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APPLYING VIM TO CONFORMABLE PARTIAL DIFFERENTIAL

EQUATIONS

A. HARIR1∗, S. MELLIANI1, L. S. CHADLI1, §

Abstract. In this paper, we used new conformable variational iteration method, by
the conformable derivative, for solving fractional heat-like and wave-like equations. This
method is simple and very effective in the solution procedures of the fractional partial
differential equations that have complicated solutions with classical fractional derivative
definitions like Caputo, Riemann-Liouville and etc. The results show that conformable
variational iteration method is usable and convenient for the solution of fractional partial
differential equations. Obtained results are compared to the exact solutions and their
graphics are plotted to demonstrate efficiency and accuracy of the method.
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1. Introduction and Basic definitions

A fractional differentiation and integration operator has different kinds of definitions
that we can mention, the Riemann-Liouville definition [29, 27], the Caputo definition [28]
and so on. Lately, Khalil et al [23, 24] introduced a new simple definition of the fractional
derivative named the conformable derivative; which can redress shortcomings of the other
definitions [1, 12, 14, 6, 30]. Variational iteration method [15, 19, 20, 21, 25, 7, 8, 4, 5] based
on the use of restricted variations, correction functional and Lagrange multiplier technique
developed by Inokuti et al. (1978). This method does not require the presence of small
parameters in the differential equation and provides the solution (or an approximation
to it) as a sequence of iterates. The method does not require that the nonlinearities be
differentiable with respect to the dependent variable and its derivatives.

This technique is, in fact, a modifying of the general Lagrange multiplier method into
an iteration shown to solve effectively, easily, and accurately a large class of nonlinear
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problems, generally one or two iterations lead to highly accurate solutions.

The aim of this paper is to extend the variational iteration method to conformable
variational iteration method by conformable derivative [2, 3] and was used to solve various
kinds of fractional heat-like and wave-like equations. Some examples are given to show
the reliability and the efficiency of the conformable variational iteration method.
In this section, we briefly present the basic definitions. Conformable variational iteration
method C-VIM is introduced in Section 2. The proposed method is illustrated by solving
two examples of conformable heat-like equations in Section 3. In Section 4 we present
the mentioned method for solving conformable wave-like equations and proved by two
examples. In Section 5 the conclusion is illustrated.

Definition 1.1. Given a function f : [0,∞)→ R. Then the ” conformable derivative” of
f of order α is defined by

Tα(f)(t) = lim
ε→0

f
(
t+ εt1−α

)
− f(t)

ε

for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0, and limt→0+ f
(α)(t)

exists, then define

f (α)(0) = lim
t→0+

f (α)(t) (1)

We will, sometimes, write f (α) for Tα(f)(t), to denote the conformable derivatives of f
of order α.
One can easily show that Tα satisfies all the properties in the following theorem [23].

Theorem 1.1. Let α ∈ (0, 1] and f, g be α-differentiable at a point t > 0. Then

(1) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.
(2) Tα (tp) = ptp−α for all p ∈ R
(3) Tα(λ) = 0, for all constant functions f(t) = λ
(4) Tα(fg) = fTα(g) + gTα(f)

(5) Tα

(
f
g

)
= gTα(f)−fTα(g)

g2

(6) In addition, if f is differentiable, then Tα(f)(t) = t1−α
df
dt

(t).

2. Conformable variational iteration method C-VIM

We will introduce C-VIM for FPDEs in this section. We write the non-linear FPDEs
in the standard operator form

Tαu(x, t) + Lu(x, t) +Nu(x, t) = G(x, t) (2)

where Tα is a linear operator with conformable derivative of order α with n < α ≤ n+ 1,
L is a linear operator, N is a non-linear operator and G is a nonhomogeneous term. If the
linear operator in Eq (2) is applied to Theorem 1.1, the following equation is obtained :

t[α]−α
∂[α]

∂t[α]
u(x, t) + Lu(x, t) +Nu(x, t) = G(x, t) (3)

as in classical VIM, the correction function for equation (3) can be constructed as

un+1(x, t) = un(x, t) +

∫ t

0
λ(x, s)

[
s[α]−α

∂[α]

∂t[α]
un(x, s) + Lu(x, s) +Nu(x, s)−G(x, s)

