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A TECHNIQUE FOR SOLVING SYSTEM OF GENERALIZED

EMDEN-FOWLER EQUATION USING LEGENDRE WAVELET

A. K. BARNWAL1∗, N. SRIWASTAV1, §

Abstract. This article is concerned with the development of an efficient numerical algo-
rithm for the solution of a system of generalized nonlinear Emden-Fowler equation. The
proposed algorithm is based on the Legendre wavelet operational matrix of integration
technique. This method decreases the storage and computational complexity due to its
calculation on the subinterval [ n−1

2k−1 ,
n

2k−1 ) of [0, 1]. The main highlight of this method is
to converts the system of the differential equation into an equivalent system of nonlinear
algebraic equations, which greatly simplifies approximation. Some numerical example
shows that the proposed scheme is very efficient and reliable.
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1. Introduction

Generalized Emden-Fowler type differential equations [9, 10] are frequently involved in
several mathematical models of physical phenomena. It can be encountered in numerous
field of mathematical physics and astrophysics problems such as in the study of the shear-
free spherically symmetric perfect fluid motion in cosmology [13, 14], pattern formation,
population evolution, and chemical reaction [19]. Generalized Emden-Fowler equation can
be written as

y
′′

+
α

t
+ g(t, y) = h(t), 0 < t <∞ (1)

subject to

y(0) = A, y′(0) = B, (2)

where ′ denotes the derivative with respect to “t”, A and B are constants, and α > 0 is
known as shape factor. In case g(t, y) = ctmyn, h(t) = 0 and B = 0, initial value problem
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(IVPs) (1)-(2) represent Emden-Fowler equation of first kind [1], given by

y
′′

+
α

t
+ ctmyn = 0, 0 < t <∞ (3)

y(0) = A, y′(0) = 0. (4)

In case m = 0 and c = 1, IVPs (3)-(4) represents the standard Lane-Emden equation which
sculpts many physical phenomena such as theory of stellar structure, thermal behavior of
spherical gas cloud and theories of thermionic current [8, 15, 22, 23, 29]. One can find
several nonlinear singular boundary value problems based on models of realistic problems
in an review article by Verma et. al. [31]. The main difficulty to solve the differential
equation (3) is its singular behavior at t = 0. There are numerous methods for the
numerical solution of Emden-Fowler equation. Some of them which are recently used in
literature are perturbation techniques [7], Collocation method and Galerkin method [11],
Adomian decomposition method [33], wavelet-Galerkin method [3], operational matrix
method associate the first kind shifted Chebyshev polynomial [20, 21, 26] and methods
based on Haar wavelet [17, 28, 30, 32].

The Adomian decomposition method has been used on a wide class of problems that
provide us a demonstrable, sustainable, and rapidly convergent approximation, but major
disadvantage with the method is to construct toughest and very complicated Adomian
polynomials. Collocation and Galerkin method discretised the continuous operator into
a matrix using the projection method. The major issue with this method is to calculate
the inner product numerically. To overcome the difficulties of these methods, several
researchers are using wavelet as a basis function, which is known as wavelet Galerkin
method. Wavelets as a basis function are most trustworthy and these are great refinement
over other basis functions, such as standard polynomial basis and a trigonometric basis.

Recently, the word “wavelet” has fascinated the scientific and engineering community.
From last few decades, orthogonal function and wavelets have received great deal of atten-
tion and become an important tool for the approximate solution of functional equation.
Based on the structure, orthogonal functions may be generally categorized into three fam-
ilies: piecewise constant basis functions such as walsh functions, block pulse functions,
etc., orthogonal polynomials (Legendre polynomials, Chebyshev polynomials, etc.) and
sine-cosine series (Fourier series) (see [4, 5, 6, 12] and the references therein). The ap-
proximation of a continuous function with piecewise constant basis functions results in an
estimate which is not continuous. Also, the approximation of a discontinuous function
with continuous basis functions results in an estimate which is continuous. None of these
two basis functions taken alone can approximate both the continuous and discontinuous
model effectively and accurately. So it is essential to use another basis function that can
approximate both the continuous and discontinuous models. Wavelets are very useful ba-
sis functions to represent both the spatially varying properties due to compact support,
orthogonality, and the exact representation of polynomial to a certain degree and ability
to represent functions at a different level of resolutions.

Legendre wavelets, Chebyshev wavelets, and Haar wavelets are the members of wavelet
families. The numerical method based on Legendre polynomials have better convergence
than the method based on Haar wavelet [28, 30, 32] and Chebyshev polynomials [20, 21]
due to improved smoothness and good interpolating behavior. The practice of Legendre
wavelets on the differential and integral equations deliberated in [25, 34]. Zheng and Yang
[35] have used Legendre wavelet operational matrix to solve Lane-Emden equations and
some integral equations.
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Our aim in this paper is to solve system of generalized Emden-Fowler type differential
equations

u
′′

+
α

t
u
′
+ f1(u, v) = f(t),

v
′′

+
β

t
v
′
+ f2(u, v) = g(t),

(5)

with the initial conditions

u(0) = v(0) = 1, u
′
(0) = v

′
(0) = 0. (6)

We have used Legendre wavelet operational matrix of integration to deal the system of
IVPs (5)-(6). Using Legendre wavelet operational matrix of integration, we have converted
IVPs (5)-(6) in a wavelet equations, which can be discretised by Gallerkin or collocation
method in subinterval [ n−1

2k−1 ,
n

2k−1 ). The major advantage of this method is to convert the
problem into algebraic equations which facilitate greatly.

