Γ(q)

∫ t

0
(t− s)q−1

(
|f(s, x(s))− f(s, 0)|+ |f(s, 0)|

)
ds

+

∣∣∣∣ α

γΓ(q)

[
2− βη2

2
+ (1− βη)t

]∣∣∣∣ ∫ ξ

0

(∫ s

0
(s−m)q−1

(
|f(m,x(m))− f(m, 0)|

+|f(m, 0)|
)
dm

)
ds

+

∣∣∣∣ β

γΓ(q)

[
αξ2

2
+ (1− αξ)t

]∣∣∣∣ ∫ η

0

(∫ s

0
(s−m)q−1

(
|f(m,x(m))− f(m, 0)|

+|f(m, 0)|
)
dm

)
ds

+

∣∣∣∣ 1

γΓ(q)

[
αξ2

2
+ (1− αξ)t

]∣∣∣∣ ∫ 1

0
(1− s)q−1

(
|f(s, x(s))− f(s, 0)|+ |f(s, 0)|

)
ds

+

∣∣∣∣1γ
[

2− βη2

2
+ (1− βη)t

]∣∣∣∣(|g(x)− g(0)|+ |g(0)|
)

+

∣∣∣∣1γ
[
αξ2

2
+ (1− αξ)t

]∣∣∣∣(|h(x)− h(0)|+ |h(0)|
)

≤
(
Lρ+M

)[
1

Γ(q)

∫ t

0
(t− s)q−1ds

+
|α|
|γ|Γ(q)

(
|2− βη2|

2
+ |1− βη|

)∫ ξ

0

(∫ s

0
(s−m)q−1dm

)
ds

+
|β|
|γ|Γ(q)

(
|α|ξ2

2
+ |1− αξ|

)∫ η

0

(∫ s

0
(s−m)q−1dm

)
ds

+
1

|γ|Γ(q)

(
|α|ξ2

2
+ |1− αξ|

)∫ 1

0
(1− s)q−1ds

]
+

1

|γ|

(
|2− βη2|

2
+ |1− βη|

)
(l1ρ+M1)

+
1

|γ|

(
|α|ξ2

2
+ |1− αξ|

)
(l2ρ+M2)

≤ (L?ρ+M?)

[
1

Γ(q + 1)

(
1 +

A1 +A2

2|γ|(q + 1)

)
+
A3 +A4

2|γ|

]
= (L?ρ+M?)A0 ≤ ρ.
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Thus, ‖Nx‖ ≤ ρ.
For each t ∈ [0, 1] and x, y ∈ C([0, 1],R), we have:

|(Nx)(t)− (Ny)(t)|

≤ 1

Γ(q)

∫ t

0
(t− s)q−1|f(s, x(s))− f(s, y(s))|ds

+

∣∣∣∣ α

γΓ(q)

[
2− βη2

2
+ (1− βη)t

]∣∣∣∣ ∫ ξ

0

(∫ s

0
(s−m)q−1|f(m,x(m))− f(m, y(m))|dm

)
ds

+

∣∣∣∣ β

γΓ(q)

[
αξ2

2
+ (1− αξ)t

]∣∣∣∣ ∫ η

0

(∫ s

0
(s−m)q−1|f(m,x(m))− f(m, y(m))|dm

)
ds

+

∣∣∣∣ 1

γΓ(q)

[
αξ2

2
+ (1− αξ)t

]∣∣∣∣ ∫ 1

0
(1− s)q−1|f(s, x(s))− f(s, y(s))|ds

+

∣∣∣∣1γ
[

2− βη2

2
+ (1− βη)t

]∣∣∣∣|g(x)− g(y)|+
∣∣∣∣1γ
[
αξ2

2
+ (1− αξ)t

]∣∣∣∣|h(x)− h(y)|

≤ L|x− y|
[

1

Γ(q)

∫ t

0
(t− s)q−1ds

+
|α|
|γ|Γ(q)

(
|2− βη2|

2
+ |1− βη|

)∫ ξ

0

(∫ s

0
(s−m)q−1dm

)
ds

+
|β|
|γ|Γ(q)

(
|α|ξ2

2
+ |1− αξ|

)∫ η

0

(∫ s

0
(s−m)q−1dm

)
ds

+
1

|γ|Γ(q)

(
|α|ξ2

2
+ |1− αξ|

)∫ 1

0
(1− s)q−1ds

]
+l1|x− y|

1

|γ|

(
|2− βη2|

2
+ |1− βη|

)
+l2|x− y|

1

|γ|

(
|α|ξ2

2
+ |1− αξ|

)
≤ L?|x− y|

[
1

Γ(q + 1)

(
1 +

A1 +A2

2|γ|(q + 1)

)
+
A3 +A4

2|γ|

]
= L?A0|x− y|.

