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AN ITERATIVE METHOD FOR SOLVING TIME-FRACTIONAL

PARTIAL DIFFERENTIAL EQUATIONS WITH PROPORTIONAL

DELAYS

B. MALLICK1, P. K. SAHU1∗, M. ROUTARAY1, §

Abstract. This article deals with an iterative method which is a new formulation of
Adomian decomposition method for solving time-fractional partial differential equations
(TFPDEs) with proportional delays. The fractional derivative taken here is in Caputo
sense. Daftardar-Gejji and Jafari (2006) proposed this new technique where the non-
linearity is defined by using the new formula of Adomian polynomials and the new
iterative formula (NIF) is independent of λ. It does not require any discretization, per-
turbation, or any restrictive parameters. It is shown that the NIF converges rapidly to
the exact solutions. Three test problems have been illustrated in order to confirm the
efficiency and validity of NIF.

Keywords: Adomian Polynomials, Partial differential equations, Proportional delay,
Fractional Calculus.
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1. Introduction

Fractional differential equations involving fractional derivatives are generalizations of
classical differential equations of integer order. Fractional partial differential equations
(FPDEs) are widely used as models to express many important physical phenomena such
as fluid mechanics, plasma physics, optical fibers, biology, solid state physics, chemical
kinematics and chemical physics. The literature related to fractional differential equation
is very much rich. Due to mathematical complexity the development of analytical solutions
are very few and are restricted to solutions of simple FDEs. Due to its demonstrated
applications in numerous diverse fields of science and engineering, the widely researched
subject of fractional calculus has gained considerable importance and popularity over the
past three decades. In recent years, more and more attention has been attracted in the
realm of fractional differential equations. The fractional approach has become a strong
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of Mathematics, 2023; all rights reserved.

74



B. MALLICK, P. K. SAHU, M. ROUTARAY: ITERATIVE METHOD FOR SOLVING TFPDES... 75

modeling methodology, and it is commonly used in materials and mechanics, anomalous
diffusion, wave propagation and turbulence, etc [1], [2], [3], [4], [5].

In general, for nonlinear fractional partial differential equations, there is no method
that yields an exact solution. In order to obtain approximate solutions, several powerful
methods for solving FPDEs were proposed, such as the homotopy analysis method (HAM)
[6], the homotopy perturbation method (HPM) [7], the Adomian decomposition method
[8], [9], the meshless method [10], the operational matrix [11] and so on.

In this paper, we consider the following type of TFPDEs with proportional delays,
which are of the form

C
aD

α
t u(x, t) = F

(
x, t, u(p0x, q0t),

∂

∂x
u(p1x, q1t), ...,

∂n

∂xn
u(pnx, qnt)

)
, (1)

with the initial condition,

u(k)(x, 0) = gk(x), (2)

where pi, qi ∈ (0, 1) for i, j ∈ N, and F denotes the nonlinear operator. Very few numerical
techniques have been used to solve TFPDEs with delays since the past two decades. Zubik-
Kowal[12] used the Chebyshev pseudospectral method for solving linear differential and
differential-functional parabolic equations, Zubik-Kowal together with other researchers
used the spectral collocation and waveform relaxation methods[13] as well as iterated
pseudospectral method[14] for nonlinear delay partial differential equations. By employ-
ing the extended two-dimensional differential transform method, Abazari and Ganji[15]
obtained approximate solutions of PDE with a proportional delay. Using differential
transform method, Abazari and Kilicman[16] obtained analytical solutions of nonlinear
integro-differential equations with proportional delay. Tanthanuch[17] provided an im-
plementation of group analysis to the non-homogeneous mucilaginous Burgers equation
with proportional delay. The analytical solutions of TFPDE with proportional delay were
obtained by Shakeri and Dehghan[18], and Biazar and Ghanbari[19] and Sakar et al.[20]
using the homotopy perturbation method. Chena and Wang[21] the well-known technique
of variational iteration to solve a neutral functional-differential equation with proportional
delays. Polyanin and Zhurov[22] used the technique of functional limitations to find the
exact solutions of reaction-diffusion equations of nonlinear delay.