We organize the rest of the article in the following order. In section 2, we have discussed
Legendre wavelets and computation of operational matrix of integration. Method for the
solution of the IVPs (5)-(6) and product of the Legendre wavelet vector function has been
discussed in section 3. In section 4, some numerical examples are considered to clarify
the applicability and performance of the proposed method. In section 5, we have given
conclusion of our work.

2. Introduction of Wavelet

Basic definitions of Legendre wavelet and its detailed properties are found in many
papers such as [24, 34, 35]. Here we briefly introduce Legendre wavelets and its operational
matrix.

2.1. Legendre wavelets. Legendre wavelet [34] in terms of Legendre polynomial Lm(t)
is defined as

Ψnm(t) =

{
(m+ 1

2)1/22k/2Lm(2kt− n̂), n̂−1
2k
≤ t ≤ n̂+1

2k

0, otherwise.
(7)

Here, n̂ = 2n − 1, n = 1, 2, 3, ..., 2(k−1) and m = 0, 1, 2, 3, ...,M − 1, m is the order of
the Legendre Polynomial and M is maximum possible order of the Legendre polynomial.
Legendre polynomials are orthogonal with respect to the weight function w(t) = 1, hold
the following recurrence relations:

L0(t) = 1,

L1(t) = t, (8)

Lm+1(t) =
2m+ 1

m+ 1
tLm(t)− m

m+ 1
Lm−1(t), m = 1, 2, 3, ....

Now for k = 2 and M = 3, there exist six wavelet basis functions which are defined on the
interval [0, 1], as follows

Ψ10(t) =
√

2,

Ψ11(t) =
√

6(4t− 1), 0 ≤ t ≤ 1

2
(9)

Ψ12(t) =
√

10

(
3

2
(4t− 1)2 − 1

2

)
,
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Ψ20(t) =
√

2,

Ψ21(t) =
√

6(4t− 3),
1

2
≤ t ≤ 1 (10)

Ψ22(t) =
√

10

(
3

2
(4t− 3)2 − 1

2

)
.

On the basis of the multi-resolution theory a function g ∈ L2[0, 1] can be expanded as

g(t) =

∞∑
n=1

∞∑
m=0

cnmΨnm(t), (11)

where

cnm(t) =
〈
(t),Ψnm(t)

〉
. (12)

Here, 〈., .〉 represents the inner product on a vector space L2[0, 1]. Truncating (11), we
have

g(t) ≈
2k−1∑
n=1

M−1∑
m=0

cnmΨnm(t) = CTΨ(t), (13)

where Ψ(t) and C are the matrices given by

C = [C10, C11, ..., C1M−1, C20, ..., C2M−1, ..., C2k−10, ..., C2k−1M−1]T , (14)

Ψ(t) = [Ψ10(t),Ψ11(t), ...,Ψ1M−1(t),Ψ20(t), ...,Ψ2M−1(t), ...,Ψ2k−10(t), ...,

Ψ2k−1M−1(t)]T . (15)

2.2. Operational matrix of integration of the Legendre wavelet. In this section,
Legendre wavelet operational matrix of integration [24, 35, 27] has been introduced on the
interval [0, 1). Matrix of integration on the subintervals [ n−1

2k−1 ,
n

2k−1 ) of [0, 1] is obtained.
These matrices are same in each subintervals and hence minimize the computational time.
In order to get these matrices, integrate equation (9) from 0 to t for t ∈ [0, 1

2) and equation

(10) from 1
2 to t for t ∈ [1

2 , 1). Now for t ∈ [0, 1
2), we have∫ t

0
Ψ10(t)dt =

√
2t =

1

4
Ψ10(t) +

3
1
2

12
Ψ11(t),∫ t

0
Ψ11(t)dt =

√
6(2t2 − t) = −3

1
2

12
Ψ10(t) +

15
1
2

60
Ψ12(t),∫ t

0
Ψ12(t)dt =

√
10(8t3 − 6t2 + t) = −15

1
2

60
Ψ11(t) +

35
1
2

140
Ψ13(t).

Let Ψ1(t) = [Ψ10(t),Ψ11(t),Ψ12(t)]T , then we have∫ t

0
Ψ1(t)dt ≈ B3×3Ψ1(t), (16)

where

B3×3 =
1

4


1 3

1
2

3 0

−3
1
2

3 0 3
1
2×5

1
2

5×3

0 −3
1
2×5

1
2

5×3 0

 . (17)
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Again for t ∈ [1/2, 1), we have∫ t

1
2

Ψ20(t)dt =
√

2t−
√

2

2
=

1

4
Ψ20(t) +

3
1
2

12
Ψ21(t),

∫ t

1
2

Ψ21(t)dt =
√

6(2t2 − 3t+ 1) = −3
1
2

12
Ψ20(t) +

15
1
2

60
Ψ22(t),

∫ t

1
2

Ψ22(t)dt =
√

10(8t3 − 18t2 + 13t− 3) = −15
1
2

60
Ψ21(t) +

35
1
2

140
Ψ23(t).