Hence, ‖Nx−Ny‖ ≤ L?A0‖x−y‖. The number L? depends only on the parameters indicated in

our problem. Since L?A0 < 1, then N is a contraction. Thus, by Banach’s fixed point theorem,

it follows that our boundary value problem (1) has a unique solution. �

Example 3.1. Consider the following fractional boundary value problem:

CD
3
2x(t) =

1

(t+ 4)2
|x|

1 + |x|
+ 1 + cos2 t, t ∈ J = [0, 1],

x(0) =
1

16
x(µ) +

1

2

∫ 1
4

0
x(s)ds, µ ∈ [0, 1],

x(1) =
1

12
x(ν) +

∫ 3
4

0
x(s)ds, ν ∈ [0, 1].

(10)

In this example, we have:

q =
3

2
, α =

1

2
, β = 1, ξ =

1

4
, η =

3

4
,
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and

f(t, x) =
1

(t+ 4)2
|x|

1 + |x|
+ 1 + cos2 t, g(x) =

1

16
x(µ), h(x) =

1

12
x(ν).

Then,

|f(t, x)− f(t, y)| ≤ 1

16
|x− y|, L =

1

16
,

|g(x)− g(y)| = 1

16
|x− y|, l1 =

1

16
,

|h(x)− h(y)| = 1

12
|x− y|, l2 =

1

12
,

Furthermore,

L? =
1

12
, γ =

81

128
, A1 =

31

1024
, A2 =

513
√

3 + 4560

1024
,

A3 =
31

16
, A4 =

57

32
, 2|γ|(q + 1) =

405

128
, 2|γ| = 162

128
,

Therefore,

L?A0 =
1

9
√
π

(19
√

3

120
+

7831

3240

)
+

119

1944
≈ 0.337498344 < 1.

So, all the hypotheses of the theorem 3.1 are satisfied and consequently the boundary value

problem (10) has a unique solution.

Our second result is based on the fixed point theorem of Krasnoselskii .

Theorem 3.2. [15](Krasnoselskii’s fixed point theorem) Let M be a closed convex and nonempty

subset of a Banach space X. Let A,B be two operators such that:

(i) Ax+By ∈M whenever x, y ∈M ,

(ii) A is compact and continuous,

(iii) B is a contraction mapping.

Then, there exists z ∈M such that z = Az +Bz.

Theorem 3.3. Let f : [0, 1]×R −→ R be a jointly continuous function mapping bounded subsets

of [0, 1]× R into relatively compact subsets of R, and the assumptions (H1)− (H4) hold. If

L?

[
1

Γ(q + 1)

(
A1 +A2

2|γ|(q + 1)

)
+
A3 +A4

2|γ|

]
< 1, (11)

then, the boundary value problem (1) has at least one solution on [0, 1].

Proof. Letting M3 = sup
t∈[0,1]

|µ(t)|. We fix

ρ ≥ M̃

[
1

Γ(q + 1)

(
1 +

A1 +A2

2|γ|(q + 1)

)
+
A3 +A4

2|γ|

]
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where M̃ = max{M1,M2,M3} and consider Bρ = {x ∈ C([0, 1],R) : ‖x‖ ≤ ρ}. To apply

Theorem 3.2, we define two operators P and Q by:

(Px)(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s, x(s))ds,

(Qx)(t) = − α

γΓ(q)

[
2− βη2

2
+ (1− βη)t

] ∫ ξ

0

(∫ s

0
(s−m)q−1f(m,x(m))dm

)
ds

+
β

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ η

0

(∫ s

0
(s−m)q−1f(m,x(m))dm

)
ds

− 1

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ 1

0
(1− s)q−1f(s, x(s))ds

−1

γ

[
2− βη2

2
+ (1− βη)t

]
g(x) +

1

γ

[
αξ2

2
+ (1− αξ)t

]
h(x),

• For x, y ∈ Bρ, we find that:

‖Px+Qy‖ ≤ M3

Γ(q + 1)

(
1 +

A1 +A2

2|γ|(q + 1)

)
+
M1A3 +M2A4

2|γ|

≤ M̃

[
1

Γ(q + 1)

(
1 +

A1 +A2

2|γ|(q + 1)

)
+
A3 +A4

2|γ|

]
≤ ρ.