]
ds

(4)
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where λ is a general Lagrangian multiplier and it can be optimally determined by the aid
of variational theory [18, 19, 20, 21].
It is obvious that the successive approximations un;n ≥ 0 can be established by determin-
ing λ, a general Lagrange multiplier, which can be identified optimally via the variational
theory. The function ũn is a restricted variation which means δũn = 0. Therefore, we first
determine the Lagrange multiplier λ that will be identified optimally via integration by
parts. The successive approximations un+1(x, t) ≥ 0 of the solution u(x, t) will be readily
obtained upon using the obtained Lagrange multiplier and by using any selective function
u0. The initial values are usually used for the selected zeroth approximation u0. With
λ determined, then several approximations can be determined. Consequently, the exact
solution is given by

u(x, t) = lim
n→∞

un(x, t)

3. Conformable heat-like equations

Example 3.1. Considering the following one-dimensional conformable heat-like equation

∂α

∂tα
u(x, t) =

1

2
x2

∂2

∂x2
u(x, t), 0 < α ≤ 1, 0 < x ≤ 1 and t > 0 (5)

subject to the boundary conditions

u(0, t) = 0, u(1, t) = e
tα

α , (6)

and the initial condition

u(x, 0) = x2. (7)

The exact solution of this problem (5) is

u(x, t) = x2e
tα

α (8)

For solving by C-VIM we obtain the recurrence relation

un+1(x, t) = un(x, t) +

∫ t

0
λ(x, s)

[
s1−α

∂

∂s
un(x, s)− 1

2
x2

∂2

∂x2
ũn(x, s)

]
ds (9)

where λ is a Lagrange multiplier, ũn is a restricted variation, i.e δũn = 0. Making Eq (9)
stationary with respect to un, we have

∂

∂s
λ(x, s) = 0, and 1 + λ(x, s)|s=t = 0. (10)

The Lagrange multiplier can be identified as λ = −1. As a result we obtain the following
iteration formula.

un+1(x, t) = un(x, t)−
∫ t

0

[
s1−α

∂

∂s
un(x, s)− 1

2
x2

∂2

∂x2
ũn(x, s)

]
ds, (11)

Beginning with an initial approximation u0(x, t) = u(x, 0) = x2, we can obtain the follow-
ing successive approximations
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Figure 1. Comparison of four iteration C-VIM solutions with the exact
solutions for Eq (5)

u1(x, t) = x2[1 + t]

u2(x, t) = x2
[
1 + 2t− t2−α

2− α
+
t2

2

]
u3(x, t) = x2

[
1 + 3t− 3

t2−α

2− α
+

t3−2α

3− 2α
+ 3

t2

2
− t3−α

3− α
− t3−α

(2− α)(3− α)
+
t3

3!

]
u4(x, t) = x2

[
1 + 4t− 6

t2−α

2− α
+ 4

t3−2α

3− 2α
− t4−3α

4− 3α
+ 2

t4−2α

4− 2α
− 4

t3−α

3− α

− 4
t3−α

(2− α)(3− α)
+

t4−2α

(3− 2α)(4− 2α)
+ 6

t2

2!
+ 4

t3

3!
− t4−α

(3− α)(4− α)

− t4−α

(2− α)(3− α)(4− α)
− t4−α

(2)(4− α)
+
t4

4!

]
...

when we consider α = 1, the solution by C-VIM is obtained as

un(x, t) = x2
[
1 + t+

t2

2!
+ · · ·+ tn

n!

]
(12)

From (12), the C-VIM solution u(x, t) = limn→∞ un(x, t) = x2et This is also exact solu-
tion. Now, we analyse the C-VIM and exact solutions graphically for some α values see
fig 1.

Example 3.2. We consider the two-dimensional conformable heat-like model

∂α

∂tα
u(x, y, t) =

1

2

(
y2

∂2

∂x2
u(x, y, t) + x2

∂2

∂y2
u(x, y, t)

)
, 0 < α ≤ 1, 0 < x, y ≤ 1 and t > 0

(13)
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subject to the boundary conditions

∂

∂x
u(0, y, t) = 0, ∂

∂xu(1, y, t) = 2 sinh
(
tα

α

)
(14)

∂

∂y
u(x, 0, t) = 0, ∂

∂yu(x, 1, t) = 2 cosh
(
tα

α

)
(15)

and the initial condition

u(x, y, 0) = y2 (16)

Exact solution of this problem (13) is

u(x, y, t) = x2 sinh

(
tα

α

)
+ y2 cosh

(
tα

α

)
(17)

Similarly we can establish an iteration formula in the form

un+1(x, y, t) = un(x, y, t)−
∫ t

0

[
s1−α

∂

∂s
un(x, y, s)

− 1

2

(
y2

∂2

∂x2
un(x, y, s) + x2

∂2

∂y2
un(x, y, s)

)]
ds (18)

Begininig with (16), by the iteration formula (18) , we obtain the following successive
approximations

u1(x, y, t) = x2t+ y2

u2(x, y, t) = x2
[
2t− t2−α

2− α

]
+ y2

[
1 +

t2

2!