Let Ψ2(t) = [Ψ20(t),Ψ21(t),Ψ22(t)]T , then∫ t

1
2

Ψ2(t)dt ≈ B3×3Ψ2(t), (18)

where

B3×3 =
1

4


1 3

1
2

3 0

−3
1
2

3 0 3
1
2×5

1
2

5×3

0 −3
1
2×5

1
2

5×3 0

 . (19)

Razzaghi and Yousefi [25] have constructed the Legendre wavelet operational matrix of
integration on the complete interval [0, 1]. Hence for t ∈ [0, 1], we have∫ t

0
Ψ6×6(t)dt = P6×6(t)Ψ6×6(t), (20)

where

Ψ6×6 = [Ψ10(t),Ψ11(t),Ψ12(t),Ψ20(t),Ψ21(t),Ψ22(t)]T , (21)

and

P6×6 =
1

22



1 3
1
2

3 0 2 0 0

−3
1
2

3 0 3
1
2×5

1
2

5×3 0 0 0

0 −3
1
2×5

1
2

5×3 0 0 0 0

0 0 0 1 3
1
2

3 0

0 0 0 −3
1
2

3 0 3
1
2×5

1
2

5×3

0 0 0 0 −3
1
2×5

1
2

5×3 0


. (22)

The matrix P6×6 can also be expressed as

P6×6 =

(
B3×3 F3×3

O3×3 B3×3

)
,

where B3×3 is given in (17) and

F3×3 =

 2 0 0
0 0 0
0 0 0

 .
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General form of matrix PN×N , N = 2k−1M , can be calculated on the interval [0, 1] using
similar procedure. It is given by

PN×N =
1

2k


BM×M FM×M FM×M · · · FM×M
OM×M BM×3 FM×M · · · FM×M

... OM×M
. . .

. . .
...

... · · · · · · · · · FM×M
OM×M OM×M · · · OM×M BM×M

 ,

where

BM×M =



1 1

3
1
2

0 0 . . . 0 0

− 1

3
1
2

0 1

3
1
2 ×5

1
2

0 . . . 0 0

0 − 1

3
1
2 ×5

1
2

0 1

5
1
2 ×7

1
2

. . . 0 0

0 0 − 1

5
1
2 ×7

1
2

0
. . . 0 0

...
...

...
...

. . .
. . .

...
0 0 0 0 . . . 0 1

(2M−3)
1
2 ×(2M−1)

1
2

0 0 0 0 . . . − 1

(2M−3)
1
2 ×(2M−1)

1
2

0


,

FM×M =


2 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 and OM×M =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .

Here, the matrix BM×M only depends upon the decomposition level k and order M of
Legendre polynomials. The order of matrix BM×M is M , while the order of PN×N is
N = 2k−1M . The matrix BM×M reduces the computational complexity and storage of
the system of algebraic equations for the large value of the decomposition level k. Thus it
is a new numerical algorithm based on an operational matrix of integration to deal with
a system of differential equations.

3. Methodology

The method is based on converting differential equations into an integral equation
through integration and approximation of antiderivative function by Legendre wavelets.
The product operation of the Legendre wavelet vector function and an integral power
of functions are computed on the subinterval [ n−1

2k−1 ,
n

2k−1 ). These operations convert the
approximation into nonlinear system of algebraic equations. The solution of it gives the
solution of the differential equation on the respective subinterval. The solution of the
differential equation can be obtained by merging all these solutions on the subintervals.
Let us assume that

u
′′

= CT
0 Ψ1(t) and v

′′
= DT

0 Ψ1(t). (23)

Here, CT
0 and DT

0 are the coefficient matrix of Legendre wavelet vector Ψ1(t), which is
to be determined. Integrating (23) twice in the subinterval [0, 1

2k−1 ) and using the initial
condition (6), we get

u′ = CT
0 BΨ1(t) and v′ = DT

0 BΨ1(t) (24)

and,

u = 1 + CT
0 B

2Ψ1(t) and v = 1 +DT
0 B

2Ψ1(t). (25)
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The functions t, tu′′, tv′′, αu′, βv′, tf1(u, v), tf2(u, v), tf(t) and tg(t) of (5) can be approxi-
mated with the help of product operation of Legendre wavelet vector function, equation
(24) and (25) as follows:

t = eTΨ1(t),

tu′′ = eTΨ1(t)ΨT
1 C0 = ΨT

1 EC0,

tv′′ = eTΨ1(t)ΨT
1 D0 = ΨT

1 ED0,

αu′ = rTΨ1(t)ΨT
1 B

TC0 = ΨT
1 RB

TC0,

βv′ = sTΨ1(t)ΨT
1 B

TD0 = ΨT
1 SB

TD0, (26)

tf1(u, v) = eTΨ1(t)ΨT
1 F1 = ΨT

1 (t)EF1,

tf2(u, v) = etΨ1(t)ΨT
1 F2 = ΨT

1 (t)EF2,

tf(t) = eTΨ1(t)ΨT
1 F = ΨT

1 (t)EF,

tg(t) = eTΨ1(t)ΨT
1 G = ΨT

1 (t)EG.

Substituting (26) in IVPs (5)-(6), we have

EC0 +RBTC0 + EF1 = EF,

ED0 + SBTC0 + EF2 = EG.
(27)

Here, the product of Legendre wavelet vectors [2] are defined as

eTΨ(t)ΨT (t) = ΨT (t)E, (28)

where e = [e1, e2, e3]T and E is M × M matrix. The product has demonstrated for
M = 3 and k = 2 as

eTΨ(t)ΨT (t) = ΨT (t)


√

2e1

√
2e2

√
2e3√

2e2

√
2e1 + 4√

10
e3

4√
10
e2√

2e3
4√
10
e2

√
2e1 + 20√

10
e3

 . (29)

The general procedure for the product operation of the Legendre wavelet vector functions
has demonstrated in [35].