Thus, Px+Qy ∈ Bρ.

• For x, y ∈ C([0, 1],R) and each t ∈ [0, 1], we have:

|(Qx)(t)− (Qy)(t)| ≤ L?

[
1

Γ(q + 1)

(
A1 +A2

2|γ|(q + 1)

)
+
A3 +A4

2|γ|

]
|x− y|.

which implies that:

‖(Qx)− (Qy)‖ ≤ L?
[

1

Γ(q + 1)

(
A1 +A2

2|γ|(q + 1)

)
+
A3 +A4

2|γ|

]
‖x− y‖.

So, it follows by the condition (11) that Q is a contraction mapping.

• The continuity of f implies that the operator P is continuous. In addition we have:

‖Px‖ ≤ M3

Γ(q + 1)
,

which means that P is uniformly bounded on Bρ.

• Now, we prove that the operator P is compact.

Taking into account the condition (H1), we define f? = sup
(t,x)∈[0,1]×Bρ

|f(t, x)|.
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Then for t1, t2 ∈ [0, 1] with t1 < t2, we have:

|(Px)(t1)− (Px)(t2)| =
1

Γ(q)

∣∣∣∣∣
∫ t1

0
(t1 − s)q−1f(s, x(s))ds−

∫ t2

0
(t2 − s)q−1f(s, x(s))ds

∣∣∣∣∣
=

1

Γ(q)

∣∣∣∣∣
∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

]
f(s, x(s))ds

−
∫ t2

t1

(t2 − s)q−1f(s, x(s))ds

∣∣∣∣∣
≤ 1

Γ(q)

[∫ t1

0

(
(t1 − s)q−1 − (t2 − s)q−1

)
|f(s, x(s))|ds

+

∫ t2

t1

(t2 − s)q−1|f(s, x(s))|ds
]

≤ f?

Γ(q)

[∫ t1

0

(
(t1 − s)q−1 − (t2 − s)q−1

)
ds+

∫ t2

t1

(t2 − s)q−1ds

]

≤ f?

Γ(q + 1)

[
2(t2 − t1)q + tq2 − t

q
1

]
. (12)

The second member in (12) is independent of x and tends to zero when t2 − t1 −→ 0, so P
is equicontinuous. Using the fact that f maps bounded subsets into relatively compact subsets,

we obtain that P(B)(t) is relatively compact in R for every t, (where B is a bounded subset of

C([0, 1] × R)). Then P is relatively compact on Bρ. Therefore, by the Ascoli-Arzèla theorem,

we conclude that P is compact on Bρ. Thus, all the assumptions of Theorem 3.2 are satisfied.

Then the boundary value problem (1) has at least one solution on [0, 1].

�

Our next main result is based on the following lemma established by D. O’Regan in [18].

Lemma 3.2. Denote by U an open set in a closed convex set C of a Banach space E. Assume

0 ∈ U. Also assume that F (U) is bounded and that F : U −→ C is a given by F = F1 + F2, in

which F1 : U −→ E is continuous and completely continuous and F2 : U −→ E is a nonlinear

contraction (i.e. there exists a nonnegative nondecreasing function φ : [0,+∞) −→ (0,+∞)

satisfying φ(z) < z for z > 0, such that ‖F2(x) − F2(y)‖ ≤ φ(‖x − y‖) for all x, y ∈ U). Then

either

(C1) F has a fixed point x ∈ U ; or

(C2) there exist a point u ∈ ∂U and λ ∈ (0, 1) with u = λF (u), where U and ∂U, respectively

represent the closure and boundary of U.

Now, for convenience we define:

Ωr = {x ∈ C([0, 1],R) : ‖x‖ < r},

and

Mr = max{|f(t, x)| : (t, x) ∈ [0, 1]× [−r, r]}.