In our work, we have applied an iterative formula for solving TFPDEs. In 2006,
Daftardar-Gejji and Jafari [23] proposed this new method for solving linear as well as
nonlinear functional equations. This iterative method is formulated from well-known Ado-
mian decomposition method, where the non-linearity is defend by using a new formula of
Adomian polynomials and this new formula is independent of λ. The method converges to
the exact solution if it exists through successive approximations. As needed by some cur-
rent methods, the NIM does not involve any restrictive assumptions for nonlinear terms.
Applications of this Adomian decomposition method can also be found in the works of
Ismael et al.[24], [25].

This article is structured as follows. We start with some definitions of the fractional
calculus which are essential to establish our results. The new iterative method is discussed
in Section 3. In Section 4, three numerical results are illustrated to clarify the present
method and comparisons are done with the existing results. Section 5 summarizes this
paper briefly, followed by references.
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2. Preliminaries

Riemann-Liouville Fractional Integral: The Riemann-Liouville fractional integral
[1] of order α > 0 of a function f is defined as

Jαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ, t > 0, α ∈ R+, (3)

where R+ is the set of positive real numbers.
Caputo Fractional Derivative: The fractional derivative of f(t) in the Caputo sense
is defined by

Dα
t f(t) =

{
1

Γ(m−α)

∫ t
0 (t− τ)m−α−1 dmf(τ)

dτm dτ, m− 1 < α < m, m ∈ N
dmf(t)
dtm , α = m, m ∈ N

(4)

where α denotes the order of the derivative (real or complex). Here, in this work only real
and positive α are considered.

3. New Iterative Method

In this section, we discuss an iterative method introduced by Daftardar-Gejji and Jafari
[23], which is used for solving the nonlinear functional equations of the form

u = f + L(u) +N(u), (5)

where f is a known function, L and N are linear and nonlinear operators respectively.
The NIM solution for the Eq.(5) has the form

u =
∞∑
i=0

ui. (6)

The convergence of the series (6) has been discussed in [26].
Since L is linear

L

( ∞∑
i=0

ui

)
=

∞∑
i=0

L(ui). (7)

The nonlinear operator N in Eq.(5) is decomposed as below

N

( ∞∑
i=0

ui

)
= N(u0) +

∞∑
i=1

N
 i∑
j=0

uj

−N
 i−1∑
j=0

uj


=

∞∑
i=0

Âi, (8)
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where

Â0 = N(u0)

Â1 = N(u0 + u1)−N(u0)

Â2 = N(u0 + u1 + u2)−N(u0 + u1)

...

Âi =

N
 i∑
j=0

uj

−N
 i−1∑
j=0

uj

 , i ≥ 1.

Using Eqs. (6),(7) and (8) in Eq.(5), we get

∞∑
i=0

ui = f +
∞∑
i=0

L(ui) +
∞∑
i=0

Âi. (9)

The solution of eq. (1) can be expressed as

u =
∞∑
i=0

ui = u0 + u1 + u2 + · · ·+ un + · · · , (10)

where

u0 = f

u1 = L(u0) + Â0

u2 = L(u1) + Â1

...

un = L(un−1) + Ân−1

...

Algorithm

INPUT :Read M (Number of iterations); α

Read L(u); N(u); f

Step− 1 :u−1 = 0

u0 = f

Step− 2 :For (n = 0, n ≤M, n+ +)

{

Step− 3 :Ân = f(un)− f(un−1);

Step− 4 :un+1 = Jα(L(u) + Ân);

Step− 5 :un+1 = un+1 + un;

Step− 6 :u = un+1

} end
OUTPUT : u
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4. Convegence

In this section, we present the convergence and error estimation of the proposed iterative
method for solving Eqs.(1) and (2).

Theorem 4.1. Let un(ξ, τ) and u(ξ, τ) be defined in Banach space (C[0, 1], ‖.‖). Then
the series solution {u(ξ, τ)}∞n=0 defined by Eq.(10), if 0 < k < 1.

