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Abstract 
In this study, changes in temperature and precipitation climatology and extreme weather events over the Mediterranean Basin 
including Turkey were investigated using HIRHAM5 driven by global climate models such as EC-EARTH, HadGEM2-ES, 

and NorESM1-M for 2011-2100 compared to 1971-2000. RCP4.5 and RCP8.5 scenario outputs of global climate models 

were used as forcing data. Daily mean temperature and precipitation variables are used to compute extreme indices. Extreme 

indices were calculated for the period of 2071-2100 compared to the reference period. According to the results, the severity 
of temperature- and precipitation-based indices will be expected to increase throughout the century with increasing radiative 

forcing. Minimum of minimum temperatures will increase more pronounced over the northern Mediterranean, which is 

referred to as climate change hot spots, whereas the increase in a maximum of maximum temperatures is moderate over land 

areas. A decrease in total wet-day precipitation is expected while the number of dry days is expected to increase. Therefore, 
the Mediterranean Basin and Turkey will have warmer and drier conditions compared to present climate conditions. 

Keywords: Climate change, Extreme weather events, HIRHAM5, Regional climate modeling, The Mediterranean Basin, 

Turkey. 

 

Öz 

Bu çalışmada, 1971–2000 referans dönemine göre 2011-2100 gelecek dönemi için Türkiye'nin de dahil olduğu Akdeniz 

Havzası üzerinde sıcaklık ve yağış klimatolojilerinde ve aşırı hava olaylarındaki öngörülen değişiklikler, EC-EARTH, 

HadGEM2-ES ve NorESM1-M olmak üzere üç küresel iklim modeli çıktılarıyla koşulan HIRHAM5 bölgesel iklim modeli 
benzetimleri kullanılarak değerlendirildi. Küresel iklim modellerinin RCP4.5 ve RCP8.5 senaryo çıktıları kullanıldı. Ekstrem 

iklim indekslerini hesaplamak için sıcaklık ve yağış değişkenlerinin günlük ortalamaları kullanıldı. Ekstrem iklim 

indekslerindeki değişim yüzyılın sonu olan 2071-2100 yıllarında 1971-2000 referans dönemine göre hesaplandı. Sonuçlara 

göre, artan ışınımsal zorlamayla birlikte yüzyıl boyunca sıcaklık ve yağış temelli ekstrem hava olaylarının daha şiddetlenmes i 
beklenmektedir. Minimum sıcaklıklardaki artış, iklim değişikliğinin en önemli sıcak noktalarından biri olması beklenen 

Akdeniz Havzası'nın kuzey kesiminde daha belirginken, maksimum sıcaklıklardaki artış ise karalar üzerinde ılımlıdır. Art 

arda gelen kurak günlerin sayısındaki artışla birlikte toplam yağışlı gün sayılarında azalma beklenmektedir. Bu nedenle, 

Akdeniz Havzası ve Türkiye üzerindeki iklim koşullarının daha sıcak ve daha kurak olması öngörülmektedir.  
Anahtar Kelimeler: Akdeniz Havzası, Aşırı Hava Olayları, Bölgesel İklim Modellemesi, HIRHAM5, İklim Değişikliği, 

Türkiye. 

 

I. INTRODUCTION 
Climate change is a major problem for human beings in this century. Climate change, which has a different 

impact in different regions of the world, affects many different areas such as human health, agriculture and food 

supply, freshwater resources, and sea-level rise and it threatens not only human beings but also all living 

organisms. Additionally, changes in the frequency and intensity of extreme events have been observed. 

According to the latest report of the Intergovernmental Panel on Climate Change (AR6), it is certain that human 

influence warms the atmosphere, ocean, and soil. Widespread and rapid changes have occurred in the 

atmosphere, ocean, cryosphere, and biosphere, and human influence has warmed the climate at an unprecedented 

rate in at least the last 2,000 years and those changes are unprecedented for centuries and millennia. Each of the 

last 4 decades since 1850 has been warmer than the decade that preceded it [1]. 
 

Results of the climate model projections show that the larger Mediterranean Basin including Turkey has been 

specified as the climate change hot spot by previous studies [2-7]. According to the model results, warming will 
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be expected to occur over the Mediterranean in this 

century [8-15]. Interannual temperature variability is 

also projected to increase in summer [5][8]. Because 

of an increase in temperature variability with the 

strong mean warming, the severity of extreme 

temperatures and the frequency of heatwaves are 
expected to increase [16]. Model projections agree 

that in the Mediterranean region, the increase in 

temperature will be 20% warmer than the global 

temperature change, and a higher increase is expected 

to occur in summer. Temperatures in the day are 

anticipated to increase more than temperatures in the 

night, indicating an increase in the magnitude of the 

diurnal range [7].  

