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ON RARELY FUZZY e-CONTINUOUS FUNCTIONS IN THE SENSE

OF ŠOSTAK’S

E. ELAVARASAN1∗, A. VADIVEL2, §

Abstract. In this paper, we introduce the concepts of rarely fuzzy e-continuous func-
tions in the sense of Šostak’s is introduced. Some interesting properties and charac-
terizations of rarely fuzzy e-continuous and weakly fuzzy e-continuous are investigated.
Also, fuzzy eT1/2-space, rarely fuzzy eT2-spaces and some applications to fuzzy compact
spaces are established.

Keywords: Rarely fuzzy e-continuous, fuzzy e-compact space, rarely fuzzy e-almost com-
pact space, fuzzy eT1/2-space, and rarely fe-T2-spaces.
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1. Introduction

Kubiak [12] and Šostak [17] introduced the fundamental concept of a fuzzy topological
structure, as an extension of both crisp topology and fuzzy topology [2], in the sense that
not only the objects are fuzzified, but also the axiomatics. In [18, 19], Šostak gave some
rules and showed how such an extension can be realized. Chattopadhyay et al., [4] have
redefined the same concept under the name gradation of openness.

In 2008, the initiations of e-open and e-closed sets in topological spaces was introduced
by Ekici [7]. Thereafter Ekici [5, 6, 8, 9] has introduced new classes of sets called e∗-
open sets and a-open sets to establish some new decompositions of continuous functions.
By using new notions of e-continuous functions, e∗-continuous functions and a-continuous
functions via e-open sets, e∗-open sets and a-open sets, respectively. Popa [15] introduced
the notion of rarely continuity as a generalization of weak continuity [13] which has been
further investigated by Long and Herrington [14] and Jafari [10] and [11].

Recently Sobana et al. [20] introduced the concept of fuzzy e-open and fuzzy e-closed
sets in fuzzy topological spaces in the sense of Šostak’s. In this paper, we introduce the
concepts of rarely fuzzy e-continuous functions in the sense of Sostak’s. Some interesting
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properties and characterizations of them are investigated. Also, some applications to fuzzy
compact spaces are established.

2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0, 1] and I0 = (0, 1]. For
λ ∈ IX , λ(x) = λ for all x ∈ X. For x ∈ X and t ∈ I0, a fuzzy point xt is defined by

xt(y) =

{
t if y = x

0 if y 6= x.
Let Pt(X) be the family of all fuzzy points in X. A fuzzy point

xt ∈ λ iff t < λ(x). All other notations and definitions are standard, for all in the fuzzy
set theory.

Definition 2.1. [17] A function τ : IX → I is called a fuzzy topology on X if it satisfies
the following conditions:

(O1) τ(0) = τ(1) = 1,
(O2) τ(

∨
i∈Γ µi) ≥

∧
i∈Γ τ(µi), for any {µi}i∈Γ ⊂ IX ,

(O3) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), for any µ1, µ2 ∈ IX .

The pair (X, τ) is called a fuzzy topological space (for short, fts ). A fuzzy set λ is
called an r-fuzzy open (r-fo, for short) if τ(λ) ≥ r. A fuzzy set λ is called an r-fuzzy
closed (r-fc, for short) set iff 1− λ is an r-fo set.

Theorem 2.1. [3] Let (X, τ) be a fts. Then for each λ ∈ IX and r ∈ I0, we define an
operator Cτ : IX × I0 → IX as follows: Cτ (λ, r) =

∧
{µ ∈ IX : λ ≤ µ, τ(1 − µ) ≥ r}.

For λ, µ ∈ IX and r, s ∈ I0, the operator Cτ satisfies the following statements:

(C1) Cτ (0, r) = 0,
(C2) λ ≤ Cτ (λ, r),
(C3) Cτ (λ, r) ∨ Cτ (µ, r) = Cτ (λ ∨ µ, r),
(C4) Cτ (λ, r) ≤ Cτ (λ, s) if r ≤ s,
(C5) Cτ (Cτ (λ, r), r) = Cτ (λ, r).