Suppose eTΨ(t)ΨT (t) = ΨT (t)

 e11 · · · e1M

· · · · · · · · ·
eM1 · · · eMM

, then

eij =

p=M∑
p=1

∫ m

2k−1

m−1

2k−1

Ψ(i, 1)Ψ(j, 1)Ψ(p, 1)dt, i, j = 1, 2, 3, ... (30)

where the matrix eij is a symmetric matrix. Thus, the system of initial value problem
(5)-(6) corresponds to a system of algebraic equations (27). The solution of the algebraic
equations for C and D gives the approximate solution on the subinterval [0, 1

2k−1 ). Hence
approximate solution of the system of IVPs (5)-(6) is given by

u0 = 1 + CT
0 B

2Ψ1(t),

v0 = 1 +DT
0 B

2Ψ1(t).
(31)

In a similar fashion, we can obtain the solutions un−1 and vn−1 on the subintervals

[ n−1
2k−1 ,

n
2k−1 ) with the initial condition u( n−1

2k−1 ) ≈ u( n−1
2k−1−∆t) , u′( n−1

2k−1 ) ≈ u(0.5−∆t)−u(0.5−2∆t)
∆t ,

v( n−1
2k−1 ) ≈ v( n−1

2k−1 − ∆t) and v′( n−1
2k−1 ) ≈ v(0.5−∆t)−v(0.5−2∆t)

∆t , ∆t = 1.0 × 10−9, for n =
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2, 3, ..., 2k−1. Now combine u0, u1, ..., un−1 and v0, v1, ..., vn−1 to get the approximate solu-
tion on the interval [0, 1]. We can also decrease ∆t and increase the degree M of Legendre
polynomial and the decomposition level k for the highly accurate desired solution.

We have analyzed the convergence of the Legendre wavelet operational matrix of inte-
gration using the following theorem.

Theorem 3.1. Assume that the u(t), v(t) ∈ L2[0, 1] with the bounded second order deriv-
ative i.e. ∃ K ∈ R such that max{|u′′(t)|, |v′′(t)|} ≤ K then the error norm satisfy the
following inequalities

||e1(M,k)(t)|| = sup
t∈[0,1]

|u(t)− u(M,k)(t)|

≤ A

(2k−1 + 1)2(M − 3
2)

3
2

,

||e2(M,k)(t)|| = sup
t∈[0,1]

|v(t)− v(M,k)(t)|

≤ A

(2k−1 + 1)2(M − 3
2)

3
2

,

where A =
√

5K√
24

.

Proof. The error for the variable u is defined as

|e1(M,k)(t)| = |u(t)− u(M,k)(t)|

=

∣∣∣∣∣∣
∞∑

n=2k−1+1

∞∑
m=M

cnmΨnm(t)

∣∣∣∣∣∣ ,
where

u(M,k)(t) =
2k−1∑
n=1

M−1∑
m=0

cnmΨnm(t).

Hence

‖e1(M,k)‖2 =

∫ 1

−1

〈 ∞∑
n=2k−1+1

∞∑
m=M

cnmΨnm(t),

∞∑
p=2k−1+1

∞∑
q=M

cpqΨpq(t)

〉
dt,

=

∞∑
n=2k−1+1

∞∑
m=M

∞∑
p=2K−1+1

∞∑
q=M

cnmcpq

∫ 1

−1
Ψnm(t)Ψpq(t)dt, (32)

‖e1(M,k)‖2 ≤
∞∑

n=2k−1+1

∞∑
m=M

|cnm|2, (33)
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Here,

cnm =

∫ 1

0
u(t)Ψnm(t)dt,

=

∫ n

2k−1

n−1

2k−1

u(t)

√
m+

1

2
2

k
2Lm(2kt− n̂)dt,

=

√
m+

1

2
2

k
2

∫ n

2k−1

n−1

2k−1

u(t)Lm(2kt− n̂)dt.

Substituting x = 2kt− n̂, we get

cnm =

√
m+

1

2
2

k
2

∫ 1

−1
u

(
x+ n̂

2k

)
Lm(x)

dx

2k
,

=

√
m+ 1

2

2
k
2

∫ 1

−1
u

(
x+ n̂

2k

)
Lm(x)dx.

(34)

Since,

(2m+ 1)Lm(x) =
(
L
′
m+1(x)− L′m−1(x)

)
. (35)

So, we have

cnm =
1

2
k
2

+1
√
m+ 1

2

∫ 1

−1
u

(
x+ n̂

2k

)
d(Lm+1(x)− Lm−1(x)). (36)

Consequently, integrating equation (36) by part, we have

cnm =
1

2
k
2

+1
√
m+ 1

2

(
u

(
x+ n̂

2k

)
(Lm+1(x)− Lm−1(x))

)1

−1

,

− 1

2
k
2

+1
√
m+ 1

2

(∫ 1

−1
u′
(
x+ n̂

2k

)
1

2k
(Lm+1(x)− Lm−1(x))dx

)
,

= − 1

2
3k
2

+1
√
m+ 1

2

(∫ 1

−1
u′
(
x+ n̂

2k

)
(Lm+1(x)− Lm−1(x))dx

)
.

Now using equation (35), we have

cnm = − 1

2
3k
2

+1
√
m+ 1

2

(∫ 1

−1
u′
(
x+ n̂

2k

)
d

(
Lm+2(x)− Lm(x)

2m+ 3
− Lm(x)− Lm−2(x)

2m− 1

))
.

Proceeding to a similar manner, we have

cnm =
1

2
5k
2

+1
√
m+ 1

2

(∫ 1

−1
u′′
(
x+ n̂

2k

)(
Lm+2(x)− Lm(x)

2m+ 3
− Lm(x)− Lm−2(x)

2m− 1

)
dx

)
,

=
1

2
5k
2

+1
√
m+ 1

2(2m+ 3)(2m− 1)

(∫ 1

−1
u′′
(
x+ n̂

2k

)
Tm(x)dx

)
,



350 TWMS J. APP. AND ENG. MATH. V.13, N.1, 2023

where Tm(x) = (2m− 1)Lm+2(x)− 2(2m+ 1)Lm(x) + (2m+ 3)Lm−2(x) and hence,

|cnm| ≤
1

2
5k
2

+1
√
m+ 1

2(2m+ 3)(2m− 1)

∫ 1

−1

∣∣∣∣u′′(x+ n̂

2k

)∣∣∣∣ |Tm(x)|dx

≤
√

3K

2
5k
2 (2m− 3)2

, (37)

where

|Tm(x)| ≤
√

24
(2m+ 3)√
(2m− 3)

.