 

There will also be an escalation of heat stress in the 

Mediterranean Basin and the frequency and severity of 

heatwave days will increase because of projected 

changes in extreme climate indices for temperature 

[17-24]. Heat stress is expected to intensify due to 

right-skewed temperature distribution. According to 

the projections, larger increases are anticipated in the 

95th percentile maximum and minimum temperatures 
than that of the 75th percentile [18]. The number of 

occurrences of a heatwave is projected to highly 

increase in the Mediterranean region changing from 

about 2 days per summer for the reference period of 

1961–1990 to around 6–24 days in 2021–2050 and 

27–67 days in 2071–2100 [21]. According to the 

projections based on CMIP5 multi-model ensembles 

under RCP8.5, for the Mediterranean region, the 

highest temperatures are found to increase about 7 °C 

in summer which is among the greatest across all 

subregions around the world. Tropical nights will also 

increase by approximately 80 days in the 

Mediterranean under RCP8.5 [22]. 

 

Turkey is also a vulnerable region to climate change 

since it is one of the Mediterranean countries. Studies 

on climate change and variability for the 
Mediterranean Basin by simulating global and 

regional climate models based on both observation 

data and various greenhouse gas emission scenarios 

show that the Mediterranean Basin will be adversely 

affected by climate change in the future [25-30]. 

Accordingly, an increase in the number of extremely 

hot days, the frequency and continuity of heatwaves is 

expected in the Mediterranean Region [31-37]. There 

are not many climate model projection studies over 

Turkey and surrounding regions. Almost all studies 

were based on results of the regional climate model, 

RegCM [38-53]. Results based on RegCM driven by 

different global climate models show warming and 

drying over Turkey. The temperature will increase 

from on average 1 °C up to 4 °C for the period of 

2020-2050. According to the results of RegCM driven 

by HadGEM2-ES under RCP4.5, there will be a 4.0 
°C increase in temperature for summer in all parts of 

the region and a 2.0 °C increase in temperature for 

winter. According to the model results except ones 

driven by HadGEM2-ES under RCP 8.5, precipitation 

will decrease almost all over the domain which is 

already dry [54]. 

 

Studies of regional climate projections based only on 

one regional climate model (RegCM) for Turkey and 
surrounding regions are not adequate. The ensemble 

approach which is based on the ensemble mean of 

multi-model results has been an approved technique 

for several years in the regional modeling community. 

This leads to international projects involving many 

model working groups such as PRUDENCE [55-56], 

ENSEMBLES [57-58] and CORDEX [59-60], 

providing an opportunity for a better understanding of 

the change in future climate. The most important 

reason for the lack of literature in this regard over 

Turkey is that the regional climate models are not 

open source and are mostly used by developing 

centers. HIRHAM5 (a model developed by the Danish 

Meteorological Institute) was used in this study to 

obtain 12.5 km simulations [61]. HIRHAM5 has been 

effectively used as a regional model and applied to the 

EURO-CORDEX domain including the 
Mediterranean Basin [62-66]. Simulations are 

performed by driving the model with EC-EARTH, 

HadGEM2-ES, NorESM1-M global climate model 

which has medium, high and low climate sensitivity 

respectively, under RCP4.5 and RCP8.5. Monthly 

mean values of temperature and precipitation were 

used to investigate the change in climatology for 

2011-2100 relative to the base period of 1971-2000. 

Daily minimum, maximum temperature, and 

precipitation fields were also used to calculate climate 

indices defined by ETCCDI. Results of HIRHAM5 

were also compared with the results of a different 

model, RegCM [67-68].  

 

II. MATERIALS AND METHOD 
In this study, HIRHAM5 was used to project 

temperature and precipitation climatology over the 

Mediterranean and Turkey. The HIRHAM is a 

regional atmospheric climate model based on the 

HIRLAM [69] and ECHAM models [70], combining 

the dynamics of the former model with the physical 

parameterization schemes of the latter. The HIRLAM 

model – High-Resolution Limited Area Model - is a 

numerical short-range weather forecasting system 
(http://hirlam.org) and has been used for routine 

weather forecasting at various meteorological 

institutes, i.e. DMI (Denmark), FMI (Finland), IMS 

(Iceland), KNMI (The Netherlands), met.no (Norway), 

INM (Spain), and SMHI (Sweden). Results of the 

model were compared with ERA-interim [71] 

reanalysis datasets and CRU observational datasets to 

test its performance [72]. EC-EARTH, HadGEM2-ES, 

and NorESM1-M global climate models were used as 

forcing data for future simulations under two RCPs 

[73-75]. In this study, climate variables for the 

Mediterranean region and Turkey were simulated via 

HIRHAM5 under the two different RCPs [75]. 
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RCP4.5, which is a medium-low emission scenario, 

stabilizes after 2100 at 4.5 W/m
2
 without overshoot 

pathway, while RCP8.5 is the highest of the four 

reaches at 8.5 W/m
2
 in 2100 on a rising trajectory. 