Theorem 3.4. Let f : [0, 1] × R −→ R be a continuous function. Suppose that (H1) hold. In

addition, we assume that:

(H5) there exist two positive constants ρ1, ρ2 and two continuous functions φ1, φ2 : [0,+∞) −→
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(0,+∞) such that:

• φ1(z) ≤ ρ1z, and |g(u)− g(v)| ≤ φ1(|u− v|), for all u, v ∈ R.
• φ2(z) ≤ ρ2z, and |h(u)− h(v)| ≤ φ2(|u− v|), for all u, v ∈ R.

(H6) g(0) = 0 and h(0) = 0.

(H7) There exists a nonnegative function p ∈ C([0, 1],R+) and a nondecreasing function

ψ : [0,+∞) −→ (0,+∞) such that:

|f(t, u)| ≤ p(t)ψ(|u|), for all (t, u) ∈ [0, 1]× R.

(H8) sup
r∈R+

r

p0ψ(r)
>

|γ|
|γ| − ρ1A3 − ρ2A4

, where

p0 =
1

Γ(q)

[∫ t

0
(t− s)q−1p(s)ds+

A1

2|γ|

∫ ξ

0

(∫ s

0
(s−m)q−1p(m)dm

)
ds

+
|β|(|α|ξ2 + 2|1− αξ|)

2|γ|

∫ η

0

(∫ s

0
(s−m)q−1p(m)dm

)
ds

+
|α|ξ2 + 2|1− αξ|

2|γ|

∫ 1

0
(1− s)q−1p(s)ds

]
.

Then, the boundary value problem (1) has at least one solution on [0, 1].

Proof. In the first place, we consider the operator N : C([0, 1],R) −→ C([0, 1],R) as that defined

by (9) and we put:

(Nx)(t) = (N1x)(t) + (N2x)(t), t ∈ [0, 1],

where,

(N1x)(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s, x(s))ds

− α

γΓ(q)

[
2− βη2

2
+ (1− βη)t

] ∫ ξ

0

(∫ s

0
(s−m)q−1f(m,x(m))dm

)
ds

+
β

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ η

0

(∫ s

0
(s−m)q−1f(m,x(m))dm

)
ds

− 1

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ 1

0
(1− s)q−1f(s, x(s))ds

and

(N2x)(t) = −1

γ

[
2− βη2

2
+ (1− βη)t

]
g(x) +

1

γ

[
αξ2

2
+ (1− αξ)t

]
h(x),

From (H8) there exists a strictly positive number r0 (r0 > 0) such that:

r0
p0ψ(r0)

>
|γ|

|γ| − ρ1A3 − ρ2A4
. (13)

Now, for the proof of our theorem, we shall prove that the operators N1 and N2 satisfy all the

hypotheses of lemma 3.2. So, the proof is done in four steps.
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Step 1: The operator N1 is continuous and completely continuous.

We show that N1(Ωr0) is bounded. For all x ∈ Ωr0 , we have:

|(N1x)(t)| ≤ 1

Γ(q)

∫ t

0
(t− s)q−1|f(s, x(s))|ds

+
|α|
|γ|Γ(q)

[
|2− βη2|

2
+ |1− βη|

] ∫ ξ

0

(∫ s

0
(s−m)q−1|f(m,x(m))|dm

)
ds

+
|β|
|γ|Γ(q)

[
|α|ξ2

2
+ |1− αξ|

] ∫ η

0

(∫ s

0
(s−m)q−1|f(m,x(m))|dm

)
ds

+
1

|γ|Γ(q)

[
|α|ξ2

2
+ |1− αξ|

] ∫ 1

0
(1− s)q−1|f(s, x(s))|ds

≤ Mr

Γ(q + 1)

(
1 +

A1 +A2

2|γ|(q + 1)

)
. (14)

Then,

‖N1x‖ ≤
Mr

Γ(q + 1)

(
1 +

A1 +A2

2|γ|(q + 1)

)
.