Proof. Assuming that (C[0, 1], ‖.‖) is the Banach space with norm,

‖u(ξ, τ)‖ = max
∀ξ,τ∈[0,1]

|u(ξ, τ)|.

Let us define {Sn} be the sequence of partial sum of Eq.(10) as,

S0 = u0(ξ, τ)

S1 = u0(ξ, τ) + u1(ξ, τ)

S3 = u0(ξ, τ) + u1(ξ, τ) + u2(ξ, τ)
...

Sn = u0(ξ, τ) + u1(ξ, τ) + u2(ξ, τ) + · · ·+ un(ξ, τ)

(11)

and we have to show that {Sn}∞n=0 is a Cauchy sequence in (C[0, 1], ‖.‖). To show this, let

‖Sn+1 − Sn‖ =‖un+1(ξ, τ)‖ ≤ k‖un(ξ, τ)‖ ≤ k2‖un−1(ξ, τ)‖ ≤ · · ·
≤ kn+1‖u0(ξ, τ)‖. (12)

Now for every,n,m ∈ N, n ≥ m, by using Eq(12) and triangle inequality successively, we
have,

‖Sn − Sm‖ = ‖(Sn − Sn−1) + (Sn−1 − Sn−2) + · · ·+ (Sm+1 − Sm)‖
≤ ‖Sn − Sn−1‖+ ‖Sn−1 − Sn−2‖+ · · ·+ ‖Sm+1 − Sm‖
≤ kn‖u0(ξ, τ)‖+ kn−1‖u0(ξ, τ)‖+ · · ·+ km+1‖u0(ξ, τ)‖

=
1− kn−m

1− k
km+1‖u0(ξ, τ)‖ (13)

Since 0 < k < 1, we have 1− kn−m < 1; then,

‖Sn − Sm‖ =
kn−m

1− k
max
∀ξ,τ∈[0,1]

‖u0(ξ, τ)‖. (14)

Since u0(ξ, τ) is bounded,

lim
n,m→∞

‖Sn − Sm‖ = 0 (15)

Therefore, {Sn}∞n=0 is a Cauchy sequence in the Banach space (C[0, 1], ‖.‖), so the series
solution defined in Eq(10), converges, which completes the proof. �

5. Illustrative Examples

Example 5.1. [20] Consider the time-fractional generalized Burgers equation with pro-
portional delay

Dαt u(x, t) =
∂2

∂x2
u(x, t) +

∂

∂x
u(x,

t

2
)u(

x

2
,
t

2
) +

1

2
u(x, t), (16)
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Table 1. Error Comparision of Example 5.1 for α = 1

x t HPM[20] VIM[27] NIF

0.25

0.25 2.123× 10−6 8.789589× 10−8 2.32882× 10−10

0.50 7.0943× 10−5 5.838508× 10−6 3.17976× 10−8

0.75 5.63483× 10−4 6.909595× 10−5 5.80491× 10−7

1.00 2.487123× 10−3 4.037904× 10−4 4.65436× 10−6

0.50

0.25 4.245× 10−6 1.757918× 10−7 4.65764× 10−10

0.50 1.41885× 10−4 1.167702× 10−5 6.35951× 10−8

0.75 1.126970× 10−3 1.381919× 10−4 1.16098× 10−6

1.00 4.97425× 10−3 8.075809× 10−4 9.30872× 10−6

0.75

0.25 6.367× 10−6 2.636877× 10−7 6.98645× 10−10

0.50 2.1283× 10−4 1.751553× 10−5 9.53927× 10−8

0.75 1.69045× 10−3 2.072879× 10−4 1.74147× 10−6

1.00 7.46137× 10−3 1.211371× 10−3 1.39631× 10−5

0 ≤ x, t ≤ 1 and α ∈ (0, 1], with u(x, 0) = x. The exact solution is xet for α = 1.
Here,

L(u) =
∂2

∂x2
u(x, t) +

1

2
u(x, t)