It is shown in [18]. Since n ≤ 2k, then the inequality (37) can be expressed as

|cnm| ≤
√

3K

n
5
2 (2m− 3)2

. (38)

Hence

‖e1(M,k)‖2 ≤
∞∑

n=2k−1+1

∞∑
m=M

3K2

n5(2m− 3)4

= 3K2
∞∑

n=2k−1+1

1

n5

∞∑
m=M

1

(2m− 3)4
(39)

≤ 5K2

24(2k−1 + 1)4(M − 3
2)3

. (40)

‖e1(M,k)‖ ≤ A

(2k−1 + 1)2(M − 3
2)

3
2

, (41)

where A =
√

5K√
24

is a real constant. Similarly, we can show

‖e2(M,k)‖ ≤ A

(2k−1 + 1)2(M − 3
2)

3
2

. (42)

�

4. Numerical Experiment

In this section, we present four comparative examples to review the applicability and
reliability of the method.

Example 4.1. Let us consider the system of linear Emden-Fowler equation

u′′ +
3

t
u′ − 4(u+ v) = 0,

v′′ +
2

t
v′ + 3(u+ v) = 0,

(43)

with initial conditions

u(0) = 1, u′(0) = 0,

v(0) = 1, v′(0) = 0,
(44)

which approximate a redder and very cool i.e. late type star[16, 20].
The exact solutions are given by u(t) = 1+t2, and v(t) = 1−t2. Now by using the technique
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developed in section 3, the approximation of IVPs (43)-(44) in terms of Legendre wavelet
is given by

eΨ(t)ΨT (t)C + 3ΨT (t)BTC − 4eΨ(t)ΨT (t)(F +G) = 0,

eΨ(t)ΨT (t)D + 2ΨT (t)BTD + 3eΨ(t)ΨT (t)(F +G) = 0.
(45)

This can be approximate into a system of linear algebraic equations using product opera-
tions of Legendre wavelet vectors, which is given by

EC + 3BTC − 4E(F +G) = 0,

ED + 2BTD + 3E(F +G) = 0.
(46)

On solving the system of linear algebraic equations (46), we have the approximate solution
on the subinterval [0, 1

2) for M = 3 and k = 2

u0(t) = 1 + CT
0 B

2Ψ(t),

= 1.000000000002− 1.53541074794518× 10−10 ∗ t+ 0.99999999991011 ∗ t2,
∼= 1 + t2,

v0(t) = 1 +DT
0 B

2Ψ(t)

= 1.000000000001059− 4.03923688374473× 10−10 ∗ t− 1.0000000001442 ∗ t2,
∼= 1− t2,

where

C0 = [1.414213562, 2.717959249× 10−10,−5.500145852× 10−10]T ,

D0 = [−1.414213563, 1.038541152× 10−9,−9.45736677× 10−10]T .

In a similar way, on solving differential equations (43) on the interval [1
2 , 1), the numerical

solutions u1(t) and v1(t) can be obtained using the initial conditions given by

u

(
1

2

)
= u

(
1

2
−∆t

)
, u′

(
1

2

)
=
u(0.5−∆t)− u(0.5− 2∆t)

∆t
,

v

(
1

2

)
= v

(
1

2
−∆t

)
, v′

(
1

2

)
=
v(0.5−∆t)− v(0.5− 2∆t)

∆t
,

(47)

where ∆t = 1.0× 10−9. The approximate solution on the interval [1
2 , 1) is given by

u1(t) = u

(
1

2

)
+

(
t− 1

2

)
u′
(

1

2

)
+ CT

1 B
2Ψ2(t),

= 1.0000000002 + 4.00000033096148× 10−10 ∗ t+ 1.00000000159999 ∗ t2,
∼= 1 + t2,

v1(t) = v

(
1

2

)
+

(
t− 1

2

)
v′
(

1

2

)
+DT

1 B
2Ψ2(t),

= 1.00000000005071 + 1.643224227879× 10−09 ∗ t− 1.00000000037423 ∗ t2,
∼= 1− t2,

where

C1 = [1.414213564,−1.330183920× 10−9, 5.933262504× 10−10]T ,

D1 = [−1.414213563, 6.056012001× 10−10,−2.183635061× 10−10]T .

Hence, the approximate solutions are the same as the exact solutions.
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Example 4.2. We consider the system of linear Emden-Fowler equation

u′′ +
3

t
u′ − 12t2(u+ v) = 0,

v′′ +
3

t
v′ + 12t2(u+ v) = 0,

(48)

with initial conditions

u(0) = 1, u′(0) = 0,

v(0) = 1, v′(0) = 0.
(49)

The exact solutions are u(t) = 1 + t4, and v(t) = 1 − t4. Now by using the technique
developed in section 3, the approximation of IVPs (48)-(49) in terms of Legendre wavelet
is given by

eTΨ1(t)ΨT
1 (t)CT + gT1 Ψ1(t)ΨT

1 (t)BTCT − e1Ψ(t)ΨT (t)(F +G) = 0,

eTΨ1(t)ΨT
1 (t)DT + gT1 Ψ1(t)ΨT

1 (t)BTDT + e1Ψ(t)ΨT (t)(F +G) = 0.
(50)

Approximate (50) into a system of linear algebraic equations using product operations of
Legendre wavelet vectors, we get

ECT +G1B
TCT − E1(F +G) = 0,

EDT +G1B
TDT + E1(F +G) = 0.