 

The spatial changes in lowest of minimum 

temperatures (TNn) and highest of maximum 

temperatures (TXx), the temporal evolution of cold 

days, cold nights, warm days, and warm nights, and 

spatial patterns of change in total wet day precipitation 

and consecutive dry days (CDD) were computed for 

all datasets and scenario outputs [76-78]. The 

percentile indices are presented as the percentage of 

days that exceed the thresholds calculated as 

percentiles of the 1971-2000 base period. Cold nights, 

cold days and warm nights, and warm days, which are 
represented as the percentage of days where TN or TX 

is less than the 10th or more than the 90th percentile, 

respectively were considered. In the warm spell 

duration index (WSDI), the number of days of a year 

when the daily maximum temperature is more than the 

90th percentile for at least six consecutive days were 

counted. CDD is described by the duration of the 

longest period of dry days occurred consecutively in a 

year. Extreme weather indices were calculated for the 

future period of 2071-2100 compared to the period of 

1971-2000. 
 

Table 1. Extreme Climate Indices recommended by 

ETCCDI. 

Label Index Name Definition Unit 

TNn Min TN 
Annual minimum of 
minimum temperature 

°C 

TXx Max TX 
Annual maximum of 
maximum temperature 

°C 

TN10p Cold Nights 

The percentage of days 

in a year is determined 
where TN < 10

th
 

percentile of minimum 
temperature 

% 

TX10p Cold Days  

The percentage of days 
in a year is determined 
where TX < 10

th
 

percentile of maximum 
temperature. 

% 

TN90p Warm Nights 

The percentage of days 
in a year is determined 
where TN > 90

th
 

percentile of minimum 
temperature. 

% 

TX90p Warm Days 

The percentage of days 
in a year is determined 
where TX > 90

th
 

percentile of maximum 
temperature. 

% 

WSDI 
Warm Spell 
Duration 

Annual count of days 
with at least 6 
consecutive days when 
TX > 90

th
 percentile of 

maximum temperature. 

days 

PRCPTOT 
Total wet-day 
precipitation 

Annual total 
precipitation in wet 
days. 

mm 

CDD 
Consecutive 
Dry Days 

The largest number of 
consecutive days where 
PR<1 mm. 

days 

III. RESULTS AND DISCUSSIONS 

3.1. Model Performance for Temperature 
RCM’s performance in simulating present climate 

conditions was investigated by comparing model 

results with ERA-interim and CRU for 1971-2000. 

Results of ERA-Interim are given for 1980-2000 due 

to the availability of data. Outputs of HIRHAM5, 
driven by EC-EARTH, HadGEM2-ES, and 

NorESM1-M are represented in Figure 1-3 together 

with ERA-interim and CRU respectively. The 

climatology of model results was calculated for a 

period of 1971–2000. The results of the model show a 

much more detailed temperature distribution due to 

higher resolution (0.11°-12.5 km) compared to ERA-

interim (0.75°) and CRU (0.5°) dataset. Comparisons 

with the observational dataset (CRU) were also given 

as statistics including bias, Root Mean Square Error 

(RMSE), and correlation coefficient for mean 

temperature, maximum and minimum temperature, 

and precipitation weighted over the domain for each 

season (Table 2-5). Regional climate model, 

HIRHAM forced by all three global climate models 

simulates the spatial and temporal (seasonal) 

distribution of temperature over the domain. All three 
model outputs show similar temperature distribution 

throughout the region except HadGEM2-ES shows 

warmer temperatures over the Mediterranean Sea and 

North Africa could be due to high equilibrium climate 

sensitivity of global climate model HadGEM2-ES. 

Results of each model produce colder temperatures 

compared to reanalysis and observational dataset 

around high topographical regions of the domain like 

the Alpine region and southeastern Turkey. We also 

observed this cold bias in outputs of RegCM. This 

might be because of error in measurements at the 

stations which were generally built-in valleys of 

mountains of the region [53]. Excluding the 

mountainous parts of the domain, HIRHAM5 gives 

similar results with reanalysis data and observation. 

 

Spatial statistics for seasonal mean temperature were 
given in Table 1. Results of the ERA-interim dataset 

and the HIRHAM5 model were compared with the 

CRU observational datasets. The performance of the 

reanalysis dataset is better compared to the regional 

model as expected. A cold bias is seen in the results of 

EC-EARTH driven HIRHAM5 for every season 

whereas warm bias is seen in HadGEM2-ES and 

NorESM1-M driven HIRHAM5 except for summer in 

NorESM1-M driven HIRHAM5. Even though the 

results of HIRHAM5 driven by different GCMs are 

quite similar in magnitude, HadGEM2-ES driven 

HIRHAM5 model results show better performance 

compared to other models except for winter if we look 

at the RMSE values. Winter has larger RMSE values 

than the other seasons likely due to cold bias around 

the mountainous region. It is also shown that model 

results are highly correlated with the observational 
dataset. Maximum and minimum temperature results 

of HIRHAM5 driven by three GCMs were also given 
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in Table 3 and Table 4, respectively. Each model 

result has cold biases for every season regardless of 

driven GCM for maximum temperature. This could be 

indicating that future changes in maximum 

temperature are underestimated by model results. 

RMSEs are higher than that of mean temperature 
which is anticipated since the magnitude of maximum 

temperature is larger than mean temperature. Summer 

values of RMSE are larger than other seasons in which 

stronger magnitudes are observed. On the other hand, 

minimum temperatures are overestimated by the 

model (Table 4). EC-EARTH driven HIRHAM5 has 

the highest performance out of the three models 

according to RMSE values. Both maximum and 

minimum temperature results are found to be highly 
correlated with the observational values. 