N(u) =
∂

∂x
u(x,

t

2
)u(

x

2
,
t

2
)

f(x) = u(x, 0) = x

Now,

u(x, t) = x+ JαL(u) + JαN(u),

where Jα is the fractional integral operator defined in eq. (3). From Section 3, u0, u1, u2, ...

and Â0, Â1, Â2, ... can be calculated for α = 1 as

u0 = x

Â0 =
1

2
x

u1 = tx

Â1 =
1

8
t(4 + t)x

u2 =
1

24
t2(12 + t)x

Â2 =
1

73728
t2(9216 + 4992t+ 768t2 + 48t3 + t4)x

· · ·
Therefore,

u(x, t) = x

(
1 + t+

t2

2
+
t3

6
+
t4

24
+

t5

120
+

t6

720
+

972841t7

5284823040
+

7183013t8

338228674560
+ · · ·

)
.

(17)
The analytical solution of Example-5.1 for α = 1 is calculated in eq.(17) and is very

accurate with the exact solution. The solution by present method has been compared with
the same by HPM[20] and VIM[27] and cited in Table-1. The Figures-1(A,B,C) show
the behavior of approximate solution u(x, t) for different values of α. The approximate
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Figure 1. Behavior of NIF solution of Example 5.1

solutions of Example-5.1 for different values of α when x = 0.1 have been shown in Figure-
1(D).

Example 5.2. [20] Consider the fractional partial differential equation with proportional
delay

Dαt u(x, t) = u(x,
t

2
)
∂2

∂x2
u(
x

2
,
t

2
)− u(x, t), (18)

0 ≤ x, t ≤ 1 and α ∈ (0, 1], with u(x, 0) = x2. The exact solution is x2et for α = 1.
Here,

L(u) = −u(x, t)

N(u) = u(x,
t

2
)
∂2

∂x2
u(
x

2
,
t

2
)

f(x) = u(x, 0) = x2

Now,

u(x, t) = x2 + JαL(u) + JαN(u),
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Table 2. Error Comparision of Example 5.2 for α = 1

x t HPM[20] VIM[27] NIF

0.25

0.25 5.3× 10−7 2.197397× 10−8 1.39018× 10−11

0.50 1.7735× 10−5 1.459627× 10−6 3.49631× 10−9

0.75 1.40870× 10−4 1.727399× 10−5 8.76459× 10−8

1.00 6.21780× 10−4 1.009476× 10−4 8.51906× 10−7

0.50

0.25 2.123× 10−6 8.789589× 10−8 5.5607× 10−11

0.50 7.0943× 10−5 5.838508× 10−6 1.39852× 10−8

0.75 5.63483× 10−4 6.909595× 10−5 3.50583× 10−7

1.00 2.487123× 10−3 4.037904× 10−4 3.40762× 10−6

0.75

0.25 4.776× 10−6 1.977658× 10−7 1.25116× 10−10

0.50 1.59620× 10−4 1.313664× 10−5 3.14668× 10−8

0.75 1.267830× 10−3 1.554659× 10−4 7.88813× 10−7

1.00 5.596030× 10−3 9.085285× 10−4 7.66715× 10−6

where Jα is the fractional integral operator defined in eq. (3). From Section 3, u0, u1, u2, ...

and Â0, Â1, Â2, ... can be calculated for α = 1 as

u0 = x2

Â0 = 2x2

u1 = tx2

Â1 =
1

2
t(4 + t)x2

u2 =
1

6
t2(3 + t)x2

Â2 =
1

1152
t2(576 + 384t+ 84t2 + 12t3 + t4)x2

· · ·

Therefore,

u(x, t) = x2

(
1 + t+

t2

2
+
t3

6
+
t4

24
+

t5

120
+

t6

720
+

t7

5040
+

6619t8

660602880
+ · · ·

)
. (19)

The analytical solution of Example 5.2 for α = 1 is calculated in eq.(19) and is very
accurate with the exact solution. The solution by present method has been compared with
the same by HPM[20] and VIM[27] and cited in Table-2. The Figures-2(A),2(B),2(C) show
the behavior of approximate solutions u(x, t) for different values of α. The approximate
solutions of Example 5.2 for different values of α when x = 0.1 have been shown in Figure-
3(D).