(51)

On solving system of linear algebraic equation (51) for C and D, we have the approximate
solution on the subinterval [0, 1

2) for M = 4 and k = 2, given by

u0(t) = 1 + CT
0 B

2Ψ(t),

v0(t) = 1 +DT
0 B

2Ψ(t),
(52)

where Legendre wavelet coefficients are given by

C0 = [0.70710678, 0.61237243, 0.15811388,−5.3075714× 10−10]T ,

D0 = [−.70710678,−.61237243,−.15811388,−2.8124285× 10−10]T .
(53)

In similar way the approximate solutions u1(t) and v1(t) on the subinterval [1
2 , 1) is ob-

tained from the solution of system of differential equation (48) with boundary conditions

u

(
1

2

)
= u

(
1

2
−∆t

)
, u′

(
1

2

)
=
u(0.5−∆t)− u(0.5− 2∆t)

∆t
, (54)

v

(
1

2

)
= v

(
1

2
−∆t

)
, v′

(
1

2

)
=
v(0.5−∆t)− v(0.5− 2∆t)

∆t
, (55)

where ∆t = 1.0× 10−9. The Legendre wavelet coefficients corresponding to the solutions
u1(t) and v1(t) are given by

C1 = [4.9939416, 1.8043116, 0.17223119,−0.47725221× 10−2]T ,

D1 = [−4.9939416,−1.8043116,−0.17223119, 0.47725230× 10−2]T .
(56)

Then, combining the solutions u0, u1 and v0, v1 on [0, 1] yields the approximate solution
of the IVPs (48)-(49). We have compared the approximate solution (Leg(M,k)) with the
solution obtained from truncated shifted Chebyshev series method [21, 20] (Cheb(N)),
Haar wavelet collocation method [30] (HWCM(J)) and exact solution (Exact) in the
Tables 1-4. Graphs of (Leg(M,k)), (Cheb(N)), and exact solution are given in Figures
1-4. To ensure the accuracy and reliability of the method, the absolute errors e1 =
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|Exact − Leg(M,k)|, e2 = |Exact − Cheb(N)| and e3 = |Exact − HWCM(J)| are also
shown in the Tables.

Table 1. Comparison of Leg(M,k), Cheb(N) and HWCM(J) with exact
solution at M = 4, k = 2, N = 3 and J = 2 for u of Example 4.2.

t Exact Leg(4, 2) Cheb(3) HWCM(2) e1 e2 e3

0.0 1.0000 0.9991 1.0000 1.0000 8.0 × 10−04 2.1 × 10−10 0.0000

0.2 1.0016 1.0013 0.9623 1.0015 2.0 × 10−04 3.9 × 10−02 7.6 × 10−05

0.4 1.0256 1.0259 0.9228 1.0248 3.0 × 10−04 1.0 × 10−01 7.0 × 10−04

0.6 1.1296 1.1263 0.9914 1.1284 3.2 × 10−03 1.3 × 10−01 1.1 × 10−03

0.8 1.4096 1.4030 1.2782 1.4069 6.5 × 10−03 1.3 × 10−01 2.6 × 10−03

1.0 2.0000 1.9914 1.8933 1.9960 8.5 × 10−03 1.1 × 10−01 3.9 × 10−03

Table 2. Comparison of Leg(M,k), Cheb(N) and HWCM(J) with exact
solution at M = 4, k = 2, N = 3 and J = 2 for v of Example 4.2.

t Exact Leg(4, 2) Cheb(3) HWCM(2) e1 e2 e3

0.0 1.0000 1.0008 1.0000 1.0000 8.0 × 10−04 0.0000 0.0000

0.2 0.9984 0.9986 1.0376 0.9984 2.0 × 10−04 3.9 × 10−02 7.6 × 10−05

0.4 0.9744 0.9740 1.0771 0.9751 3.0 × 10−04 1.0 × 10−01 7.0 × 10−04

0.6 0.8704 0.8735 1.0085 0.8715 3.2 × 10−03 1.3 × 10−01 1.1 × 10−03

0.8 0.5904 0.5969 0.7217 0.5930 6.5 × 10−03 1.3 × 10−01 2.6 × 10−03

1.0 0.0000 0.0085 0.1066 0.0039 8.5 × 10−03 1.1 × 10−01 3.9 × 10−03

Table 3. Comparison of Leg(M,k), Cheb(N) and HWCM(J) with exact
solution at M = 5, k = 2, N = 4 and J = 3 for u of Example 4.2.

t Exact Leg(5, 2) Cheb(4) HWCM(3) e1 e2 e3

0.0 1.0000 1.0000 1.0000 1.0000 1.8 × 10−12 9.9 × 10−11 0.0000

0.2 1.0016 1.0016 1.0016 1.0015 2.6 × 10−11 5.6 × 10−11 4.7 × 10−05

0.4 1.0256 1.0256 1.0256 1.0254 3.9 × 10−11 3.2 × 10−10 1.0 × 10−04

0.6 1.1296 1.1295 1.1295 1.1292 7.1 × 10−10 5.5 × 10−10 3.0 × 10−04

0.8 1.4096 1.4095 1.4095 1.4090 1.0 × 10−09 8.2 × 10−10 5.0 × 10−04

1.0 2.0000 1.9999 1.9999 1.9990 1.1 × 10−09 1.4 × 10−09 9.0 × 10−04

Table 4. Comparison of Leg(M,k), Cheb(N) and HWCM(J) with exact
solution at M = 5, k = 2, N = 4 and J = 3 for v of Example 4.2.