 

 

 
Figure 1. Average temperatures (°C) by HIRHAM5 with EC-EARTH dataset for 1971–2000 (1

st
 column), by 

ERA-Interim dataset for 1980–2000 (2
nd

 column) and CRU observational temperature dataset for 1971–2000 (3
rd

 

column) for winter (a-c), spring (d-f), summer (g-i), autumn (j-l). 

 

 
Figure 2. Average temperatures (°C) by HIRHAM5 with HadGEM2-ES dataset for 1971–2000 (1

st
 column), by 

ERA-Interim dataset for 1980–2000 (2
nd

 column) and CRU observational temperature dataset for 1971–2000 (3
rd

 

column) for winter (a-c), spring (d-f), summer (g-i), autumn (j-l). 
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Figure 3. Average temperatures (°C) by HIRHAM5 with NorESM1-M dataset for 1971–2000 (1

st
 column), by 

ERA-Interim dataset for 1980–2000 (2
nd

 column) and CRU observational temperature dataset for 1971–2000 (3
rd

 

column) for winter (a-c), spring (d-f), summer (g-i), autumn (j-l). 

 

Table 2. Statistics for seasonal mean temperature (°C) weighted over the whole domain for the period of 1980-

2000 for ERA-interim, and 1971-2000 for HIRHAM5 driven by three global climate models compared to CRU 

observational dataset. 

  ERA-interim 
EC-EARTH-

HIRHAM 

HadGEM2-ES-

HIRHAM 

NorESM1-M-

HIRHAM 

DJF 

Bias 

RMSE 

Correlation 

0.448 

1.244 

0.975 

-0.321 

2.490 

0.900 

0.114 

2.593 

0.881 

1.301 

2.882 

0.877 

MAM 

Bias 

RMSE 

Correlation 

0.424 

1.042 

0.977 

-0.624 

1.606 

0.958 

0.504 

1.553 

0.955 

0.857 

1.777 

0.951 

JJA 

Bias 

RMSE 
Correlation 

0.482 

1.231 
0.970 

-1.700 

2.548 
0.944 

0.500 

1.809 
0.937 

-0.660 

2.217 
0.928 

SON 

Bias 

RMSE 

Correlation 

0.535 

1.068 

0.982 

-1.160 

2.087 

0.944 

0.288 

1.847 

0.937 

0.163 

1.835 

0.931 

 

Table 3. Statistics for seasonal mean maximum temperature (°C) weighted over the whole domain for the period 

of 1971-2000 for HIRHAM5 driven by three global climate models compared to CRU observational dataset. 

  
EC-EARTH-

HIRHAM 

HadGEM2-ES-

HIRHAM 

NorESM1-M-

HIRHAM 

DJF 

Bias 

RMSE 

Correlation 

-1.776 

2.922 

0.921 

-1.370 

2.880 

0.907 

-0.329 

2.642 

0.901 

MAM 

Bias 

RMSE 

Correlation 

-2.517 

3.110 

0.940 

-1.322 

2.366 

0.930 

-1.079 

2.388 

0.920 

JJA 

Bias 

RMSE 

Correlation 

-4.046 

4.848 

0.901 

-1.896 

3.211 

0.885 

-3.023 

4.210 

0.880 

SON 

Bias 

RMSE 

Correlation 

-3.303 

3.719 

0.950 

-1.876 

2.608 

0.944 

-2.043 

2.829 

0.935 
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Table 4. Statistics for seasonal mean minimum temperature (°C) weighted over the whole domain for the period 

of 1971-2000 for HIRHAM5 driven by three global climate models compared to CRU observational dataset. 

  
EC-EARTH-
HIRHAM 

HadGEM2-ES-
HIRHAM 

NorESM1-M-
HIRHAM 

DJF 

Bias 

RMSE 

Correlation 

1.389 

3.230 

0.895 

1.881 

3.448 

0.879 

3.148 

4.197 

0.874 

MAM 

Bias 

RMSE 
Correlation 

1.393 

2.468 
0.937 

2.448 

3.120 
0.938 

2.916 

3.454 
0.940 

JJA 
Bias 
RMSE 

Correlation 

0.857 
2.209 

0.938 

3.053 
3.569 

0.935 

1.883 
2.836 

0.925 

SON 

Bias 

RMSE 
Correlation 

1.282 

2.583 
0.924 

2.727 

3.553 
0.917 

2.624 

3.429 
0.914 

 

3.2. Model Performance for Precipitation 
Average precipitation obtained from the HIRHAM5, 

driven by EC-EARTH, HadGEM2-ES, and 

NorESM1-M global dataset, together with ERA-

interim and the CRU, is presented in Figure 4-6 

respectively. Results give very similar values for each 

HIRHAM5 output driven by three different global 

models. We observe slightly more precipitation in the 

spring season over the Mediterranean Sea for 

HIRHAM5 driven by EC-EARTH model data than 

other model results (Figure 4d). Even though the 

regional climate model reproduces seasonal variability 

reasonably well, it overestimates precipitation 

compared to the observation, especially over high 

plateau regions during the spring, autumn, and winter 

seasons. Overestimation is independent of the global 
climate model used to drive the regional climate 

model, HIRHAM5. This wet bias is also observed in 

outputs of regional climate model RegCM. It might be 

because of the bias in the observational dataset as we 

observed it in temperature outputs as well. However, 

model outputs agree with reanalysis and observations 

for summer over Turkey where precipitation amounts 

have already low values. 
 