Theorem 2.2. [3] Let (X, τ) be a fts. Then for each λ ∈ IX and r ∈ I0, we define an
operator Iτ : IX × I0 → IX as follows: Iτ (λ, r) =

∨
{µ ∈ IX : µ ≤ λ, τ(µ) ≥ r}. For

λ, µ ∈ IX and r, s ∈ I0, the operator Iτ satisfies the following statements:

(I1) Iτ (1, r) = 1,
(I2) Iτ (λ, r) ≤ λ,
(I3) Iτ (λ, r) ∧ Iτ (µ, r) = Iτ (λ ∧ µ, r),
(I4) Iτ (λ, r) ≤ Iτ (λ, s) if s ≤ r,
(I5) Iτ (Iτ (λ, r), r) = Iτ (λ, r).
(I6) Iτ (1− λ, r) = 1− Cτ (λ, r) and Cτ (1− λ, r) = 1− Iτ (λ, r)

Definition 2.2. [16] Let (X, τ) be a fts, λ ∈ IX and r ∈ I0. Then

(1) a fuzzy set λ is called r-fuzzy regular open (for short, r-fro) if λ = Iτ (Cτ (λ, r), r).
(2) a fuzzy set λ is called r-fuzzy regular closed (for short, r-frc) if λ = Cτ (Iτ (λ, r), r).

Definition 2.3. [20] Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0.

(1) The r-fuzzy δ-closure of λ, denoted by δ-Cτ (λ, r), and is defined by δ-Cτ (λ, r) =∧
{µ ∈ IX |µ ≥ λ, µ is r-frc }.

(2) The r-fuzzy δ-interior of λ, denoted by δ-Iτ (λ, r), and is defined by δ-Iτ (λ, r) =∨
{µ ∈ IX |µ ≤ λ, µ is r-fro }.

Definition 2.4. [20] Let (X, τ) be a fts and λ ∈ IX , r ∈ I0. Then



E. ELAVARASAN, A. VADIVEL: ON RARELY FUZZY E-CONTINUOUS FUNCTIONS... 1241

(1) λ is called r-fuzzy δ-semiopen (resp. r-fuzzy δ-semiclosed) if λ ≤ Cτ (δ-Iτ (λ, r), r)
(resp. λ ≥ Iτ (δ-Cτ (λ, r), r)).

(2) λ is called r-fuzzy δ-preopen (resp. r-fuzzy δ-preclosed) if λ ≤ Iτ (δ-Cτ (λ, r), r)
(resp. λ ≥ Cτ (δ-Iτ (λ, r), r)).

(3) λ is called r-fuzzy e-open (for short, r-feo) if λ ≤ Iτ (δ-Cτ (λ, r), r)∨Cτ (δ-Iτ (λ, r), r).
(4) λ is called r-fuzzy e-closed (for short, r-fec) if λ ≥ Iτ (δ-Cτ (λ, r), r)∧Cτ (δ-Iτ (λ, r), r).

Definition 2.5. [20] Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0.

(1) The r-fuzzy e-closure of λ, denoted by eCτ (λ, r), and is defined by eCτ (λ, r) =∧
{µ ∈ IX |µ ≥ λ, µ is r-fec }.

(2) The r-fuzzy e-interior of λ, denoted by eIτ (λ, r), and is defined by eIτ (λ, r) =∨
{µ ∈ IX |µ ≤ λ, µ is r-feo }.

Definition 2.6. [20] Let (X, τ) and (Y, η) be a fts’s. Let f : (X, τ) → (Y, η) be a
function. Then f is called

(1) fuzzy e-continuous (for short, fe-continuous) iff f−1(µ) is r-feo for each µ ∈
IY , r ∈ I0 with η(µ) ≥ r.

(2) fuzzy e-open (for short, fe-open) iff f(λ) is r-feo for each λ ∈ IX , r ∈ I0 with
τ(λ) ≥ r.

(3) fuzzy e-closed (for short, fe-closed) iff f(λ) is r-fec for each λ ∈ IX , r ∈ I0 with
τ(1− λ) ≥ r.

(4) fuzzy e-irresolute (for short, fe-irresolute) iff f−1(µ) is r-fec for each r-fec set
µ ∈ IY .

Definition 2.7. [1] Let (X, τ) be a fts and r ∈ I0. For λ ∈ IX , λ is called an r-fuzzy rare
set if Iτ (λ, r) = 0.