]
u3(x, y, t) = x2

[
3t− 3

t2−α

2− α
+

t3−2α

3− 2α
+
t3

3!

]
+ y2

[
1 + 3

t2

2!
− t3−α

3− α
− t3−α

(2− α)(3− α)

]
u4(x, y, t) = x2

[
4t− 6

t2−α

2− α
+ 4

t3−2α

3− 2α
− t4−3α

4− 3α

+ 4
t3

3!
− t4−α

(3− α)(4− α)
− t4−α

(2− α)(3− α)(4− α)
− t4−α

2(4− α)

]
+ y2

[
1 + 6

t2

2
− 4

t3−α

(3− α)
− 4

t3−α

(2− α)(3− α)
+ 2

t4−2α

4− 2α

+
t4−2α

(3− 2α)(4− 2α)
+
t4

4!

]
...

when we consider α = 1, the solution by C- VIM is obtained as

un(x, t) = x2
[
t+

t3

3!
+ · · ·+ 1− (−1)n

2

tn

n!

]
+ y2

[
1 +

t2

2!
+ · · ·+ 1 + (−1)n

2

tn

n!

]
(19)

From (19), the C-VIM solution u(x, t) = limn→∞ un(x, t) = x2 sinh(t) + y2 cosh(t) This is
also exact solution. Now, we analyse the C-VIM and exact solutions graphically for some
α values fig2.
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Figure 2. Comparison of four iteration C-VIM solutions with the exact
solutions for Eq (13)

4. Conformable wave-like equations

Example 4.1. We first consider the one-dimensional conformable wave-like equation

∂α

∂tα
u(x, t) =

1

2
x2

∂2

∂x2
u(x, t), 1 < α ≤ 2, 0 < x ≤ 1 and t > 0 (20)

subject to the boundary conditions

u(0, t) = 0, u(1, t) = 1 + sinh

(
tα

α

)
(21)

and the initial conditions

u(x, 0) = x,
∂α

∂tα
u(x, 0) = x2 for 0 < α ≤ 1 (22)

Exact solution of this problem (20) is

u(x, t) = x+ x2 sinh

(
tα

α

)
(23)

According to the C-VIM, the correct functional for (20) reads

un+1(x, t) = un(x, t) +

∫ t

0
λ(x, s)

[
s2−α

∂2

∂s2
un(x, s)− 1

2
x2

∂2

∂x2
ũn(x, s)

]
ds (24)

The Lagrange can be identified by making Eq (24) stationary with respect to un :

∂2

∂s2
λ(x, s) = 0, 1− ∂

∂s
λ(x, s)

∣∣∣∣
t=s

= 0, λ(x, s)|t=s = 0

The Lagrange multiplier can be identified as λ = s − t. We obtain the following iteration
formula.

un+1(x, t) = un(x, t) +

∫ t

0
(s− t)

[
s2−α

∂2

∂s2
un(x, s)− 1

2
x2

∂2

∂x2
ũn(x, s)

]
ds (25)

Beginning with an initial approximation

u0(x, t) = u(x, 0) +
∂α

∂tα
u(x, 0) = x+ x2t for 0 < α ≤ 1
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Figure 3. Comparison of three iteration C-VIM solutions with the exact
solutions for Eq (20)

we obtain the following successive approximations

u1(x, t) = x+ x2
[
t+

t3

3!

]
u2(x, t) = x+ x2

[
t+ 2

t3

3!
− t5−α

(4− α)(5− α)
+
t5

5!

]
u3(x, t) = x+ x2

[
t+ 3

t3

3!
− 2

t5−α

(4− α)(5− α)
+ 3

t5

5!

− t7−α

3!(6− α)(7− α)
− t7−α

(4− α)(5− α)(6− α)(7− α)
+
t7

7!

]
when we consider α = 1, the solution by C-VIM is obtained as

un(x, t) = x+ x2
[
t+

t3

3!
+
t5

5!
+ · · ·+ t2n+1

(2n+ 1)!