Model performance for precipitation was also 
investigated by looking at spatial statistics over the 

whole domain given by Table 5. Results were 

compared with the CRU observational dataset for 

mean precipitation as well. Negative bias is seen in the 

ERA-interim results for every season. Model results 

differ in direction of bias except for negative bias in 

summer. There is a positive bias for winter in all 

outputs of HIRHAM5 indicating that it overestimates 

the precipitation. Bias and RMSE values are smaller 

for summer since this season is drier compared to 

other seasons in the region. Winter has higher values 

of RMSE even if the bias is small possibly because of 

an overestimation of precipitation values. EC-EARTH 

driven HIRHAM5 has the lowest RMSE for winter 

and autumn when the region takes more precipitation 

compared to other seasons. Even though it is less than 

temperature, precipitation values are also correlated 
with the observation.  
 

3.3. Changes in Temperature 
Projections of temperature obtained from HIRHAM5 

forced by EC-EARTH, HadGEM2-ES, and 

NorESM1-M based on the RCP4.5 scenario are 

presented in Figure 7, Figure 9, and Figure 11. 

Outputs based on RCP8.5 scenarios are also presented 

in Figure 8, Figure 10, and Figure 12. First, general 

warming is projected over all parts of the domain 

throughout the century. Projected warming is 

increasing and becoming stronger with time and 

strongest warming is expected in the end-century 

period. The outputs of all three global model datasets 

show similar changes with each other. However, the 

HadGEM2-ES global model has more severe results 

than EC-EARTH and NorESM1-M especially under 

RCP8.5 for 2071–2100 very likely due to high climate 
sensitivity (Figure 12). According to RCP8.5 model 

scenario results of EC-EARTH and NorESM1-M, the 

highest warming of 5 °C is found to be in southeast 

Europe, Turkey, Morocco, Algeria, and the Iberian 

Peninsula, in summer (Figure 12-g, i) for end century 

period. HadGEM2-ES model gives more than 6 °C 

increase over all parts of the domain for summer 

(Figure 12-h). More warming in Central Europe and 

North Africa will be observed in winter (Figure 12-a, 

b). Temperatures will be expected to increase from 3.5 

up to 5 °C for spring and autumn (Figure 12-d,e,f and 

j,k,l). According to RCP4.5 results, warming will be 

expected to be between 1.5 °C and 5 °C for the period 

of 2071-2100 (Figure 11). The maximum temperature 

increase is projected in summer mainly over the 

regions including Morocco, Algeria, and the Iberian 

Peninsula (Figure 11-g,h,i). The warming temperature 
pattern is similar for both scenarios and all periods 

with summer being the warmest and winter less warm 

season. Therefore, it is anticipated that the change in 

temperature over the region will be towards warmer 

temperatures as time passes. Moreover, the changes 

will be more severe for RCP8.5 compared to RCP4.5. 

The regional climate model results of temperature are 

generally in line with AR6 [1, 29]. 
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Figure 4. Precipitation (mm/day) by HIRHAM5 with EC-EARTH dataset for 1971–2000 (1

st
 column), by ERA-

Interim dataset for 1980–2000 (2
nd

 column) and CRU observational temperature dataset for 1971–2000 (3
rd

 

column) for winter (a-c), spring (d-f), summer (g-i), autumn (j-l). 
 

 
Figure 5. Precipitation (mm/day) by HIRHAM5 with HadGEM2-ES dataset for 1971–2000 (1

st
 column), by 

ERA-Interim dataset for 1980–2000 (2
nd

 column) and CRU observational temperature dataset for 1971–2000 (3
rd

 

column) for winter (a-c), spring (d-f), summer (g-i), autumn (j-l). 
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Figure 6. Precipitation (mm/day) by HIRHAM5 with NorESM1-M dataset for 1971–2000 (1

st
 column), by 

ERA-Interim dataset for 1980–2000 (2
nd

 column) and CRU observational temperature dataset for 1971–2000 (3
rd

 

column) for winter (a-c), spring (d-f), summer (g-i), autumn (j-l). 

 

Table 5. Statistics for seasonal mean precipitation (mm/day) weighted over the whole domain for the period of 

1980-2000 for ERA-interim, and 1971-2000 for HIRHAM5 driven by three global climate models compared to 

CRU observational dataset. 