t Exact Leg(5, 2) Cheb(4) HWCM(3) e1 e2 e3

0.0 1.0000 1.0000 1.0000 1.0000 1.8 × 10−12 1.0 × 10−10 0.0000

0.2 0.9984 0.9984 0.9984 0.9984 1.7 × 10−11 1.5 × 10−10 4.7 × 10−05

0.4 0.9744 0.9744 0.9744 0.9745 1.8 × 10−11 1.7 × 10−10 1.0 × 10−04

0.6 0.8704 0.8704 0.8707 0.8707 8.4 × 10−10 5.6 × 10−11 3.0 × 10−04

0.8 0.5904 0.5904 0.5904 0.5909 1.4 × 10−09 1.5 × 10−10 5.0 × 10−04

1.0 0.0000 1.5 × 10−09 −2.4 × 10−10 0.0009 1.5 × 10−09 2.4 × 10−10 9.0 × 10−04

Example 4.3. We consider the non-linear Emden-Fowler equation

u′′ +
2

t
u′ + v2 = t6 − 2t3 + 12t+ 1,

v′′ +
3

t
v′ + u2 = t6 + 2t3 − 15t+ 1,

(57)
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Figure 1. Comparison of Leg(M,k), Cheb(N) with exact solution at M =
4, k = 2 and N = 3 for u of Example 4.2.

Figure 2. Comparison of Leg(M,k), Cheb(N) with exact solution at M =
4, k = 2 and N = 3 for v of Example 4.2.

with initial conditions

u(0) = 1, u′(0) = 0,

v(0) = 1, v′(0) = 0.
(58)

The exact solutions of the IVPs (57)-(58) is u(t) = 1 + t3, and v(t) = 1 − t3. We have
compared the approximate solution Leg(M,k) with the solution obtained from truncated
shifted chebyshev series method Cheb(N), Haar wavelet collocation method (HWCM(J))
and exact solution (Exact) in Tables 5-8. Graphs of (Leg(M,k)), (Cheb(N)), and exact
solution are given in Figures 5-8. Tables and Figures show that approximate solution
approaches exact solution with increase in the values of M and k.
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Figure 3. Comparison of Leg(M,k), Cheb(N) with exact solution at M =
5, k = 2 and N = 4 for u of Example 4.2.

Figure 4. Comparison of Leg(M,k), Cheb(N) with exact solution at M =
5, k = 2 and N = 4 for v of Example 4.2.

Example 4.4. We consider the non linear Emden-Fowler equation

u′′ +
5

t
u′ + 8(eu + 2e−

v
2 ) = 0,

v′′ +
3

t
v′ − 8(e−v + e

u
2 ) = 0,

(59)

with initial conditions

u(0) = 0, u′(0) = 0,

v(0) = 0, v′(0) = 0.
(60)
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Table 5. Comparison of Leg(M,k), Cheb(N) and HWCM(J) with exact
solution at M = 3, k = 2, N = 2 and J = 1 for u of Example 4.3.

t Exact Leg(3, 2) Cheb(2) HWCM(1) e1 e2 e3

0.0 1.0000 1.0062 1.0000 1.0000 6.2 × 10−03 8.9 × 10−09 0.0000

0.2 1.0080 1.0062 1.0117 1.0100 1.7 × 10−03 3.7 × 10−03 2.0 × 10−03

0.4 1.0640 1.0662 1.0470 1.0602 2.2 × 10−03 1.7 × 10−03 3.7 × 10−03

0.6 1.2160 1.1952 1.1057 1.2072 2.1 × 10−02 1.1 × 10−01 8.7 × 10−03

0.8 1.5120 1.4782 1.1880 1.4988 3.3 × 10−02 3.2 × 10−01 1.3 × 10−02

1.0 2.0000 1.9486 1.2938 1.9835 5.1 × 10−02 7.1 × 10−01 1.6 × 10−02

Table 6. Comparison of Leg(M,k), Cheb(N) and HWCM(J) with exact
solution at M = 3, k = 2, N = 2 and J = 1 for v of Example 4.3.

t Exact Leg(3, 2) Cheb(2) HWCM(1) e1 e2 e3

0.0 1.0000 0.9937 1.0000 1.0000 6.2 × 10−03 1.8 × 10−10 0.0000

0.2 0.9920 0.9937 0.9989 0.9906 1.7 × 10−03 3.0 × 10−03 1.3 × 10−03

0.4 0.9360 0.9337 0.9559 0.9413 2.2 × 10−03 1.9 × 10−02 5.3 × 10−03

0.6 0.7840 0.8035 0.9008 0.7939 1.9 × 10−02 1.2 × 10−01 9.9 × 10−03

0.8 0.4880 0.5173 0.8237 0.5020 2.9 × 10−02 3.4 × 10−01 1.4 × 10−02

1.0 0.0000 0.0442 0.7246 0.0179 4.4 × 10−02 7.2 × 10−01 1.8 × 10−02

Table 7. Comparison of Leg(M,k), Cheb(N) and HWCM(J) with exact
solution at M = 5, k = 3, N = 4 and J = 3 for u of Example 4.3.