This means that N1(Ωr0) is uniformly bounded. Furthermore, for each

t1, t2 ∈ [0, 1], t1 < t2, we have:

|(N1x)(t1)− (N1x)(t2)|

≤ 1

Γ(q)

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
|f(s, x(s))|ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1|f(s, x(s))|ds

+
|α|
|γ|Γ(q)

|1− βη|(t2 − t1)
∫ ξ

0

(∫ s

0
(s−m)q−1|f(m,x(m))|dm

)
ds

+
|β|
|γ|Γ(q)

|1− αξ|(t2 − t1)
∫ η

0

(∫ s

0
(s−m)q−1|f(m,x(m))|dm

)
ds

+
|1

|γ|Γ(q)
|1− αξ|(t2 − t1)

∫ 1

0
(1− s)q−1|f(s, x(s))|ds

≤ Mr

Γ(q)

{∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
ds+

∫ t2

t1

(t2 − s)q−1ds

+
|α||1− βη|(t2 − t1)

|γ|

∫ ξ

0

(∫ s

0
(s−m)q−1dm

)
ds

+
|β||1− αξ|(t2 − t1)

|γ|

∫ η

0

(∫ s

0
(s−m)q−1dm

)
ds

+
|1− αξ|(t2 − t1)

|γ|

∫ 1

0
(1− s)q−1ds

}
,

which is independent of x and tends to zero as t2− t1 −→ 0. Then N1 is equicontinuous. Hence,

by Ascoli-Arzèla Theorem, we conclude that N1(Ωr0) is a relatively compact set.

Let {xn} ⊂ Ωr0 whith ‖xn−x‖ −→ 0. Then |xn(t)−x(t)| −→ 0 on [0, 1]. From the uniform conti-

nuity of (t, x) 7→ f(t, x) on the compact set [0, 1]×Ωr0 it follows that |f(t, xn(t))−f(t, x(t))| −→ 0

uniformly on [0, 1]. Hence ‖N1xn −N1x‖ −→ 0 when n −→ +∞ which means than N1 is com-

pletely continuous.
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Step 2: The operator N2 : Ωr0 −→ C([0, 1],R) is a contraction. This is deduced directly

from the condition (H5).

Step 3: The set N(Ωr0) is bounded.

From the assumption (H5), we obtain that:

‖N2x‖ ≤
2

|γ|

[
|2− βη2|

2
+ |1− βη|

]
ρ1r0 +

2

|γ|

[
|α|ξ2

2
+ |1− αξ|

]
ρ2r0

=
ρ1A3 + ρ2A4

|γ|
r0 (15)

for any x ∈ Ωr0 . Since the set N1(Ωr0) is bounded, then the set N(Ωr0) is also bounded.

Step 4: Finally, Just schow that the condition (C2) in lemma 3.2, does not occur. To this

end, we proceed by contradiction. We suppose that (C2) holds. Then, there exists λ ∈ (0, 1)

and x ∈ ∂Ωr0 such that x = λNx. So, we have ‖x‖ = r0 and

x(t) = λ

{
1

Γ(q)

∫ t

0
(t− s)q−1f(s, x(s))ds

− α

γΓ(q)

[
2− βη2

2
+ (1− βη)t

] ∫ ξ

0

(∫ s

0
(s−m)q−1f(m,x(m))dm

)
ds

+
β

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ η

0

(∫ s

0
(s−m)q−1f(m,x(m))dm

)
ds

− 1

γΓ(q)

[
αξ2

2
+ (1− αξ)t

] ∫ 1

0
(1− s)q−1f(s, x(s))ds

−1

γ

[
2− βη2

2
+ (1− βη)t

]
g(x) +

1

γ

[
αξ2

2
+ (1− αξ)t

]
h(x)

}
, t ∈ [0, 1].

With the hypotheses (H6)− (H8), we have:

r0 ≤ ψ(r0)

Γ(q)

[∫ t

0
(t− s)q−1p(s)ds+

A1

2|γ|

∫ ξ

0

(∫ s

0
(s−m)q−1p(m)dm

)
ds

+
|β|(|α|ξ2 + 2|1− αξ|)

2|γ|

∫ η

0

(∫ s

0
(s−m)q−1p(m)dm

)
ds

+
|α|ξ2 + 2|1− αξ|

2|γ|

∫ 1

0
(1− s)q−1p(s)ds

]
.

+
ρ1A3 + ρ2A4

|γ|
r0.

This means that:

r0 ≤ p0ψ(r0) +
ρ1A3 + ρ2A4

|γ|
r0.

Thus,
r0

p0ψ(r0)
≤ |γ|
|γ| − ρ1A3 − ρ2A4

,

this is a contradiction with (13). Consequently, the operators N1 and N2 satisfy all the assump-

tions of the lemma 3.2 . Hence the operator N has at least one fixed point x in Ωr0 , which is

solution of the boundary value problem (1). So, this completes the proof �
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