Definition 2.8. [1] Let (X, τ) and (Y, η) be a fts’s. Let f : (X, τ) → (Y, η) be a
function. Then f is called

(1) weakly continuous if for each µ ∈ IY , where σ(µ) ≥ r, r ∈ I0, f−1(µ) ≤ Iτ (f−1(Cσ(µ, r)), r).
(2) rarely continuous if for each µ ∈ IY , where σ(µ) ≥ r, r ∈ I0, there exists an

r-fuzzy rare set λ ∈ IY with µ + Cσ(λ, r) ≥ 1 and ρ ∈ IX , where τ(ρ) ≥ r such
that f(ρ) ≤ µ ∨ λ.

Proposition 2.1. [1] Let (X, τ) and (Y, σ) be any two fts’s, r ∈ I0 and f : (X, τ) →
(Y, σ) is fuzzy open and one-to-one, then f preserves r-fuzzy rare sets.

3. Rarely fuzzy e-continuous functions

Definition 3.1. Let (X, τ) and (Y, σ) be a fts’s, and f : (X, τ)→ (Y, σ) be a function.
Then f is called

(1) rarely fuzzy δ-semicontinuous (for short, rarely fδs-continuous) if for each µ ∈ IY ,
where σ(µ) ≥ r, r ∈ I0, there exists an r-fuzzy rare set λ ∈ IY with µ+Cσ(λ, r) ≥ 1
and a r-fuzzy δ-semiopen set ρ ∈ IX such that f(ρ) ≤ µ ∨ λ.

(2) rarely fuzzy δ-precontinuous (for short, rarely fδp-continuous) if for each µ ∈ IY ,
where σ(µ) ≥ r, r ∈ I0, there exists an r-fuzzy rare set λ ∈ IY with µ+Cσ(λ, r) ≥ 1
and a r-fuzzy δ-preopen set ρ ∈ IX such that f(ρ) ≤ µ ∨ λ.

(3) rarely fuzzy e-continuous (for short, rarely fe-continuous) if for each µ ∈ IY , where
σ(µ) ≥ r, r ∈ I0, there exists an r-fuzzy rare set λ ∈ IY with µ+Cσ(λ, r) ≥ 1 and
a r-feo set ρ ∈ IX such that f(ρ) ≤ µ ∨ λ.

Remark 3.1. (1) Every weakly continuous (resp. fuzzy continuous) function is rarely
continuous [1] (resp. fuzzy e-continuous [20]) but converse is not true.
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(2) Every rarely continuous function is rarely fδs-continuous (resp. rarely fδp-continuous)
function but converse is not true.

(3) Every rarely fδs-continuous (resp. rarely fδp-continuous) function is rarely fe-
continuous but converse is not true.

From the above definition and remarks it is not difficult to conclude that the following
diagram of implications is true.

Example 3.1. Let X = {a, b, c} = Y . Define λ1, λ2 ∈ IX , λ3 ∈ IY as follows: λ1(a) =
0.4, λ1(b) = 0.6, λ1(c) = 0.5, λ2(a) = 0.6, λ2(b) = 0.4, λ2(c) = 0.4, λ3(a) = 0.6, λ3(b) =
0.4, λ3(c) = 0.5. Define the fuzzy topologies τ, σ : IX → I as follows:

τ(λ) =



1 if λ = 0 or 1,
1
10 if λ = λ1,
1
10 if λ = λ2,
1
10 if λ = λ1 ∨ λ2,
1
10 if λ = λ1 ∧ λ2,

0 otherwise,

σ(λ) =


1 if λ = 0 or 1,
1
10 if λ = λ3,

0 otherwise.

Let r = 1/10. Let f : (X, τ) → (Y, σ) be defined by f(a) = a, f(b) = b, f(c) = c and
γ ∈ IY be a 1/10-fuzzy rare set defined by γ(a) = 0.4, γ(b) = 0.5, γ(c) = 0.5 and a r-feo
set λ4 ∈ IX is defined by λ4(a) = 0.6, λ4(b) = 0.4, λ4(b) = 0.5, f(λ4) = (0.6, 0.4, 0.5) ≤
λ3 ∨ γ = (0.6, 0.4, 0.5). Then f is rarely fe-continuous but not rarely fδp-continuous,
because λ4 ∈ IX is not r-fuzzy δ-preopen set.