  ERA-interim 
EC-EARTH-

HIRHAM 

HadGEM2-ES-

HIRHAM 

NorESM1-M-

HIRHAM 

DJF 

Bias 

RMSE 

Correlation 

-0.362 

0.650 

0.877 

0.368 

1.768 

0.652 

0.380 

1.949 

0.614 

0.583 

2.286 

0.631 

MAM 

Bias 

RMSE 

Correlation 

-0.201 

0.451 

0.902 

0.268 

1.334 

0.716 

-0.093 

1.089 

0.711 

0.089 

1.362 

0.716 

JJA 

Bias 

RMSE 

Correlation 

-0.156 

0.423 

0.935 

-0.015 

0.850 

0.812 

-0.241 

0.712 

0.812 

-0.197 

0.809 

0.797 

SON 

Bias 

RMSE 

Correlation 

-0.314 

0.548 

0.920 

0.171 

1.145 

0.744 

0.267 

1.245 

0.731 

0.206 

1.301 

0.722 
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Figure 7. Spatial changes in temperatures (°C) obtained from HIRHAM5, forced by EC-EARTH, HADGEM2-

ES, and NORESM1-M with RCP4.5 for 2011–2040, with respect to 1971–2000: (a-c) winter, (d-f) spring, (g-i) 

summer, (j-l) autumn, respectively. 

 

 
Figure 8. Spatial changes in temperatures (°C) obtained from HIRHAM5, forced by EC-EARTH, HADGEM2-

ES, and NORESM1-M with RCP8.5 for 2011–2040, with respect to 1971–2000: (a-c) winter, (d-f) spring, (g-i) 

summer, (j-l) autumn, respectively. 
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Figure 9. Spatial changes in temperatures (°C) obtained from HIRHAM5, forced by EC-EARTH, HADGEM2-

ES, and NORESM1-M with RCP4.5 for 2041–2070, with respect to 1971–2000: (a-c) winter, (d-f) spring, (g-i) 

summer, (j-l) autumn, respectively. 
 

 
Figure 10. Spatial changes in temperatures (°C) obtained from HIRHAM5, forced by EC-EARTH, HADGEM2-

ES, and NORESM1-M with RCP8.5 for 2041–2070, with respect to 1971–2000: (a-c) winter, (d-f) spring, (g-i) 

summer, (j-l) autumn, respectively. 
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Figure 11. Spatial changes in temperatures (°C) obtained from HIRHAM5, forced by EC-EARTH, HADGEM2-

ES, and NORESM1-M with RCP4.5 for 2071–2100, with respect to 1971–2000: (a-c) winter, (d-f) spring, (g-i) 

summer, (j-l) autumn, respectively. 

 

 
Figure 12. Spatial changes in temperatures (°C) obtained from HIRHAM5, forced by EC-EARTH, HADGEM2-

ES, and NORESM1-M with RCP8.5 for 2071–2100, with respect to 1971–2000: (a-c) winter, (d-f) spring, (g-i) 

summer, (j-l) autumn, respectively. 
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3.4. Changes in Precipitation 
The projection of precipitation changes based on the 

RCP4.5 is presented in Figures 13, 15, and 17 

respectively. Outputs based on RCP8.5 scenarios are 

also presented in Figure 14, Figure 16, and Figure 18. 

Even though no pronounced change in the amount of 
precipitation will be expected over the domain, 

especially for the near-future period of 2011-2040, the 

direction of the change is negative except slight 

increase given by HadGEM2-ES results for the winter 

over southern Europe and the Iberian Peninsula for 

both emission scenarios RCP4.5 and RCP8.5 (Figures 

13 and 14). The magnitude of decrease in precipitation 

is projected to be larger for the mid-future period 

especially over the Iberian Peninsula, and the Alpine 

region in autumn with a strong decrease simulated by 

HadGEM2-ES driven HIRHAM (Figure 15 and 16). A 

decrease in precipitation in the southwest coasts of 

Turkey will be expected much in the winter for the 

end-century period (Figure 18-a,b,c). However, 

models give an increase of precipitation in the north 

part of Turkey and the Alpine region for winter. Drier 

conditions will be expected to occur for Turkey for all 
seasons except winter. Model outputs of RCP8.5 show 

more intense values than RCP4.5 output. A decrease 

in precipitation amounts in the Mediterranean Basin 

will be expected for summer and autumn. This 

decrease will occur over the north part of the 

Mediterranean region including the Balkans, France, 

Italy, and Caucasia. These results are also in line with 

AR6, stating that South Europe and the Mediterranean 

Basin will receive a less amount of average 

precipitation [1, 29]. 

 

3.5. Future Changes in Extreme Indices 

3.5.1. Absolute temperature indices 

Future changes in TXx and TNn for 2071-2100 

relative to 1971-2000 for two RCPs are presented in 

Figures 19 and 20, respectively. The projected 

changes in TNn and TXx differ from each other 

spatially. The increase in TNn is higher in northern 

parts of the region such as central and southern 

Europe. The highest increase in TNn, up to 12 °C, is 

projected in RCP8.5 in regions such as the south 

Balkans and especially the southeastern part of Turkey 

(Figure 20). Larger changes in TNn in high 

topographical regions might be associated with snow 

cover retreatment. Changes in TXx are only moderate 

over land. The increase in TXx over the Iberian 

Peninsula is remarkable compared to other land areas, 

especially for regional climate model outputs driven 

by the HadGEM2-ES global model. HadGEM2-ES 
has more severe results than other models for TXx and 

TNn as well in both RCPs. Nevertheless, TXx 

warming over the Mediterranean is about 7 °C. 