t Exact Leg(5, 3) Cheb(4) HWCM(3) e1 e2 e3

0.0 1.0000 1.0000 1.0000 1.0000 1.1 × 10−10 8.6 × 10−11 0.0000

0.2 1.0080 1.0080 1.0080 1.0078 1.9 × 10−11 7.3 × 10−11 1.0 × 10−04

0.4 1.0640 1.0639 1.0640 1.0636 1.4 × 10−09 3.6 × 10−11 3.0 × 10−04

0.6 1.2160 1.2159 1.2160 1.2153 4.3 × 10−09 2.7 × 10−11 6.0 × 10−04

0.8 1.5120 0.5119 0.5120 1.5111 8.8 × 10−09 8.4 × 10−11 8.0 × 10−04

1.0 2.0000 1.9999 2.0000 1.9989 1.3 × 10−08 7.4 × 10−11 1.0 × 10−03

Table 8. Comparison of Leg(M,k), Cheb(N) and HWCM(J) with exact
solution at M = 5, k = 3, N = 4 and J = 3 for v of Example 4.3.

t Exact Leg(5, 3) Cheb(4) HWCM(3) e1 e2 e3

0.0 1.0000 1.0000 1.0000 1.0000 4.1 × 10−11 7.9 × 10−12 0.0000

0.2 0.9920 0.9920 0.9920 0.9922 8.4 × 10−11 7.6 × 10−12 2.0 × 10−04

0.4 0.9360 0.9359 0.9360 0.9364 1.1 × 10−09 7.0 × 10−12 4.0 × 10−04

0.6 0.7840 0.7839 0.7840 0.7846 1.6 × 10−09 4.2 × 10−12 6.0 × 10−04

0.8 0.4880 0.4879 0.4880 0.4888 9.4 × 10−10 1.1 × 10−11 8.0 × 10−04

1.0 0.0000 −2.2 × 10−09 1.2 × 10−11 0.0011 2.2 × 10−09 1.2 × 10−11 1.1 × 10−03

The exact solution of the nonlinear IVPs (57)-(58) is u = −2ln(1+t2), and v = 2ln(1+t2).
We have compared the approximate solution (Leg(M,k)) with exact solution (Exact) in
the Tables 9-10 and Figures 9-10.

5. Conclusion

Wavelet analysis is an emerging advancement in the field of applied science. In this
article, the applicability of the Legendre wavelet operational matrix of integration has
been illustrated to obtain the solution of the system of generaized Emden-Fowler equations.
The numerical results are compared with the exact solution, solution obtained from the
truncated shifted Chebyshev series with the operation matrix method and Haar wavelet
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Figure 5. Comparison of Leg(M,k), Cheb(N) with exact solution at M =
3, k = 2 and N = 2 for u of Example 4.3.

Figure 6. Comparison of Leg(M,k), Cheb(N) with exact solution at M =
3, k = 2 and N = 2 for v of Example 4.3.

Table 9. Comparison of Leg(M,k) with exact solution of u in Example 4.4.

t Exact Leg(3, 2) e1 Leg(4, 2) e1 Leg(6, 2) e1

0.0 0.0000 0.0046 4.6 × 10−03 -0.0004 4.0 × 10−04 3.81 × 10−05 3.8 × 10−05

0.2 -0.0784 -0.0799 1.5 × 10−03 -0.0786 2.0 × 10−04 -0.0784 3.1 × 10−05

0.4 -0.2968 -0.2948 1.9 × 10−03 -0.2966 1.0 × 10−04 -0.2971 2.0 × 10−04

0.6 -0.6149 -0.6287 1.3 × 10−02 -0.6159 9.0 × 10−04 -0.6143 6.0 × 10−04

0.8 -0.9893 -1.0023 1.3 × 10−02 -0.9895 1.0 × 10−04 -0.9874 1.9 × 10−03

1.0 -1.3862 -1.3928 6.5 × 10−03 -1.3792 7.0 × 10−03 -1.3776 8.6 × 10−03

collocation method to show the efficiency and accuracy of the method. It is pointed out
that the proposed method converges to the exact solution more speedily as compared to
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Figure 7. Comparison of Leg(M,k), Cheb(N) with exact solution at M =
5, k = 3 and N = 4 for u of Example 4.3.

Figure 8. Comparison of Leg(M,k), Cheb(N) with exact solution at M =
5, k = 3 and N = 4 for v of Example 4.3.

Table 10. Comparison of Leg(M,k) with exact solution of v in Example 4.4.

t Exact Leg(3, 2) e1 Leg(4, 2) e1 Leg(6, 2) e1

0.0 0.0000 -0.0048 4.8 × 10−03 0.0004 4.0 × 10−04 −2.4 × 10−05 2.4 × 10−05

0.2 0.0784 0.0800 1.6 × 10−03 0.0786 2.0 × 10−04 0.0784 2.6 × 10−05

0.4 0.2968 0.2943 2.4 × 10−03 0.2963 4.0 × 10−04 0.2968 8.4 × 10−05

0.6 0.6149 0.6283 1.3 × 10−02 0.6132 1.7 × 10−03 0.6113 3.6 × 10−03

0.8 0.9893 0.9923 2.9 × 10−03 0.9747 1.5 × 10−02 0.9715 1.7 × 10−02

1.0 1.3862 1.3510 3.5 × 10−02 1.3273 5.9 × 10−02 1.3242 6.2 × 10−02

other methods [20, 30] and reduces the computational work. It is also noticed that the
proposed method has a prominent ability to deal with singular initial value problems due
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Figure 9. Comparison of Leg(M,k) with exact solution of u in Example 4.4.

Figure 10. Comparison of Leg(M,k) with exact solution of v in Example 4.4.

to its straightforward execution of the method. Hence, the present method is a more
efficient, reliable and accurate numerical algorithm to solve the system of generalized
Emden-Fowler equation with initial boundary conditions.
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