Example 3.2. In Example 3.1, Let Y = {a, b, c}. Define λ3 ∈ IY as follows: λ3(a) =
0.4, λ3(b) = 0.5, λ3(c) = 0.5. Define the fuzzy topologies σ : IX → I as follows:

σ(λ) =


1 if λ = 0 or 1,
1
10 if λ = λ3,

0 otherwise.

Let r = 1/10. Let f : (X, τ) → (Y, σ) be defined by f(a) = a, f(b) = b, f(c) = c and
γ ∈ IY be a 1/10-fuzzy rare set defined by γ(a) = 0.4, γ(b) = 0.4, γ(c) = 0.4 and a r-feo
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set λ4 ∈ IX is defined by λ4(a) = 0.4, λ4(b) = 0.5, λ4(b) = 0.5, f(λ4) = (0.4, 0.5, 0.5) ≤
λ3 ∨ γ = (0.4, 0.5, 0.5). Then f is rarely fe-continuous but not rarely fδs-continuous,
because λ4 ∈ IX is not r-fuzzy δ-semiopen set.

Example 3.3. Let X = {a, b, c} = Y . Define λ1, λ2 ∈ IX , λ3 ∈ IY as follows: λ1(a) =
0.2, λ1(b) = 0.3, λ1(c) = 0.4, λ2(a) = 0.3, λ2(b) = 0.4, λ2(c) = 0.5, λ3(a) = 0.3, λ3(b) =
0.4, λ3(c) = 0.5. Define the fuzzy topologies τ, σ : IX → I as follows:

τ(λ) =


1 if λ = 0 or 1,
1
10 if λ = λ1,
1
10 if λ = λ2,

0 otherwise,

σ(λ) =


1 if λ = 0 or 1,
1
10 if λ = λ3,

0 otherwise.

Let r = 1/10. Let f : (X, τ) → (Y, σ) be defined by f(a) = a, f(b) = b, f(c) = c and
γ ∈ IY be a 1/10-fuzzy rare set defined by γ(a) = 0.4, γ(b) = 0.3, γ(c) = 0.4 and a r-fδso
set λ4 ∈ IX is defined by λ4(a) = 0.4, λ4(b) = 0.4, λ4(b) = 0.5, f(λ4) = (0.4, 0.4, 0.5) ≤
λ3∨γ = (0.4, 0.4, 0.5). Then f is rarely fδs-continuous but not rarely continuous, because
λ4 ∈ IX is not r-fo set.

Example 3.4. Let X = {a, b, c} = Y . Define λ1, λ2 ∈ IX , λ3 ∈ IY as follows: λ1(a) =
0.6, λ1(b) = 0.5, λ1(c) = 0.7, λ2(a) = 0.6, λ2(b) = 0.5, λ2(c) = 0.5, λ3(a) = 0.6, λ3(b) =
0.5, λ3(c) = 0.6. Define the fuzzy topologies τ, σ : IX → I as follows:

τ(λ) =


1 if λ = 0 or 1,
1
10 if λ = λ1,
1
10 if λ = λ2,

0 otherwise,

σ(λ) =


1 if λ = 0 or 1,
1
10 if λ = λ3,

0 otherwise.

Let r = 1/10. Let f : (X, τ) → (Y, σ) be defined by f(a) = a, f(b) = b, f(c) = c and
γ ∈ IY be a 1/10-fuzzy rare set defined by γ(a) = 0.4, γ(b) = 0.5, γ(c) = 0.5 and a r-fδpo
set λ4 ∈ IX is defined by λ4(a) = 0.6, λ4(b) = 0.5, λ4(b) = 0.6, f(λ4) = (0.6, 0.5, 0.6) ≤
λ3∨γ = (0.6, 0.5, 0.6). Then f is rarely fδp-continuous but not rarely continuous, because
λ4 ∈ IX is not r-fo set.

Definition 3.2. Let (X, τ) and (Y, σ) be a fts’s, and f : (X, τ)→ (Y, η) be a function.
Then f is called weakly fuzzy e-continuous (for short, weakly fe-continuous) if for each
r-feo set µ ∈ IY , r ∈ I0, f−1(µ) ≤ Iτ (f−1(Cσ(µ, r)), r).