Therefore, summer extreme temperatures will be 

pronouncedly increasing over the region. 
 

 

 

3.5.2 Duration temperature index 

Projected changes in the warm spell duration over the 

period of 2071-2100 relative to the base period of 

1971-2000 for two RCPs are presented in Figure 21. 

Consistent with the changes in extreme temperatures, 

WSDI is expected to increase in both RCPs. Changes 
in RCP8.5 are again stronger for all simulation results. 

The greatest increase in WSDI occurs in the 

Mediterranean Sea and this might be related to WSDI 

being sensitive to temperature variability which is 

small in the Mediterranean Sea surface [22]. Results 

indicate that the duration of warm spell will be more 

than 100 days longer for the worst-case scenario at the 

end of the century. This increase will be more in the 

south part of the Iberian Peninsula and Northern 

African countries. The southeastern part of Turkey 

will have around 180 days longer warm spell 

according to the projections. 
 

3.5.3. Percentile temperature indices 

The percentile indices are represented as a percentage 

of days relative to 1971–2000 (Figure 22). A decrease 

in the number of cold nights and cold days is projected 

from the 1970s throughout the century in all model 

results. The decrease is generally more pronounced in 

HadGEM2-ES results starting from 2010 (red line). 

The responses for RCP8.5 are showing a very strong 

decrease in TN10p and TX10p from about 12% to 

0.3%, throughout the century. These results show that 

almost no cold nights or cold days will occur by the 

end of the century. Warm nights and days will be 

expected to increase throughout the 21st century 

(Figure 22a, b). The increase is again higher in 
HadGEM2-ES results than the results of other models. 

The positive change in the number of warm nights and 

days for RCP8.5 scenarios is from about 10% in 

1971–2000 to 84.6%, 76.4%, and 74.9% by 2100 for 

HadGEM2-ES, EC-EARTH, and NorESM1-M model 

results, respectively. Results show that more than 75% 

of the days and nights will be warmer than the 90
th
 

percentile of 1971-2000 by the end of the century. 
 

3.5.4. Precipitation indices 

Total wet-day precipitation is defined by the amount 
of precipitation on the day whose precipitation is at 

least 1 mm. Results are given for the period of 2071-

2100 relative to the base period 1971-2000 in % for 

both scenario outputs in Figure 23. Projected change 

in CDD is shown in Figure 24. For the end of the 

century, total wet-day precipitation decreases 

significantly over southern parts of the region in both 

RCPs relative to 1971–2000. There is also a slight 

increase in total wet-day precipitation over southern 

Europe. Regions in which decreases in total wet-day 

precipitation are projected will also observe a 

pronounced increase in CDD. Pronounced increases of 

CDD occur particularly in northern Africa, the Iberian 

Peninsula, and the inner regions of Turkey (Figure 

24). Slight decreases in CDD are also expected to 

occur in the Alpine region.  
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Figure 13. Spatial changes in precipitation (mm/day) obtained from HIRHAM5, forced by EC-EARTH, 

HADGEM2-ES, and NORESM1-M with RCP4.5 for 2011–2040, with respect to 1971–2000: (a-c) winter, (d-f) 

spring, (g-i) summer, (j-l) autumn, respectively. 

 

 
Figure 14. Spatial changes in precipitation (mm/day) obtained from HIRHAM5, forced by EC-EARTH, 

HADGEM2-ES, and NORESM1-M with RCP8.5 for 2011–2040, with respect to 1971–2000: (a-c) winter, (d-f) 

spring, (g-i) summer, (j-l) autumn, respectively. 
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Figure 15. Spatial changes in precipitation (mm/day) obtained from HIRHAM5, forced by EC-EARTH, 

HADGEM2-ES, and NORESM1-M with RCP4.5 for 2041–2070, with respect to 1971–2000: (a-c) winter, (d-f) 

spring, (g-i) summer, (j-l) autumn, respectively. 

 

 
Figure 16. Spatial changes in precipitation (mm/day) obtained from HIRHAM5, forced by EC-EARTH, 

HADGEM2-ES, and NORESM1-M with RCP8.5 for 2041–2070, with respect to 1971–2000: (a-c) winter, (d-f) 

spring, (g-i) summer, (j-l) autumn, respectively. 
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Figure 17. Spatial changes in precipitation (mm/day) obtained from HIRHAM5, forced by EC-EARTH, 

HADGEM2-ES, and NORESM1-M with RCP4.5 for 2071–2100, with respect to 1971–2000: (a-c) winter, (d-f) 

spring, (g-i) summer, (j-l) autumn, respectively. 
 