]
The approximate solution reads u = limn→∞ un(x, t) = x+ x2 sinh(t), this is also exact

solution.
Now, we compare the C-VIM solution with the exact solution on the graphs for some α
These comparisons can be seen in fig 3

Example 4.2. Consider the two-dimensional coformable wave-like equation

∂α

∂tα
u(x, y, t) =

1

12

(
y2

∂2

∂x2
u(x, y, t) + x2

∂2

∂y2
u(x, y, t)

)
, 1 < α ≤ 2, 0 < x, y ≤ 1and t > 0

(26)
subject to the boundary conditions

∂

∂x
u(0, y, t) = 0,

∂

∂x
u(1, y, t) = 2 cosh

(
tα

α

)
(27)

∂

∂y
u(x, 0, t) = 0,

∂

∂y
u(x, 1, t) = 2 sinh

(
tα

α

)
(28)

and the initial condition

u(x, y, 0) = x4,
∂α

∂tα
u(x, y, 0) = y4 for 0 < α ≤ 1 (29)
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Exact solution of this problem (26) is

u(x, y, t) = x4 cosh

(
tα

α

)
+ y4 sinh

(
tα

α

)
(30)

Similarly we can establish an iteration formula in the form

un+1(x, y, t) = un(x, y, t) +

∫ t

0
(s− t)

[
s2−α

∂2

∂s2
un(x, y, s)

− 1

12

(
x2

∂2

∂x2
un(x, y, s) + y2

∂2

∂y2
un(x, y, s)

)]
ds (31)

We select an initial approximation

u0(x, y, t) = u(x, y, 0) +
∂α

∂tα
u(x, y, 0) = x4 + y4t for 0 < α ≤ 1

by the following successive approximations can be obtained :

u1(x, y, t) = x4
[
1 +

t2

2!

]
+ y4

[
t+

t3

3!

]
u2(x, y, t) = x4

[
1 + 2

t2

2!
− t4−α

(3− α)(4− α)
+
t4

4!

]
+ y4

[
t+ 2

t3

3!

− t5−α

(4− α)(5− α)
+
t5

5!

]
u3(x, y, t) = x4

[
1 + 3

t2

2!
− 3

t4−α

(3− α)(4− α)
+

t6−2α

(5− 2α)(6− 2α)

− t6−α

(4− α)(5− α)(6− α)
− t6−α

(3− α)(4− α)(5− α)(6− α)

+ 3
t4

4!
+
t6

6!

]

+ y4

[
t+ 3

t3

3!
− 3

t5−α

(4− α)(5− α)
+

t7−2α

(6− 2α)(7− 2α)

+ 3
t5

5!
− t7−α

3!(6− α)(7− α)
− t7−α

(4− α)(5− α)(6− α)(7− α)

+
t7

7!

]
when we consider α = 1, the solution by C-VIM is obtained as

un(x, y, t) = x4
[
1 +

t2

2!
+
t4

4!
+ · · ·+ t2n

(2n)!

]
+ y4

[
t+

t3

3!
+
t5

5!

+ · · ·+ t2n+1

(2n+ 1)!

]
We, therefore, obtain the approximate solution reads

u = lim
n→∞

un(x, y, t) = x4 cosh(t) + y4 sinh(t)
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Figure 4. Comparison of three iteration C-VIM solutions with the exact
solutions for Eq (26)

which is the exact solution.
Now, we compare the C-VIM solution with the exact solution on the graphs for some α.
These comparisons can be seen in fig 4.

5. Conclusions

The main goal of this work was to propose a reliable method for solving conformable
heat-like and wave-like equations with variable coefficients. The main advantage of this
method is the flexibility to give approximate solutions to conformable problems because
the proposed equations may not be solved by the method of separation of variables. The
conformable variational iteration method has worked effectively and simply to handle these
models see figures, and this gives it wider applicability. The proposed scheme was applied
directly. The approach was tested by employing the method to obtain exact solutions for
four numerical examples, two from each type (one-dimensional and two-dimensional for
Conformable Heat-like and Conformable wave-like equations). The results obtained in all
cases demonstrate the reliability and the efficiency of this method.
For further research, we propose the study of fractional differential dynamical systems
[8, 26]. In addition, we propose to extend the results of the present paper and combine
them with the results in the epidemic model [16, 17].
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