Definition 3.3. A fts (X, τ) is said to be fe-T1/2-space if every r-feo set λ ∈ IX , r ∈ I0

is r-fo set.

Theorem 3.1. Let (X, τ) and (Y, σ) be any two fuzzy topological spaces. If f : (X, τ)→
(Y, σ) is both fe-open, fe-irresolute and (X, τ) is fe-T1/2 space, then it is weakly fe-
continuous.

Proof. Let λ ∈ IX , r ∈ I0 with τ(λ) ≥ r. Since f is fe-open f(λ) ∈ IY is r-feo. Also,
since f is fe-irresolute, f−1(f(λ)) ∈ IX is r-feo set. Since (X, τ) is fe-T1/2 space, every

r-feo set is r-fo set, now, τ(f−1(f(λ))) ≥ r. Consider f−1(f(λ)) ≤ f−1(Cσ(f(λ), r)) from
which Iτ (f−1(f(λ)), r) ≤ Iτ (f−1(Cσ(f(λ), r)), r). Since τ(f−1(f(λ))) ≥ r, f−1(f(λ)) ≤
Iτ (f−1(Cσ(f(λ), r)), r), thus f is weakly fe-continuous. �

Definition 3.4. Let (X, τ) be a fts. A r-fuzzy e-open cover of (X, τ) is the collection
{λi ∈ IX , λi is r-feo, i ∈ J} such that

∨
i∈J λi = 1.
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Definition 3.5. A fts (X, τ) is said to be r-fuzzy e-compact space if every r-fuzzy e-open
cover of (X, τ) has a finite sub cover.

Definition 3.6. A fts (X, τ) is said to be rarely fuzzy e-almost compact if every r-fuzzy
e-open cover {λi ∈ IX , λi is r-feo, i ∈ J} of (X, τ), there exists a finite subset J0 of J
such that

∨
i∈J λi ∨ ρi = 1 where ρi ∈ IX are r-fuzzy rare sets.

Theorem 3.2. Let (X, τ) and (Y, σ) be any two fuzzy topological spaces, and f :
(X, τ) → (Y, σ) be rarely fe-continuous. If (X, τ) is r-fuzzy e-compact then (Y, σ)
is rarely fuzzy e-almost compact.

Proof. Let {λi ∈ IY , i ∈ J} be r-fuzzy e-open cover of (Y, σ). Then 1 =
∨
i∈J λi. Since f is

rarely fe-continuous, there exists an r-fuzzy rare sets ρi ∈ IY such that λi +Cσ(ρi, r) ≥ 1
and an r-feo set µi ∈ IX such that f(µi) ≤ λi ∨ ρi. Since (X, τ) is r-fuzzy e-compact,
every fuzzy e-open cover of (X, τ) has a finite sub cover. Thus 1 ≤

∨
i∈J0 µi. Hence

1 = f(1) = f(
∨
i∈J0 µi) = ∨i∈J0f(µi) ≤

∨
i∈J0 λi ∨ ρi. Therefore (Y, σ) is rarely fuzzy

e-almost compact. �

Theorem 3.3. Let (X, τ) and (Y, σ) be any two fts’s, and f : (X, τ)→ (Y, σ) be rarely
fδp-continuous. If (X, τ) is r-fuzzy e-compact then (Y, σ) is rarely fuzzy e-almost compact.

Proof. Since every rarely fδp-continuous function is rarely fe-continuous, then proof fol-
lows immediately from the Theorem 3.2. �

Theorem 3.4. Let (X, τ), (Y, σ) and (Z, η) be any fts’s. If f : (X, τ) → (Y, σ) be
rarely fe-continuous, fe-open and g : (Y, σ)→ (Z, η) is fuzzy open and one-to-one, then
g ◦ f : (X, τ)→ (Z, η) is rarely fe-continuous.