 
Figure 18. Spatial changes in precipitation (mm/day) obtained from HIRHAM5, forced by EC-EARTH, 

HADGEM2-ES, and NORESM1-M with RCP8.5 for 2071–2100, with respect to 1971–2000: (a-c) winter, (d-f) 

spring, (g-i) summer, (j-l) autumn, respectively. 
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Figure 19. The temporally averaged changes in the TXx (°C) for 2071–2100 presented as differences compared 

to 1971–2000 under RCP4.5 (1
st
 column), and RCP8.5 (2

nd
 column) by using outputs of HIRHAM5 driven EC-

EARTH (the first row), HadGEM2-ES (the second row) and NorESM1-M (the third row). 

 

 
Figure 20. The temporally averaged changes in the TNn (°C) for 2071–2100 presented as differences compared 

to 1971–2000 under RCP4.5 (1
st
 column), and RCP8.5 (2

nd
 column) by using outputs of HIRHAM5 driven EC-

EARTH (the first row), HadGEM2-ES (the second row) and NorESM1-M (the third row). 
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Figure 21. The temporally averaged changes in the WSDI (in days) for 2071–2100 presented as differences 

compared to 1971–2000 under RCP4.5 (1
st
 column), and RCP8.5 (2

nd
 column) by using outputs of HIRHAM5 

driven EC-EARTH (the first row), HadGEM2-ES (the second row) and NorESM1-M (the third row). 

 

 

 
Figure 22. Spatial averages of cold nights (TN10p) (a), cold days (TX10p) (b), warm nights (TN90p) (c), and 

warm days (TX90p) (d) over the region as simulated by the model results for the RCP8.5. Data is smoothed by a 

taking 5-year running mean. 
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Figure 23. The temporally averaged changes in total wet-day precipitation for 2071–2100 displayed (in %) 

compared to 1971–2000 for RCP4.5 (1
st
 column), and RCP8.5 (2

nd
 column) by using outputs of HIRHAM5 

driven EC-EARTH (the first row), HadGEM2-ES (the second row) and NorESM1-M (the third row). 

 

 
Figure 24. The temporally averaged changes in consecutive dry days for 2071–2100 displayed (in days) 

compared to 1971–2000 for RCP4.5 (1
st
 column), and RCP8.5 (2

nd
 column) by using outputs of HIRHAM5 

driven EC-EARTH (the first row), HadGEM2-ES (the second row) and NorESM1-M (the third row). 
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IV. CONCLUSION 
In this study, future change in temperature and 

precipitation climatology and extreme climate indices 

over the Mediterranean Basin including Turkey were 

investigated using HIRHAM5 forced by EC-EARTH, 

HadGEM2-ES, and NorESM1-M global climate 

models for three future periods of 2011– 2040, 2041–

2070, and 2071–2100. First, the ability of the 

HIRHAM5 in reproducing the observed conditions 

was investigated for 1971–2000 compared to ERA-

interim and CRU datasets. Performance of HIRHAM5 

is reasonable except cold bias around mountainous 
regions and wet bias has already been observed in the 

RegCM result. According to results, an increase in 

temperatures over all parts of the domain with 

stronger warming for summer will be expected. 

Results of the HadGEM2-ES global climate model 

mostly show more warming than the results of EC-

EARTH and NorESM1-M global model projections. 

This result could be very likely because of the high 

response of HadGEM2-ES to the doubling of CO2 

concentrations in the atmosphere. It is important to see 

all range of changes in future climate over the region. 

A decrease in precipitation will likely occur in almost 

all parts of the region except in winter. Most of the 

drier weather conditions will be expected especially in 

winter over western and southern Turkey. This result 

is essential because those parts of Turkey usually get 

most of its precipitation in the winter. A relative 

decrease in the precipitation is not severe in the model 
outputs since the region is already arid and semi-arid 

in the summer months. 

 

Projected changes in extreme climate indices defined 

by ETCCDI were also investigated by using outputs of 

HIRHAM5. Results show that an intensification of 

extreme weather events will be expected with 

increasing radiative forcing. Increase TNn are more 

pronounced particularly over the northern part of the 

Mediterranean Basin. On the other hand, increases in 

TXx are moderate over land areas. Stronger increases 

will be observed in summer over the region. The 

temporal evolutions of extreme climate indices show 

that changes will be stronger with the time and will be 

the strongest at the end of the century. According to 

the results, a decrease in total wet-day precipitation is 

anticipated. Longer dry spells are projected to occur as 
indicated by CDD results. 

 

Model results are also in line with regional climate 

model RegCM driven by HadGEM2-ES which 

simulates an increase of between 3 °C and 7 °C in 

mean air temperatures of Turkey depending on the 

scenario. This warming will be more severe in warm 

seasons than in cold seasons [30]. The results obtained 

in this study show that Turkey and the Mediterranean 

region will be greatly affected by climate change due 

to generally increasing air temperatures and 

decreasing precipitation. The southern and mid-south 

regions of Turkey which have already low 

precipitation and very hot climate will be expected to 

have drier and warmer weather conditions. All these 

results also clearly reveal that Turkey’s level of 

vulnerability to future human-induced climate change 

and to its possible consequences is very high. 
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