Example 5.3. [20] Consider the fractional partial differential equation with proportional
delay

Dαt u(x, t) =
∂2

∂x2
u(
x

2
,
t

2
)
∂

∂x
u(
x

2
,
t

2
)− 1

8

∂

∂x
u(x, t)− u(x, t), (20)
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Figure 2. Behavior of NIF solution of Example 5.2

0 ≤ x, t ≤ 1 and α ∈ (0, 1], with u(x, 0) = x2. The exact solution is xe−t for α = 1. Here,

L(u) = −1

8

∂

∂x
u(x, t)− u(x, t)

N(u) =
∂2

∂x2
u(
x

2
,
t

2
)
∂

∂x
u(
x

2
,
t

2
)

f(x) = u(x, 0) = x2

Now,

u(x, t) = x2 + JαL(u) + JαN(u),

where Jα is the fractional integral operator defined in eq. (3). From Section 3, u0, u1, u2, ...

and Â0, Â1, Â2, ... can be calculated for α = 1 as

u0 = x2

Â0 =
x

4

u1 = −tx2

Â1 =
1

16
(−4 + t)tx

u2 =
1

48
t2x(t+ 24x)

Â2 =
1

12288
t2[t3 + t(8− 384x) + 768x+ t2(−4 + 48x)]

· · ·
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Table 3. Error Comparision of Example 5.3 for α = 1

x t HPM[20] VIM[27] NIF

0.25

0.25 4.88× 10−7 2.045889× 10−8 6.13524× 10−9

0.50 1.50109× 10−5 1.265190× 10−6 7.72137× 10−7

0.75 1.096588× 10−4 1.393738× 10−5 1.29728× 10−5

1.00 4.450349× 10−4 7.579841× 10−5 9.55782× 10−5

0.50

0.25 1.9520× 10−6 8.183556× 10−8 1.13262× 10−8

0.50 6.00430× 10−5 5.060761× 10−6 1.42056× 10−6

0.75 4.38636× 10−4 5.574951× 10−5 2.37896× 10−5

1.00 1.7801398× 10−3 3.031936× 10−4 1.74731× 10−4

0.75

0.25 4.3940× 10−6 1.841300× 10−7 1.7985× 10−8

0.50 1.350980× 10−4 1.138671× 10−5 2.25128× 10−6

0.75 9.869290× 10−4 1.254364× 10−4 3.76306× 10−5

1.00 4.005314× 10−3 6.821857× 10−4 2.75897× 10−4

Therefore,

u(x, t) = x2

(
1− t+

t2

2
− t3

6
+
t4

24
− t5

120
+

t6

720
+ · · ·

)
+ · · · . (21)
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Figure 3. Behavior of NIF solution of Example 5.3

The analytical solution of Example 5.3 for α = 1 is calculated in eq.(21) and is very
accurate with the exact solution. The solution by present method has been compared with
the same by HPM[20] and VIM[27] and cited in Table-3. The Figures-3(A),3(B),3(C) show
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the behavior of approximate solutions u(x, t) for different values of α. The approximate
solutions of Example 5.3 for different values of α when x = 0.1 have been shown in Figure-
3(D).

6. Conclusion

In this work, the new iterative formula (NIF) was successfully implemented to obtain the
approximate solution of TFPDEs. The suggested approximate series solutions are achieved
without any discretization, perturbation, or restrictive circumstances that converge very
quickly. In this technique, the non-linearity is defined by using a new formula of Adomian
polynomials which is independent of λ. So, this proposed method takes less number of
computations than Adomian decomposition method and other analytical methods. From
the tables and figures it manifests that the proposed method gives better result than
the other methods. Illustrating examples confirm the efficiency and applicability of the
proposed method.
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