Proof. Let λ ∈ IX with τ(λ) ≥ r. Since f is fe-open f(λ) ∈ IY with σ(f(λ)) ≥ r. Since
f is rarely fe-continuous, there exists a r-fuzzy rare set ρ ∈ IY with f(λ) + Cσ(ρ, r) ≥ 1
and an r-feo set µ ∈ IX such that f(µ) ≤ f(λ) ∨ ρ. By the proposition 2.1, g(ρ) ∈ IZ is
also a r-fuzzy rare set. Since ρ ∈ IY is such that ρ < γ for all γ ∈ IY with σ(γ) ≥ r, and
g is injective, it follows that (g ◦ f)(λ) + Cη(g(ρ), r) ≥ 1. Then (g ◦ f)(µ) = g(f(µ)) ≤
g(f(λ) ∨ ρ) ≤ g(f(λ)) ∨ g(ρ) ≤ (g ◦ f)(λ) ∨ g(ρ). Hence the result. �

Theorem 3.5. Let (X, τ), (Y, σ) and (Z, η) be any fts’s. If f : (X, τ) → (Y, σ) be
fe-open, onto and g : (Y, σ)→ (Z, η) be a function such that g ◦ f : (X, τ)→ (Z, η) is
rarely fe-continuous, then g is rarely fe-continuous.

Proof. Let λ ∈ IX and µ ∈ IY be such that f(λ) = µ. Let (g ◦ f)(λ) = γ ∈ IZ with
η(γ) ≥ r. Since (g ◦ f) is rarely fe-continuous, there exists a r-fuzzy rare set ρ ∈ IZ with
γ + Cη(ρ, r) ≥ 1 and a r-feo set δ ∈ IX such that (g ◦ f)(δ) ≤ γ ∨ ρ. Since f is fe-open,
f(δ) ∈ IY is a r-feo set. Thus there exists a r-fuzzy rare set ρ ∈ IZ with γ + Cη(ρ, r) ≥ 1
and a r-feo set f(δ) ∈ IY such that g(f(δ)) ≤ γ ∨ ρ. Hence g is rarely fe-continuous. �

Theorem 3.6. Let (X, τ) and (Y, σ) be any two fts’s. If f : (X, τ) → (Y, σ) is rarely
fe-continuous and (X, τ) is fe-T1/2-space, then f is rarely continuous.

Proof. The proof is trivial. �
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Definition 3.7. A fts (X, τ) is said to be rarely fe-T2-space if for each pair λ, µ ∈ IX
with λ 6= µ there exist r-feo sets ρ1, ρ2 ∈ IX with ρ1 6= ρ2 and a r-fuzzy rare set γ ∈ IX
with ρ1 + Cτ (γ, r) ≥ 1 and ρ2 + Cτ (γ, r) ≥ 1 such that λ ≤ ρ1 ∨ γ and µ ≤ ρ2 ∨ γ.

Theorem 3.7. Let (X, τ) and (Y, σ) be any two fuzzy topological spaces. If f : (X, τ)→
(Y, σ) is fe-open and injective and (X, τ) is rarely fe-T2 space, then (Y, σ) is also a
rarely fe-T2 space.

Proof. λ, µ ∈ IX with λ 6= µ. Since f is injective, f(λ) 6= f(µ). Since (X, τ) is rarely
fe-T2-space, there exist r-feo sets ρ1, ρ2 ∈ IX with ρ1 6= ρ2 and a r-fuzzy rare set γ ∈ IX
with ρ1 +Cτ (γ, r) ≥ 1 and ρ2 +Cτ (γ, r) ≥ 1 such that λ ≤ ρ1∨γ and µ ≤ ρ2∨γ. Since f is
fe-open, f(ρ1), f(ρ2) ∈ IY are r-feo sets with f(ρ1) 6= f(ρ2). Since f is fe-open and one-
to-one, f(γ) is also a r-fuzzy rare set with f(ρ1) + Cσ(γ, r) ≥ 1 and f(ρ2) + Cσ(γ, r) ≥ 1
such that f(λ) ≤ f(ρ1 ∨ γ) and f(µ) ≤ f(ρ1 ∨ γ). Thus (Y, σ) is a rarely fe-T2-space. �

4. Conclusions

Šostak’s fuzzy topology has been recently of major interest among fuzzy topologies. In
this paper, we have introduced rarely fuzzy e-continuous functions in fuzzy topological
spaces of Šostak’s. We have also introduced fuzzy e-compact space, rarely fuzzy e-almost
compact space, rarely fe-T2-spaces and some properties and characterizations of them are
investigated.
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this paper.
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